
VIEW

Recurrent Backpropagat ion and the Dynamical
Approach to Adaptive Neural Computation

Fernando J. Pineda
Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, CA 91109, USA

Error backpropagation in feedforward neural network models is a pop-
ular learning algorithm that has its roots in nonlinear estimation and
optimization. It is being used routinely to calculate error gradients in
nonlinear systems with hundreds of thousands of parameters. However,
the classical architecture for backpropagation has severe restrictions. The
extension of backpropagation to networks with recurrent connections will
be reviewed. It is now possible to efficiently compute the error gradients
for networks that have temporal dynamics, which opens applications to
a host of problems in systems identification and control.

1 Introduction

The problem of loading a neural network model with a nonlinear map-
ping is like the problem of finding the parameters of a multidimensional
nonlinear curve fit. The traditional way of estimating the parameters
is to minimize a measure of the error between the actual output and
the “target” output. Many useful optimization techniques exist, but the
most common methods make use of gradient information. In general,
if there are N free parameters in the objective function, the number of
operations required to calculate the gradient numerically is at best pro-
portional to N 2 . Neural networks are special because their mathematical
form permits two tricks that reduce the complexity of the gradient cal-
culation, as discussed below. When these two tricks are implemented,
the gradient calculation scales linearly with the number of parameters
(weights), rather than quadratically. The resulting algorithm is known as
a backpropagation algorithm.

Classical backpropagation was introduced to the neural network com-
munity by Rumelhart, Hinton and Williams (1986). Essentially the same
algorithm was developed independently by Werbos (1974) and Parker
(1982) in different contexts. Le Cun (1988) has provided a brief overview
of backpropagation pre-history and stresses that the independent discov-
ery of the technique and its interpretation in the context of connectionist

Neural Computation 1,161-172 (1989) @ 1989 Massachusetts Institute of Technology

162 Fernando J. Pineda

systems is a recent and important development. He points out that within
the framework of optimal control the essential features of the algorithm
were known even earlier (Bryson and Ho 1969).

In this paper, the term "backpropagation" will be used generically to
refer to any technique that calculates the gradient by exploiting the two
tricks. Furthermore, since one can write a backpropagation routine for
evaluating the gradient and then use this routine in any prepackaged
numerical optimization package, it is reasonable to take the position that
the term "backpropagation" should be attached to the way the gradient
is calculated rather than to the particular algorithm for using the gradient
(conjugate gradient, line search, etc.).

Recurrent backpropagation is a non-algorithmic continuous-time for-
malism for adaptive recurrent and nonrecurrent networks in which the
dynamical aspects of the computation are stressed (Pineda 1987a; 198713;
1988). The formalism is expressed in the language of differential equa-
tions so that the connection to collective physical systems is more natural.
Recurrent backpropagation can be put into an algorithmic form to opti-
mize the performance of the network on digital machines, nevertheless,
the intent of the formalism is to stay as close to collective dynamics as
possible.

Recurrent backpropagation has proven to be a rich and useful com-
putational tool. Qian and Sejnowski (1988) have demonstrated that a
recurrent backpropagation network can be trained to calculate stereo dis-
parity in random-dot stereograms. For dense disparity maps the network
converges to the algorithm introduced by Marr and Poggio (1976) and
for sparse disparity maps it converges to a new algorithm for transpar-
ent surfaces. Barhen et al. (1989) have developed a new methodology
for constrained supervised learning and have extended RBP to handle
constraints and to include terminal attractors (Zak 1988). They have ap-
plied their algorithms to inverse kinematics in robotic applications. The
formalism has also been fertile soil for theoretical developments. Pearl-
mutter (1989) has extended the technique to time-dependent trajectories
while Simard et al. (1988) have investigated its convergence properties.

2 Overview of a Dynamical Model

The class of neural network models which can be trained by recurrent
backpropagation is very general, but it is useful to pick a definite sys-
tem as an example, therefore consider a neural network model based on
differential equations of the form

The vector x represents the state vector of the network, I represents an
external input vector and w represents a matrix of coupling constants

Dynamical Approach to Adaptive Neural Computation 163

(weights) which represent the strengths of the interactions between the
various neurons. The relaxation time scale is T ~ . By hypothesis, the
vector valued function f(r,) is differentiable and chosen so as to give
the system appropriate dynamical properties. For example, biologically
motivated choices are the logistic or hyperbolic tangent functions (Cowan
1968). When the matrix w is symmetric with zero diagonals, this system
corresponds to the Hopfield model with graded neurons (1984).

In general, the solutions of equation (2.1) exhibit oscillations, conver-
gence onto isolated fixed points or chaos. For our purposes, convergence
onto isolated fixed points is the desired behavior, because we use the
value of the fixed point as the output of the system. When the network
is loaded, the weights are adjusted so that the output of the network is
the desired output.

There are several ways to guarantee convergence. One way is to
impose structure on the connectivity of the network, such as requiring
the weight matrix to be lower triangular or symmetric. Symmetry, al-
though mathematically elegant, is quite stringent because it constrains
microscopic connectivity by requiring pairs of neurons to be symmetri-
cally connected. A less stringent constraint is to require that the Jacobian
matrix be diagonally dominant. For equation (2.11, the Jacobian matrix
has the form

where Sij are the elements of the identity matrix and f'(zj) is the deriva-
tive of f(zj). This condition has been used by Guez et al. (1988).

If the feedforward, symmetry or diagonal dominance stability condi-
tions are imposed as initial conditions on a network, gradient descent
dynamics will typically evolve a network which violates the conditions.
Nevertheless, this author has never observed an initially stable network
becoming unstable while undergoing simple gradient descent dynamics.
This fact points out that the above stability conditions are merely suffi-
cient conditions - they are not necessary. This fact also motivates the
stability assumption upon which recurrent backpropagation on equation
(2.1) is based: that if the initial network is stable, then the gradient de-
scent dynamics will not change the stability of the network. The need
for this assumption can be eliminated by choosing a dynamical system
which admits only stable behavior, even under learning, as was done by
Barhen et al. (1989).

In gradient descent learning, the computational problem is to opti-
mize an objective function whose free parameters are the weights. Let
the number of weights be denoted by "N" and let the number of process-
ing units be denoted by "n". Then, N is proportional to n2 provided the
fan-in/fan-out of the units is proportional to R. For the neural network
given by equation (2.1) it requires O(mN) or O(mn2) operations to relax
the network and to calculate a separable objective function based on the
steady state xo. (In this discussion, the precision of the calculation is fixed

164 Fernando J. Pineda

and m is the number of time steps required to relax equation (2.1) to a
given tolerance.) Accordingly, to calculate the gradient of the objective
function by numerical differentiation requires O(mN2) or O(mn4) calcu-
lations. For problems with lots of connections this becomes intractable
very rapidly. The scaling referred to here should not be confused with
the number of gradient evaluations required for convergence to a solu-
tion. Indeed, for some problems, such as parity, the required number
of gradient evaluations may diverge at critical training set sizes (Tesauro
1987).

Now, as already mentioned, backpropagation adaptive dynamics is
based on gradient descent and exploits two tricks to reduce the amount
of computation. The first trick uses the fact that, for equations of the
form (2.11, the gradient of an objective function E(#) can be written as
an outer-product, that is,

V,E = yof(xo)T (2.3)

where xo is the fixed point of equation (2.1) and where the "error vector"
yo is given by

yo = (LYJ (2.4)

where LT is the transpose of the n x n matrix defined in equation (2.2) and
J is an external error signal which depends on the objective function and
on xo. This trick reduces the computational complexity of the gradient
calculation by a factor of n because L-' can be calculated from L by direct
matrix inversion in Oh3) operations and because xo can be calculated in
only O(mn2) calculations. Thus the entire calculation scales like O(mn3)
or O (r n N 3 h

The second trick exploits the fact that yo can be calculated by relax-
ation or equivalently it is the (stable) fixed point of the linear differential
equation

(2.5)

A form of this equation was derived by Pineda (198513). A discrete-
time version was derived independently by Almeida (1987). To relax y
(that is, to integrate equation (2.5) until y reaches steady state) requires
O(n2) operations per time step. Therefore, if the system does not wander
chaotically, the required amount of computation scales like O(mn2) or
O(m N) . The method is computationally efficient provided the network
is sufficiently large and sparse and provided that the fixed points are
not marginally stable. These results are summarized in Table 1. Note
that the two backpropagation algorithms have reduced the amount of
computation by a factor of N . The classical feedforward algorithm is
more efficient because it does not have to relax to a steady state.

For all its faults, backpropagation has permitted optimization tech-
niques to be applied to many problems which were previously considered

Dynamical Approach to Adaptive Neural Computation 165

Numerical algorithm complexity:

Worst case (e.g. numerical differentiation)
Matrix inversion (e.g. gaussian elimination)
Matrix inversion by relaxation (e.g. recurrent

Recursion (e.g. classical feedforward back-

O(mN2)
O(mN3/2)

backpropagation) O(mN)

propagation) O (N)

Table 1: Scaling of various algorithms with the number of connections. m is the
number of time steps required to relax equations (2.1) or (2.5). It is assumed
that the number of time steps required to relax them is the same.

numerically intractable. The N-fold reduction of the amount of calcula-
tion is perhaps the single most important reason that backpropagation
algorithms have made such an impact in neural computation. The idea
of using gradient descent is certainly not new, but whereas it was pre-
viously only tractable on problems with few parameters, it is now also
tractable on problems with many parameters. It is interesting to observe
that a similar situation arose after the development of the FFT algorithm.
The idea of numerical fourier transforms had been around for a long
time before the FFT, but the FFT caused a computational revolution by
reducing the complexity of an n-point fourier transform, from Oh2) to
O(n log(n)).

3 Dynamics vs. Algorithms

Backpropagation algorithms are usually viewed from an algorithmic view-
point. For example, the gradient descent version of the algorithm is
expressed in the following pseudo-code:

while@ > E)

c
initialize weight change AUJ = 0
repeat for each pattern

i
relax eqn. (2.1) to obtain xo
relax eqn. (2.4) to obtain yo
calculate gradient V E = yof(xo)T
accumulate gradients Aw = Aw + V E

}

166 Fernando J. Pineda

update weights w + w + Aw
1

Note that all the patterns are presented before a weight update. On
the other hand, a ”dynamical algorithm” can be obtained by replacing
the weight update step with a differential equation, that is,

TwdWij ld t = yif(xjc,) (3.1)
and integrating it simultaneously with the forward-propagation and back-
ward-propagation equations. A constant pattern is presented through
the input pattern vector, I, and the error signal is presented through the
error vector, J. The dynamics of this system is capable of learning a sin-
gle pattern so long as the relaxation time of the forward and backward
propagations (7, and 7J is much slower than the relaxation time of the
weights, rw. Since the forward and backward equations settle rapidly af-
ter a presentation, the outer product yf(xIT is a very good approximation
for the gradient during most of the integration. To learn multiple pat-
terns, the patterns must be switched slowly compared to the relaxation
time of the forward and backward equations, but rapidly compared to
T,, the time scale over which the weights change.

The conceptual advantage of this approach is that one now has a
dynamical system which can be studied and perhaps used as a basis
for models of actual physical or biological systems. This is not to say
that merely converting an algorithm into a dynamical form makes it
biologically or physically plausible. It simply provides a starting point
for further development and investigation.

Intuition and formal results concerning algorithmic models do not
necessarily apply to the corresponding dynamical models. For example,
consider the well-known ”fact” that gradient descent is a poor algorithm
compared to conjugate gradient. In fact this conventional wisdom is
incorrect when it comes to physical dynamical systems. The reason is that
the disease which makes gradient descent inefficient is a consequence of
discretization. For example a difficulty occurs when descending down a
long narrow valley. Gradient descent can wind up taking many tiny steps
crossing and re-crossing the actual gradient direction. This is inefficient
because the gradient must be recomputed for each step and because the
amount of computation required to recalculate the gradient from one step
to the next is approximately constant. Conjugate gradient is a technique
which assures that the new direction is conjugate to the previous direction
and therefore avoids the problem. Accordingly larger steps may be taken
and less gradient evaluations are required.

On the other hand gradient descent is quite satisfactory in physical
dynamical systems simply because time is continuous. The ”steps” are by
definition infinitely small and the gradient is evaluated continuously. No
repeated crossing of the gradient direction occurs. For the same reason,
the ultimate performance of physical neural networks cannot be deter-
mined from how quickly or how slowly a “neural” simulation runs on a

Dynamical Approach to Adaptive Neural Computation 167

0 1 2 3 4 5 6
Time (T ~ x 1000)

Figure 1: Mean squared error as a function of time.

digital machine. Instead one must integrate the simultaneous equations
and measure how long it takes to learn, in multiples of the fundamen-
tal time scales of the equations. As an example, consider the following
illustrative problem. Choose input and output vectors to be randomly
selected 5 digit binary vectors scaled between 0.1 and 0.9. Use a network
with two layers of five units each with connections going in both direc-
tions (50 weights). For dimensionless time scales choose T, = rv = 1.0,
rW = 32rz and select a new pattern at random every 47,. The equa-
tions may be integrated crudely, for example, use the Euler method with
(At = 0.02~~). One finds that the error reaches E = 0.1 in approximately
4 x l @ ~ , or after lo3 presentations. Figure 1 shows the error as a function
of time.

To estimate the performance of an electronic physical system we can
replace these time scales with electronic time scales. Therefore, suppose
patterns are presented every lo-’ sec (100 kHz). This is the performance
bottleneck of the system, since the relaxation time of the circuit, rz, is
then approximately 2.5 x sec, which is slow compared with what

168 Fernando J. Pineda

then approximately 2.5 x sec, which is slow compared with what
can be achieved in analog VLSI. Hence in this case the patterns would
be learned in approximately 10 milliseconds.

Unlike simple feedforward networks, recurrent networks exhibit dy-
namical phenomena. For example, a peculiar phenomenon can occur if
a recurrent network is trained as an associative memory to store mul-
tiple memories: it is found that the objective function can be reduced
to some very small value, yet when the network is tested for recall, the
supposedly stored memory is missing! This is due to a fundamental
limitation of gradient descent. Gradient descent is capable of moving ex-
isting fixed points only. It cannot create new fixed points. To create new
fixed points requires a technique whereby some degrees of freedom in
the network are clamped during the loading phase and ,released during
the recall phase. The analogous technique in feedforward networks is
called “teacher forcing.” It can be shown that this technique causes the
creation of new fixed points. Unfortunately, after the suppressed degrees
of freedom are released, there is no guarantee that the system is stable
with respect to the suppressed degrees of freedom. Therefore the fixed
points sometimes turn out to be repellers instead of attractors. In feedfor-
ward nets teacher forcing causes no such difficulties because there is no
dynamics in feedforward networks and hence no attractors or repellers.

4 Recent Developments

Zak (1988) has suggested the use of fixed points with infinite stability
in recurrent networks. These fixed points, denoted “terminal attractors,”
have two properties which follow from their infinite stability. First, their
stability is always guaranteed, hence the repeller problem never occurs,
and second, trajectories converge onto them in a finite amount of time,
rather than an infinite amount of time. In particular, if a terminal at-
tractor is used in the weight update equation, a remarkable speedup in
learning time occurs (see for example Barhen et al. 1989). These interest-
ing properties are a consequence of the fact that the attractors violate the
Lipschitz condition.

Pearlmutter (1989) has extended the recurrent formalism to include
time-dependent trajectories (time-dependent recurrent backpropagation).
In this approach the objective function of the fixed point is replaced with
an objective functional of the trajectory. The technique is the continous
time generalization of the sequence generating network discussed by
Rumelhart et al. (1986). Like all backpropagation algorithms the amount
of calculation is reduced by OW) for each gradient evaluation. However,
like the Rumelhart network, it requires that the network be unfolded in
time during training. Hence the storage and computation during training
scales like O(mN) where m is the number of unfolded time steps. Fur-
thermore, the technique is acausal in that the backpropagation equation

Dynamical Approach to Adaptive Neural Computation 169

one is solving a two-point boundary problem of the kind familiar from
control theory. For problems where the target trajectories are known a
priori and on-line learning is not required, this is the technique of choice.

On the other hand a causal algorithm has been suggested by Williams
and Zipser (1989). This algorithm does not take advantage of the back-
propagation tricks and therefore the complexity scales like O(mN2) for
each gradient evaluation while the storage scales like Oh3). Neverthe-
less, for small problems where on-line learning is required it is the tech-
nique of choice. Both techniques seek to minimize a measure of the error
between a target trajectory and an actual trajectory by performing gra-
dient descent. Only the method used for the gradient evaluation differs.
Therefore one expects that, to the extent that on-line training is not an
issue and to the extent that complexity is not an issue, one could use the
two techniques interchangeably to create networks. Both techniques can
suffer from the repeller problem if an attempt is made to introduce mul-
tiple attractors. As before, this problem could be solved by introducing
a time dependent terminal attractor.

5 Constraints

Biologically and physically plausible adaptive systems which are mas-
sively parallel should satisfy certain constraints. 1) They should scale
well with connectivity, 2) they should require little or no global syn-
chronization, 3) they should use low precision components, and 4) they
should not impose unreasonable structural contraints, such as symmet-
ric weights or bi-directional signal propagation. Backpropagation algo-
rithms in general and recurrent backpropagation and time-dependent
recurrent backpropagation in particular can be viewed in light of each of
these constraints.

Linear scaling of the gradient calculation in backpropagation algo-
rithms is a consequence of the local nature of the computation; that is,
each unit only requires information from the units to which it is con-
nected. This notion of locality, which arises from the analysis of the
numerical algorithm is distinct from the notion of spatial locality, which
is a constraint imposed by physical space on physical networks. Spa-
tial locality is how one avoids the Oh2) growth of wires in networks.
Both locality constraints could be satisfied by physical backpropagation
networks.

Global synchronization requires global connections, therefore it is un-
desirable if the network is to scale up. In one sense, the problem of syn-
chronization has been eliminated in recurrent backpropagation because
there is no longer any need for separate forward, backward and update
steps, indeed equations (2.1), (2.51, and (3.1) are "integrated" simulta-
neously by the dynamical system as it evolves. There is another sense
in which synchronization causes difficulties. In physical systems and in

170 Fernando J. Pineda

massively parallel digital simulations, time delays and asynchronous up-
dates can give rise to chaotic or exponential stochastic behavior (Barhen
and Golati 1989). Barhen et al. have shown that this “emergent chaos”
can be suppressed easily by the appropriate choice of dynamical param-
eters.

It is still an open question as to whether backpropagation algorithms
require low precision or high precision components. Formal results sug-
gest that some problems, like parity in single layer nets (Minsky and
Papert 19881, may lead to exponential growth of weights. In practice it
appears that 16 bits of precision for the weights and 8 bits of precision for
the activations and error signals are sufficient for many useful problems
(Durbin 1987).

Structurally, recurrent backpropagation and time-dependent recurrent
backpropagation impose no constraints on the weight matrix. This would
help the biological plausiblity of the model were it not for the require-
ment that the connections be bi-directional. Bi-directionality is perhaps
the biggest plausibility problem with the algorithms based on backpropa-
gation. Biologically, this requires bi-directional synapses or separate, but
equal and opposite, paths for error and activation signals. There is no
evidence for either structure in biological systems. The same difficulties
arise in electronic implementations where engineering solutions to this
problem have been developed (Furman and Abidi 1988), but one would
hope that a better adaptive dynamics would eliminate the problem alto-
gether.

6 Discussion

If neural networks were merely clever numerical algorithms it would
be difficult to completely account for the recent excitement in the field.
To my mind, much of the excitement started with the work of Hopfield
(1982) who made explicit the profound relationship between information
storage and dynamically stable configurations of collective physical sys-
tems. Hopfield nets are based on the physics of interacting spins which
together form a system known as a spin glass. The relevant physical
property of spin glasses which make them useful for computation is that
the collective interactions between all the spins can result in stable pat-
terns which can be identified with stored memories. Hopfield nets serve
as an explicit example of the principle of collective computation even
though they may not be the best networks for practical computing.

Digital computers, on the other hand, can compute because they are
physical realizations of finite state machines. In digital computers col-
lective dynamics does not play a role at the algorithm level, although
it certainly plays a role at the implementation level since the physics
of transistors is collective physics. Collective dynamics can play a role
at both the algorithmic and the implementation levels if the physical

Dynamical Approach to Adaptive Neural Computation 171

dynamics of the machine is reflected in the computation directly. Rather
than search for machine-independent algorithms, one should search for
just the opposite - dynamical algorithms that can fully exploit the col-
lective behavior of physical hardware.

Acknowledgments

The author wishes to acknowledge very helpful discussions with Pierre
Baldi, Richard Durbin, and Terrence Sejnowski.

The work described in this paper was performed at the Applied
Physics Laboratory, The Johns Hopkins University, sponsored by the Air
Force Office of Scientific Research (AFOSR-87-354). The writing and pub-
lication of this paper was supported by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply any endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of Technology.

References

Almeida, L.B. 1987. A learning rule for asynchronous perceptrons with feedback
in a combinatorial environment. In: Proceedings of the IEEE First Interna-
tional Conference on Neural Networks, San Diego, CA, eds. M. Caudil and
C. Butler, 2, 609-618.

Barhen, J., S. Gulati, and M. Zak. 1989. Neural learning of inverse kinematics for
redundant manipulators in unstructured environments. To appear in: IEEE
Computer, June 1989, Special issue on Autonomous Intelligent Machines.

'Chaotic relaxation' in concurrently asyn-
chronous neurodynamics. Submitted to: 1989 International Joint Conference
on Neural Networks, June 18-19, Washington, D.C.

Bryson, A.E. Jr. and Y-C. Ho. 1969. Applied Optimal Control. Blaisdell Publishing
co.

Cowan, J.D. 1968. Statistical mechanics of nervous nets. In: Neural Networks,
ed. E.R. Caianiello. Berlin: Springer-Verlag, 181-188.

Durbin, R. 1987. Backpropagation with integers. Abstracts of the meeting,
Neural Networks for Computing, Snowbird, UT.

Furman, B. and A. Abidi. 1988. A CMOS backward error propagation LSI.
Proceedings of the Twenty-second Asilomar Conference on Signals, Systems, and
Computers. Pacific Grove, CA.

Guez, A., V. Protopopsecu, and J. Barhen. 1988. On the stability, storage capac-
ity, and design of nonlinear continuous neural networks. I E E E Transactions
on Systems, Man, and Cybernetics, 18, 80-87.

Barhen, J. and S. Gulati. 1989.

172 Fernando J. Pineda

Hopfield, J.J. 1982. Neural networks as physical systems with emergent col-
lective computational abilities. Proceedings of the National Academy of Science
USA, 79,2554-2558.

. 1984. Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the National Academy
of Science USA, 81,3088-3092.

le Cun, Y. 1988. A theoretical framework for backpropagation. Proceedings of the
1988 Connectionist Models Summer School, Carnegie-Mellon University, eds.
D. Touretzky, G. Hinton, T. Sejnowski, 21-29. San Mateo, CA: Morgan-
Kaufmann Publishers.

Marr, D. and T. Poggio. 1976. Cooperative computation of stereo disparity.
Science, 194, 283-287.

Minsky, M. and S. Papert. 1988. Perceptrons, 2nd edition. Cambridge, MA MIT
Press.

Parker, David B. 1982. Learning-Logic. Invention Report, S81-64, File 1, Ofice
of Technology Licensing, Stanford University.

Pearlmutter, Barak A. 1989. Learning state space trajectories in recurrent neural
networks. Neural Computation, 1 263-269.

Pineda, F.J. 1987a. Generalization of backpropagation to recurrent neural net-
works. Physical Review Letters, 18, 2229-2232.

. 198%. Generalization of backpropagation to recurrent and higher
order networks. In: Proceedings of IEEE Conference on Neural Information
Processing Systems, Denver, Colorado, Nov. 8-12, ed. D.Z. Anderson, 602-
611.

. 1988. Dynamics and architecture for neural computation. Journal of
Complexity, 4, 216-245.

Qian, N. and T.J. Sejnowski. 1988. Learning to solve random-dot stereograms
of dense transparent surfaces with recurrent backpropagation. In: Proceed-
ings of the 1988 Connectionist Models Summer School, eds. D. Touretzky,
G. Hinton and T. Sejnowski, 435443. San Mateo, C A Morgan-Kaufmann
Publishers.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams. 1986. Learning internal repre-
sentations by error propagation. In: Parallel Distributed Processing, 1, eds.
D.E. Rumelhart and J.L. McClelland, 318-362.

Simard, P.Y., M.B. Ottaway, and D.H. Ballard. 1988. Analysis of recurrent
backpropagation. Proceedings of the 1988 Connectionist Models Summer School,
June 17-26, 1988, Carnegie Mellon Univ., Morgan-Kaufmann Publishers.

Tesauro, G. 1987. Scaling relationships in backpropagation learning: depen-
dence on training set size. Complex Systems, 1, 367-372.

Werbos, P. 1974. Beyond regression: New tools for prediction and analysis in the
behmiorual sciences, Ph.D. thesis, Harvard University.

Williams, R.J. and D. Zipser. 1989. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1, 270-280.

Zak, M. 1988. Terminal attractors for addressable memory in neural networks.
Physics Letters A, 133, 18-22.

Received 14 March 1989; accepted 17 April 1989.

