Skip to main content

Advertisement

Log in

Poor acclimation capacities in Antarctic marine ectotherms

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Animals can respond to temperature change by the following means: using physiological flexibility (including acclimation); or adapting; or migrating, with acclimation proposed as the major mechanism dictating prospects for survival in marine groups. In this study, 6 species of Antarctic invertebrate covering 4 phyla, Echinodermata, Mollusca, Brachiopoda and Crustacea were subjected to acclimation trials at 3°C for 60 days. Using acute upper lethal temperatures as a metric of ability to acclimate, only one species (Marseniopsis mollis) increased its acute upper limit. Furthermore, analysis of oxygen consumption on the urchin Sterechinus neumayeri and the amphipod Paraceradocus gibber showed their metabolic rates were also not compensated over the 60-day exposure period. Thus, 5 out of 6 species failed to acclimate to temperatures only 3.5°C above the annual average and 1–2°C above current summer maximum values. We discuss the proposal that the abilities of Antarctic marine species to adjust to elevated environmental temperatures are as limited, if not more so, than tropical species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in arabidopsis. Plant Physiol 152:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Barnes DKA, Fuentes V, Clarke A, Schloss IR, Wallace M (2006) Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep Sea Res II 53:853–865

    Article  Google Scholar 

  • Brett JR (1956) Some principles in the thermal requirements of fishes. Q Rev Biol 31:75–87

    Article  Google Scholar 

  • Bullock TH (1955) Compensation for temperature in the metabolism and activity of poikilotherms. Biol Rev 30:311–342

    Article  CAS  Google Scholar 

  • Campos J, Van der Veer HW (2008) Autecology of Crangon crangon (L.) with an emphasis on latitudinal trends. Oceanogr Mar Biol Annu Rev 46:65–104

    Article  Google Scholar 

  • Chrousos GP (1998) Stressors, stress, and neuroendocrine integration of the adaptive response. Ann N Y Acad Sci 851:311–335

    Article  CAS  PubMed  Google Scholar 

  • Clarke A (1991) What is cold adaptation and how should we measure it? Amer Zool 31:81–92

    Google Scholar 

  • Clarke A (1998) Temperature and energetics: a review of cold ocean physiology. In: Pörtner HO, Playle RC (eds) Cold Ocean Physiology, Society for Experimental Biology Seminar Series no. 66: 3–30

  • Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc R Soc B: Biol Sci 273:2257–2266

    Article  Google Scholar 

  • Clarke A, Johnston N (1999) Scaling of metabolic rate and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  • Cole NJ, Johnston IA (2001) Plasticity of myosin heavy chain expression with temperature acclimation is gradually acquired during ontogeny in the common carp (Cyprinus carpio L.). J Comp Physiol B 171:321–326

    Article  CAS  PubMed  Google Scholar 

  • Compton TJ, Rijkenberg MJA, Drent J, Piersma T (2007) Thermal tolerance ranges and climate variability: a comparison between bivalves from differing climates. J Exp Mar Biol Ecol 352:200–211

    Article  Google Scholar 

  • Davenport J, Wong TM (1992) Effects of temperature and aerial exposure on 3 tropical oyster species, Crassostrea-Belcheri, Crassostrea-Iradelei and Saccostrea-Cucullata. J Thermal Biol 17:135–139

    Article  Google Scholar 

  • Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. TREE 7:183–189

    Google Scholar 

  • Franklin CE, Davison W, Seebacher F (2007) Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. J Exp Biol 210:3068–3074

    Article  PubMed  Google Scholar 

  • Fraser KPP, Peck LS, Clarke A (2004) Protein synthesis, RNA concentrations, nitrogen excretion and metabolism vary seasonally in the Antarctic holothurian Heterocucumis steineni (Ludwig 1898). Physiol Biochem Zool 77:556–569

    Article  CAS  PubMed  Google Scholar 

  • Fry FEJ (1947) Effects of the environment on animal activity. University of Toronto Studies, biological series no 55. Publ Ontario Fish Res Lab 68:1–62

    Google Scholar 

  • Fry FEJ, Brett JR, Clawson GH (1942) Lethal limits of temperature for young speckled trout (Salvelinus fontinalis) University of Toronto Studies, Biological Series no 54. Publ Ontario Fish Res Lab 66:1–35

    Google Scholar 

  • Gonzalez-Cabrera JJ, Dowd F, Pedibhotla VK, Rosario R, Stanley-Samuelason D, Petzel D (1995) Enhanced hypo-osmoregulation induced by warm acclimation in Antarctic fish is mediated by increased gill and kidney Na+/K+-ATPase activities. J Exp Biol 98:2279–2291

    Google Scholar 

  • Heise K, Estevez MS, Puntarulo S, Galleano M, Nikinmaa M, Pörtner HO, Abele D (2007) Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J Comp Physiol B-Biochem Syst & Env Physiol 177:765–777

    Article  CAS  Google Scholar 

  • Helmuth B (2009) From cells to coastlines: how can we use physiology to forecast the impacts of climate change? J Exp Biol 212:753–760

    Article  PubMed  Google Scholar 

  • Hofmann GE, Place SP (2007) Genomics-enabled research in marine ecology: challenges, risks and pay-offs. Mar Ecol Prog Ser 332:249–255

    Article  CAS  Google Scholar 

  • Hudson HA, Brauer PR, Scofield MA, Petzel DH (2008) Effects of warm acclimation on serum osmolality, cortisla and hematocrit levels in the Antarctic fish Trematomus bernacchii. Pol Biol 31:991–997

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Core writing team: In: Pachauri, R.K., Reisinger, A. (Eds.), Contribution of Work Groups I, II and III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

    Google Scholar 

  • James MA, Ansell AD, Collins MJ, Curry GB, Peck LS, Rhodes MC (1992) Recent advances in the study of living brachiopods. Adv Mar Biol 28:175–387

    Article  Google Scholar 

  • Jin Y, DeVries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol B 144:290–300

    Article  PubMed  CAS  Google Scholar 

  • Jumbam KR, Jackson S, Terblanche JS, McGeoch MA, Chown SL (2008) Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. J Insect Physiol 54:1008–1014

    Article  CAS  PubMed  Google Scholar 

  • Klages M, Gutt J (1990) Comparative studies on the feeding behaviour of high Antarctic amphipods (Crustacea) in laboratory. Pol Biol 11:73–79

    Article  Google Scholar 

  • Lowe CJ, Davison W (2005) Plasma osmolality, glucose concentration and erythrocyte responses of two Antarctic notothenioid fishes to acute and chronic thermal change. J Fish Biol 67:752–766

    Article  Google Scholar 

  • McClintock JB, Slattery M, Heine J, Weston J (1992) Chemical defense, biochemical composition and energy content of three shallow-water Antarctic gastropods. Pol Biol 11:623–629

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Let 32:L19604

    Article  Google Scholar 

  • Morley SA, Peck LS, Miller A, Pörtner HO (2007) Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics. Oecologia 153:29–36

    Article  PubMed  Google Scholar 

  • Pearse JS, Giese AC (1966) Food, reproduction and organic constitution of the common Antarctic echinoid Sterechinus neumayeri (Meissner). Biol Bull Woods Hole 130:387–401

    Article  CAS  Google Scholar 

  • Peck LS (1989) Temperature and basal metabolism in two Antarctic marine herbivores. J Exp Mar Biol Ecol 127:1–12

    Article  Google Scholar 

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Pol Biol 25:31–40

    Article  Google Scholar 

  • Peck LS (2005) Prospects for survival in the Southern ocean: extreme temperature sensitivity of benthic species. Antarct Sci 17(4):497–507

    Article  Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper EM, Taylor JD, Crame JA (eds) The Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publications, 177: 441–45

  • Peck LS, Colman JG, Murray AWA (2000) Growth and tissue mass cycles in the infaunal bivalve Yoldia eightsi at Signy Island, Antarctica. Pol Biol 23:420–428

    Article  Google Scholar 

  • Peck LS, Pörtner HO, Hardewig I (2002) Metabolic demand, oxygen supply and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol & Biochem Zool 75:123–133

    Article  Google Scholar 

  • Peck LS, Webb KE, Clark MS, Miller A, Hill T (2008) Temperature limits to activity, feeding and metabolism in the Antarctic starfish Odontaster validus. Mar Ecol Prog Ser 381:181–189

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009a) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256

    Article  Google Scholar 

  • Peck LS, Massey A, Thorne M, Clark MS (2009b) Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Pol Biol doi 10.1007/s00300-008-0532-y

  • Podrabsky JE, Somero GN (2006) Inducible heat tolerance in Antarctic nothothenioid fishes. Pol Biol 30:39–43

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  PubMed  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  PubMed  CAS  Google Scholar 

  • Pörtner HO, Peck LS, Hirse T (2006) Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance? Pol Biol 29(8):688–693

    Article  Google Scholar 

  • Pörtner HO, Peck LS, Somero GN (2007) Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view. Philos Trans R Soc Lond B 362:2233–2258

    Article  CAS  Google Scholar 

  • Precht H, Christopherson J, Hensel J (1954) Temperatur und Leben. Springer-Verlag, Berlin, p 514

    Google Scholar 

  • Prosser CL (1973) Comparative animal physiology, 3rd edn. Saunders, Philadelphia, p 966

    Google Scholar 

  • Robinson E, Davison W (2008a) The Antarctic notothenioid fish is thermally flexible: acclimation changes oxygen consumption. Pol Biol 31:317–326

    Article  Google Scholar 

  • Robinson E, Davison W (2008b) Antarctic fish can survive prolonged exposure to elevated temperatures. J Fish Biol 73:1676–1689

    Article  Google Scholar 

  • Schmidt-Nielsen K (1990) Animal Physiology: Adaptation and Environment, 4th edition edn. Cambridge University Press, Cambridge, p 602

    Google Scholar 

  • Seebacher F, Davison W, Lowe CJ, Franklin CE (2005) A falsification of the thermal specialisation paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett 1:151–154

    Article  PubMed  Google Scholar 

  • Somero GN, De Vries AL (1967) Temperature tolerances of some Antarctic fishes. Science 156:257–258

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JG, Loeschcke V (2007) Studying stress responses in the post-genomic era: its ecological and evolutionary role. J Biosci 32:447–456

    Article  PubMed  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographical range—how so many species coexist in the tropics. Am Nat 133:240–256

    Article  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    Article  CAS  PubMed  Google Scholar 

  • Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: Influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol & Biochem Zool 73:200–208

    Article  CAS  Google Scholar 

  • Tomanek L (2008) The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response. Physiol & Biochem Zool 81:709–717

    Article  CAS  Google Scholar 

  • Weibel ER (2000) Understanding the limitation of O-2 supply through comparative physiology. Resp Physiol 118:85–93

    Article  Google Scholar 

  • Whiteley NM, Taylor EW, El Haj AJ (1997) Seasonal and latitudinal adaptation to temperature in crustaceans. J Therm Biol 22:419–427

    Article  Google Scholar 

  • Wilson RS, Franklin CE (2002) Testing the beneficial acclimation hypothesis. TREE 17:66–70

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Ziegeweid JR, Jennings CA, Peterson DL (2008) Thermal maxima for juvenile shortnose sturgeon acclimated to different temperatures. Environ Biol Fish 82:299–307

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Rothera Research station for their support in animal collection and maintenance, and this is especially so for the dive officers and marine assistants who were involved. This research was funded by NERC core funding to the British Antarctic Survey BIOFLAME programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd S. Peck.

Additional information

Communicated by H. O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peck, L.S., Morley, S.A. & Clark, M.S. Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157, 2051–2059 (2010). https://doi.org/10.1007/s00227-010-1473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1473-x

Keywords

Navigation