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IL-33 is a nuclear cytokine from the IL-1 family constitutively

expressed in epithelial barrier tissues and lymphoid organs,

which plays important roles in type-2 innate immunity and

human asthma. Recent studies indicate that IL-33 induces

production of large amounts of IL-5 and IL-13 by group 2 innate

lymphoid cells (ILC2s), for initiation of allergic inflammation

shortly after exposure to allergens or infection with parasites or

viruses. IL-33 appears to function as an alarmin (alarm signal)

rapidly released from producing cells upon cellular damage or

cellular stress. In this review, we discuss the cellular sources,

mode of action and regulation of IL-33, and we highlight its

crucial roles in vivo with particular emphasis on results obtained

using IL33-deficient mice.
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Introduction
IL-33 is a nuclear cytokine, initially designated NF-HEV

[1,2], which exhibits structural similarities with IL-1

[3–6]. It activates Myd88-dependent signaling pathways

in target cells expressing the ST2/IL-1RAcP receptor

complex [3,4,6], including group 2 innate lymphoid cells

(ILC2s, natural helper cells, nuocytes, innate helper

2 cells), mast cells and their progenitors, basophils, eosi-

nophils, Th2 cells, NKT and NK cells [3,5,6]. Studies

performed over the past three years indicate that ILC2s,

which secrete huge amounts of IL-5 and IL-13 in

response to IL-33, and play crucial roles in type-2 immu-

nity, allergic inflammation and eosinophil homeostasis,

are major targets of IL-33 in vivo [7–12,13��]. The purpose

of this review is to highlight the crucial role of IL-33 in

innate immunity, inflammation and allergy, and to discuss
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its mode of action as an ‘alarmin’ and the mechanisms

involved in its regulation, with particular emphasis on

recent advances and studies focused on the analysis of

endogenous IL-33.

IL-33: a crucial actor in innate immunity,
inflammation and allergy
Role in innate immune responses following infection

with parasites and viruses

IL-33 plays important roles in type-2 innate immunity.

After infection with the helminth Nippostrongylus brasi-
liensis and in response to IL-33, ILC2s expanded robustly

and produced large amounts of IL-13, which led to goblet

cell hyperplasia in the intestine and worm expulsion,

even in the absence of adaptive immunity [7–9].

IL-33-deficient mice failed to clear worms due to a se-

lective defect in ILC2-derived IL-13 [14]. Responsive-

ness of ILC2s to IL-33 was found to be controlled by Gfi1,

a transcription factor which regulates ST2 expression at

the surface of ILC2s [15��]. Endogenous IL-33 has also

been shown to be important for lung eosinophilic inflam-

mation and IL-5 production by ILC2s, after infection

with the nematode Strongyloides venezuelensis or intranasal

administration of chitin, a polysaccharide constituent of

many parasites and allergens [16��,17].

IL-33 is involved in the response to viral infection. For

instance, IL-33/ST2 signaling has been found to be

required for ILC2-dependent restoration of airway epi-

thelial integrity after infection with influenza virus [18].

Activation of lung ILC2s by IL-33 was also shown to

mediate influenza-induced airway hyper-reactivity inde-

pendently of adaptive immunity [19]. In addition, analysis

of parainfluenza virus infection in IL-33-deficient mice

revealed an essential role of IL-33 in induction of IL-13,

mucus overproduction and chronic lung disease following

viral infection [20��]. Finally, endogenous IL-33 has been

found to be necessary for induction of potent CD8+ T cell

responses to replicating, prototypic RNA and DNA viruses

in mice [21], indicating that IL-33 may play a role in type-1

immune responses under certain conditions.

Activation of ILC2s in allergic inflammation

The crucial role of endogenous IL-33 in allergic inflam-

mation was first demonstrated using IL-33-deficient mice

[22]. IL-33 was found to be required for ovalbumin-

induced and protease allergen (papain)-induced airway

inflammation [22,23]. Further analyses revealed that IL-

33 induces allergic airway inflammation by stimulating

lung ILC2s [24–26,27�]. Indeed, papain-driven IL-5
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The IL-33/ST2-ILC2 axis and genetic susceptibility to asthma. Genetic studies suggest a major role for the IL-33/ST2 pathway in human asthma.

Indeed, IL33 and ST2 were the only two genes reproducibly identified in all major genome-wide association studies. IL-33, which is abundantly

expressed in airway epithelial cells, may initiate allergic inflammation by activating ILC2s, for production of large amounts of type-2 cytokines IL-5 and

IL-13. Interestingly, a number of genes linked to ILC2s (TSLP, RORA, IL2RB, IL13) have been identified in the genetic association studies. The capacity

of the IL-33/ST2-ILC2 axis to induce allergic inflammation, eosinophilia and goblet cell hyperplasia, may explain its central role in susceptibility to

asthma. Chromosomal localizations of IL33, ST2 and the other susceptibility genes are indicated.
and IL-13 production from ILC2s, eosinophilic lung

inflammation and Th2 cell differentiation were all

found to be impaired in intranasally challenged

IL-33-deficient mice [26,27�]. IL-33/ST2 signaling

was also required for IL-5 and IL-13 production by lung

ILC2s, and airway eosinophilia following exposure to

the clinically relevant fungal allergen Alternaria alter-
nata [24] or the danger signal uric acid [28�].

IL-33 also appears to be important for allergic inflammation

in other tissues (nasopharynx, skin). For instance, studies

using IL-33-deficient mice have revealed the crucial role of

IL-33 in the development of experimental allergic rhinitis

induced by ragweed pollen [29��]. IL-33 is a potent stimu-

lator for skin ILC2s, and the absence of IL-33 signaling

resulted in decreased skin inflammation in a mouse model

of atopic dermatitis [30��]. In humans, IL-33-responsive

ILC2s have been shown to be enriched in nasal polyps of

patients with chronic rhinosinusitis [10], and in lesional

skin biopsies of atopic dermatitis patients [30��].

Susceptibility to human asthma

The genes encoding IL-33 and ST2/IL1RL1 have been

identified as major susceptibility loci for human asthma in

several genome-wide association studies, which included

thousands of patients from diverse ethnic groups and

different forms of asthma (asthma associated with blood

eosinophils, early childhood asthma with severe exacer-

bations, etc.). Interestingly, IL33 and ST2/ILRL1 were

the only two genes reproducibly found to be associated
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with asthma in all these studies [31–34,35�]. Several other

genes important for ILC2 differentiation (RORA, tran-

scription factor RORa), proliferation (IL2RB, IL-2 re-

ceptor subunit), activation (TSLP, cytokine TSLP) and

function (IL13, type-2 cytokine IL-13) have been ident-

ified as susceptibility loci in some of these studies

[32–34]. The IL-33/ST2-ILC2 axis is thus likely to play

a crucial role in human asthma (Figure 1).

IL-33: a tissue-derived nuclear cytokine
Constitutive expression in epithelial barrier tissues and

lymphoid organs

An important characteristic of IL-33 is the fact that it is

constitutively expressed to high levels in human and

mouse tissues during homeostasis [36,37�]. Indeed, abun-

dant expression of the endogenous IL-33 protein has been

observed in epithelial cells from tissues exposed to the

environment, and in fibroblastic reticular cells (FRCs) of

lymphoid organs (Table 1) [36,37�]. High levels of IL-33

were also detected in endothelial cells from blood vessels

in human tissues [2,36], but not in mouse [37�].

Strikingly, the endogenous IL-33 protein was always

localized in the nucleus of producing cells in both human

and mouse tissues [36,37�], with no evidence for cyto-

plasmic or extracellular localization, indicating that IL-33

is a nuclear cytokine in vivo. Although its nuclear roles

remain unclear, IL-33 can associate with chromatin by

tethering to histones H2A/H2B, via a short chromatin-

binding motif, located in its N-terminal nuclear domain
www.sciencedirect.com
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Table 1

Major sources of IL-33 protein in human and mouse tissues

Humana Mousea,b

Epithelial barrier tissues

Lung Airway epithelium Alveolar type II

epithelium

Skin Keratinocytes Keratinocytes

Stomach Simple cuboı̈dal

epithelium

Simple cuboı̈dal

epithelium

Salivary glands Stratified cuboı̈dal

epithelium

Stratified cuboı̈dal

epithelium

Lymphoı̈d organs

Lymph nodes Fibroblastic reticular

cells,

Fibroblastic reticular

cells

(Tonsil, appendix) HEV endothelium –

Spleen Fibroblastic reticular

cells

Fibroblastic reticular

cells

Vascular tree

Blood vessels Endothelium –

a Endogenous IL-33 protein was always localized in the nucleus of

producing cells.
b Expression of IL-33 protein was correlated to the activity of the IL33

promoter visualized using an IL33-LacZ reporter strain.
[2,38]. Deletion of this chromatin-binding nuclear

domain has recently been shown to result in constitutive

extracellular release of the protein, ST2-dependent

multi-organ inflammation and death of the organism

[39��]. Nuclear localization (retention) is thus a funda-

mental property of IL-33, which is crucial for regulation of

its cytokine activity.

Inducible expression during inflammation

Although IL-33 is constitutively expressed in tissues

under basal conditions, its expression can be further

increased during inflammation. For instance, induction

of IL33 promoter activity and upregulation of IL-33

protein levels were observed in alveolar type II (ATII)

pneumocytes upon allergic lung inflammation following

exposure to ovalbumin, ragweed pollen or Alternaria
[25,40�]. Upregulation of nuclear IL-33 in mouse ATII

cells has also been detected upon lung eosinophilic

inflammation induced by intestinal nematode infection,

and after intranasal administration of chitin [16��]. In

humans, increased expression of IL-33 in the nuclei of

airway epithelial cells has been reported in patients with

asthma [41] and chronic obstructive pulmonary disease

(COPD) [20��]. Interestingly, IL-33 expression was trace-

able to a subset of airway epithelial cells with progenitor

function [20��]. Inducible expression of IL-33 in mouse

tissues has also been observed outside the lungs, for instance

in hepatocytes during acute hepatitis [42], and in endothelial

cells from the inflamed colon during colitis [37�].

IL-33 is generally not expressed in CD45+ hematopoietic

cells under basal conditions, but it can be induced in

macrophages and dendritic cells during allergic inflam-

mation and infection [19,40�,43]. However, IL-33 levels
www.sciencedirect.com 
in CD45+ cells appear to be at least 10 fold lower than those

found in CD45� epithelial cells [20��,25,40�], and the

protein was not detected in F4/80+ alveolar macrophages

in lung tissue sections during allergic inflammation [23] or

infection [16��]. In addition, recent analyses in a mouse

model of allergic rhinitis revealed that tissue-derived

IL-33, rather than immune-cell derived IL-33, is crucial

for induction of allergic inflammation [44].

IL-33: an alarmin released upon cellular stress
and injury
Mode of action as an alarmin

Biologically active full length IL-33 can be released in the

extracellular space after cell damage (necrotic cell death)

or mechanical injury [45,46]. IL-33 was thus proposed to

function as a novel alarmin (intracellular alarm signal

released upon cell injury) to alert the immune system

of tissue damage following trauma or infection

[36,37�,45,46]. IL-33 is likely to be a very good alarm

signal because, due to its constitutive expression in

normal tissues, it is ready to be released at any time,

for ‘alarming’ ILC2s and other immune cells (Figure 2).

Environmental allergens, such as ragweed pollen and A.
alternata, have been shown to induce the rapid (�1 hour)

release of IL-33 in nasal and bronchoalveolar lavage

(BAL) fluids, respectively [29��,47,48]. This increase of

IL-33 protein in extracellular fluids was associated with

reduced staining for IL-33 in the nuclei of nasal epithelial

cells [29��] and ATII pneumocytes [48], suggesting extra-

cellular release of preformed nuclear IL-33. Many air-

borne allergens have intrinsic protease activities

[26,28�,48], and allergen proteases have been shown to

play a role in the rapid increase of IL-33 levels in BAL

fluids after intranasal administration [26,48]. Allergens

and allergen proteases can cause breakdown of epithelial

barriers in vivo and may thus induce the release of IL-33

through cellular necrosis. However, allergen exposure

also leads to extracellular accumulation of danger signals,

such as ATP and uric acid, which appear to induce the

extracellular release of IL-33 without apparent cell death

[20��,28�,47]. ATP is known to be released in various

noncytolytic conditions, including membrane defor-

mations, mechanical stress or osmotic stress [47]. Cellular

stress, in addition to cellular necrosis, may thus turn out to

be an important mechanism for IL-33 release in vivo.

Regulation by proteases

Proteases have been shown to regulate IL-33 activity

(Figure 2). IL-33 contains a consensus site of cleavage

for caspase-3 (DGVD178G in human), and cleavage by

caspases at this site generates two biologically inactive

products [45,46]. Inactivation of IL-33 during apoptosis is

likely to be important to avoid alerting the immune

system unnecessarily after physiological programmed

(apoptotic) cell death, as opposed to pathological (necro-

tic) cell death [45,46].
Current Opinion in Immunology 2014, 31:31–37
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Figure 2
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IL-33, a tissue-derived nuclear alarmin. During homeostasis, nuclear IL-33 is constitutively expressed to high levels in epithelial barrier tissues,

such as the lung, skin and stomach. Full length bioactive IL-33 is released extracellularly upon tissue damage and cell death (or cellular stress),

following exposure to allergens or infection with viruses or parasites. After release, IL-33 ‘raises the alarm’ in the immune system by activating

various types of immune cells, including mast cells and, most importantly, ILC2s, which secrete large amounts of IL-5 and IL-13. After

programmed cell death (apoptosis), IL-33 is inactivated by caspases to avoid alerting the immune system unnecessarily. Although full length

IL-33 is active, it can be processed by inflammatory proteases (cathepsin G, elastase) into shorter ‘hyperactive’ mature forms, which may be the

crucial bioactive forms in vivo.

Current Opinion in Immunology 2014, 31:31–37 www.sciencedirect.com
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By contrast to caspases which inactivate IL-33, proteases

released during inflammation appear to increase IL-33

biological activity [49��]. Neutrophil serine proteases,

cathepsin G and elastase, were found to process full

length IL-33 into mature forms containing the IL-1-like

cytokine domain (IL-3395–270, IL-3399–270 and IL-33109–

270), that had greatly increased biological activity (�10

fold) compared to the full length protein [49��]. Both full

length and mature endogenous IL-33 were detected in

BAL fluids in a model of acute lung injury associated with

high levels of neutrophil recruitment in the alveolar wall

[49��]. Together, these results suggested that proteolytic

processing of IL-33 may be required for the extracellular

generation of highly active cytokine in vivo.

Conclusions and future directions
IL-33 is an alarmin cytokine from the IL-1 family, which

plays a crucial role in the initiation of type-2 immune

responses following infection with parasites or viruses, or

exposure to allergens. IL-33 appears to act by activating

ILC2s for production of large amounts of type-2 cytokines

IL-5 and IL-13. The potent activity of IL-33 on ILC2s

and the crucial role of these cells in the initiation of

allergic airway inflammation are likely to explain the

dominant role of the IL-33/ST2 pathway in genetic

susceptibility to human asthma. Despite these important

advances, many questions remain to be answered. For

instance, the potential redundancy or synergy of IL-33

with other activators of ILC2s, that have been recently

identified (Prostaglandin D2, Leukotriene D4, IL-9,

etc.), needs to be studied. Although the functions of

IL-33 in the activation of ILC2s and the initiation of

allergic inflammation in the lungs have been well estab-

lished, its roles in allergic and non-allergic inflammation

in other tissues, exhibiting high expression levels of the

endogenous protein, remain to be fully explored. A better

understanding of IL-33 release, mode of action and

regulation will be crucial for the development of thera-

peutics that target the IL-33/ST2 pathway to treat asthma

and other inflammatory diseases.
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