Skip to main content
Log in

Light at night: effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The rapid increase in urbanization is altering the natural composition of the day–night light ratio. The light/dark cycle regulates animal learning, memory, and mood swings. A study was conducted to examine the effect of different quantity and quality of light at night on the daily clock, learning, memory, cognition, and expression of transcripts in key learning centers. Treatment was similar for experiments one to three. Rats were exposed for 30 days to 12 h light and 12 h dark with a night light of 2 lx (dLAN group), 250 lx (LL), or without night light (LD). In experiment one, after 28 days, blood samples were collected and 2 days later, animals were exposed to constant darkness. In experiment two, after 30 days of treatment, animals were subjected to various tests involving learning, memory, and cognition. In experiment three, after 30 days of treatment, animals were sampled, and transcript levels of brain-derived neurotrophic factor, tyrosine kinase, Growth-Associated Protein 43, Neurogranin, microRNA-132, cAMP Response Element-Binding Protein, Glycogen synthase kinase-3β, and Tumor necrosis factor α were measured in hippocampus, thalamus, and cortex tissues. In experiment four, animals were exposed to night light of 0.019 W/m2 but of either red (640 nm), green (540 nm), or blue (450 nm) wavelength for 30 days, and similar tests were performed as mentioned in experiment 2. While in experiment five, after 30 days of respective wavelength treatments, all animals were sampled for gene expression studies. Our results show that exposure to dLAN and LL affects the daily clock as reflected by altered melatonin secretion and locomotor activity, compromises the learning, memory, and cognitive ability, and alterations in the expression levels of transcripts in the hypothalamus, cortex, and thalamus. The effect is night light intensity dependent. Further, blue light at night has less drastic effects than green and red light. These results could be of the potential use of framing the policies for the use of light at night.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  1. Hastings, M. H., Reddy, A. B., & Maywood, E. S. (2003). A clockwork web: Circadian timing in brain and periphery, in health and disease. Nature Reviews Neuroscience, 4, 649–661.

    Article  CAS  PubMed  Google Scholar 

  2. Weaver, R. E. (2011). Effects of simulated moonlight on activity in the desert night snake (Hypsiglena chlorophaea). Ozone: Science & Engineering, 85, 497–500.

    Google Scholar 

  3. Last, K. S., Hobbs, L., Berge, J., Brierley, A. S., & Cottier, F. (2016). Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Current Biology, 26, 244–251.

    Article  CAS  PubMed  Google Scholar 

  4. Clarke, J. A. (1983). Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and deermice (Peromyscus maniculatus). Behavioral Ecology and Sociobiology, 13, 205–209.

    Article  Google Scholar 

  5. Hölker, F., Wolter, C., Perkin, E. K., & Tockner, K. (2010). Light pollution as a biodiversity threat. Trends in Ecology & Evolution, 25, 681–682.

    Article  Google Scholar 

  6. Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D., Baugh, K., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science Advances, 2, e1600377–e1600377.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bedrosian, T. A., Fonken, L. K., & Nelson, R. J. (2016). Endocrine effects of circadian disruption. Annual Review of Physiology, 78, 109–131.

    Article  CAS  PubMed  Google Scholar 

  8. Fonken, L. K., & Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocrine Reviews, 35, 648–670.

    Article  CAS  PubMed  Google Scholar 

  9. Spoelstra, K., Verhagen, I., Meijer, D., & Visser, M. E. (2018). Artificial light at night shifts daily activity patterns but not the internal clock in the great tit (Parus major). Proceedings of the Royal Society B: Biological Sciences., 285, 20172751.

    Article  PubMed Central  Google Scholar 

  10. Honryo, T., Kurata, M., Okada, T., & Ishibashi, Y. (2012). Effects of night-time light intensity on the survival rate and stress responses in juvenile Pacific bluefin tuna, Thunnus orientalis (Temminck and Schlegel). Aquaculture Research, 44, 1058–1065.

    Article  Google Scholar 

  11. McKinney, M. L. (2006). Urbanization as a major cause as a biotic homogenization. Biological Conservation, 127, 247–260.

    Article  Google Scholar 

  12. Dominoni, D. M., Carmona-Wagner, E. O., Hofmann, M., Kranstauber, B., & Partecke, J. (2014). Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. Journal of Animal Ecology, 83, 681–692.

    Article  PubMed  Google Scholar 

  13. Raap, T., Pinxten, R., & Eens, M. (2017). Rigorous field experiments are essential to understand the genuine severity of light pollution and to identify possible solutions. Global Change Biology, 23(12), 5024–5026.

    Article  PubMed  Google Scholar 

  14. Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N., & Thorne, L. H. (2018). Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE, 13, e0209200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Renthlei, Z., & Trivedi, A. K. (2019). Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus). Environmental Pollution, 255, 113278.

    Article  CAS  PubMed  Google Scholar 

  16. Renthlei, Z., Borah, B. K., Gurumayum, T., & Trivedi, A. K. (2020). Season dependent effects of urban environment on circadian clock of tree sparrow (Passer montanus). Photochemical & Photobiological Sciences, 19, 1741–1749.

    Article  CAS  Google Scholar 

  17. Renthlei, Z., Borah, B. K., & Trivedi, A. K. (2021). Urban environment alter the timing of progression of testicular recrudescence in tree sparrow (Passer montanus). Environmental Science and Pollution Research, 28(24), 31097–31107.

    Article  CAS  PubMed  Google Scholar 

  18. Tulving, E., Donaldson, W., & Bower, G. H. (1972). Organization of memory. Academic Press.

    Google Scholar 

  19. Jarrard, L. E. (1993). On the role of the hippocampus in learning and memory in the rat. Behavioral and Neural Biology, 60, 9–26.

    Article  CAS  PubMed  Google Scholar 

  20. Bogousslavsky, J., Boller, F., & Iwata, M. (2019). A history of neuropsychology. Frontiers of Neurology and Neuroscience, 44, 108–117.

    Google Scholar 

  21. Levin, H. S., Eisenberg, H. M., & Benton, A. L. (1991). Frontal lobe function and dysfunction. Oxford University Press.

    Google Scholar 

  22. Bradfield, L. A., Hart, G., & Balleine, B. W. (2013). The role of the anterior, mediodorsal, and parafascicular thalamus in instrumental conditioning. Frontiers in Systems Neuroscience, 7, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, Q., Wang, Z., Cao, J., Dong, Y., & Chen, Y. (2022). Dim blue light at night induces spatial memory impairment in mice by hippocampal neuroinflammation and oxidative stress. Antioxidants (Basel), 11(7), 1218.

    Article  CAS  PubMed  Google Scholar 

  24. Datta, S., Samanta, D., Sinha, P., & Chakrabarti, N. (2016). Gender features and estrous cycle variations of nocturnal behavior of mice after a single exposure to light at night. Physiology & Behavior, 164(Pt A), 113–122.

    Article  CAS  Google Scholar 

  25. Zhou, Y., Zhang, H. K., Liu, F., Lei, G., Liu, P., Jiao, T., & Dang, Y. H. (2018). Altered light conditions contribute to abnormalities in emotion and cognition through HINT1 dysfunction in C57BL/6 Mice. Frontiers in Behavioral Neuroscience, 12, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Panagiotou, M., & Deboer, T. (2020). Effects of chronic dim-light-at-night exposure on sleep in young and aged mice. Neuroscience, 426, 154–167.

    Article  CAS  PubMed  Google Scholar 

  27. Dzirbíková, Z., Stebelová, K., Kováčová, K., Okuliarová, M., Olexová, L., & Zeman, M. (2022). Artificial dim light at night during pregnancy can affect hormonal and metabolic rhythms in rat offspring. International Journal of Molecular Sciences, 23(23), 14544.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yamada, K., Mizuno, M., & Nabeshima, T. (2002). Role for brain-derived neurotrophic factor in learning and memory. Life Sciences, 70(7), 735–744.

    Article  CAS  PubMed  Google Scholar 

  29. Bedrosian, T. A., & Nelson, R. J. (2017). Timing of light exposure affects mood and brain circuits. Translational Psychiatry, 7, e1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagao, M., & Hayashi, H. (2009). Glycogen synthase kinase-3beta is associated with Parkinson’s disease. Neuroscience Letters, 449, 2.

    Article  Google Scholar 

  31. Kim, W. Y., Wang, X., Wu, Y., Doble, B., Patel, S., Woodgett, J. R., & Snider, W. (2009). GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience, 12(11), 1390–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dani, J. W., Armstrong, D. M., & Benowitz, L. I. (1991). Mapping the development of the rat brain by GAP-43 immunocytochemistry. Neurosci., 40(1), 277–287.

    Article  CAS  Google Scholar 

  33. Pak, J. H., Huang, F. L., Li, J., Balschun, D., Reymann, K. G., Chiang, C., Westphal, H., & Huang, K. P. (2000). Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: A study with knockout mice. Proceedings of the National academy of Sciences of the United States of America, 97(21), 11232–11237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klein, R., Nanduri, V., Jing, S., Lamballe, F., Tapley, P., Bryant, S., Cordon-Cardo, C., Jones, K. R., Reichardt, L. F., & Barbacid, M. (1991). The trkB tyrosine kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell, 66, 395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Middlemas, D. S., Lindberg, R. A., & Hunter, T. (1991). trkB, a neuronal receptor protein-tyrosine kinase: Evidence for a full-length and truncated receptor. Molecular and Cellular Biology, 11, 143–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., & Impey, S. A. (2005). cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National academy of Sciences of the United States of America, 102(45), 16426–16431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reus, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., Kapczinski, F., & Quevedo, J. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neurosci., 300, 141–154.

    Article  CAS  Google Scholar 

  38. Das, U. N. (2003). Can memory be improved? A discussion on the role of ras, GABA, acetylcholine, NO, insulin, TNF-alpha, and long-chain polyunsaturated fatty acids in memory formation and consolidation. Brain Development., 25(4), 251–261.

    Article  PubMed  Google Scholar 

  39. Aloe, L., Properzi, F., Probert, L., Akassoglou, K., Kassiotis, G., Micera, A., & Fiore, M. (1999). Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Research, 840, 125–137.

    Article  CAS  PubMed  Google Scholar 

  40. Golan, H., Levav, T., Mendelsohn, A., & Huleihel, M. (2004). Involvement of tumor necrosis factor alpha in hippocampal development and function. Cerebral Cortex, 14, 97–105.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Q., Wang, Z., Cao, J., Dong, Y., & Chen, Y. (2022). Dim blue light at night induces spatial memory impairment in mice by hippocampal neuroinflammation and oxidative stress. Antioxidants Basel, 22–11(7), 1218.

    Article  Google Scholar 

  42. Fonken, L. K., Kitsmiller, E., Smale, L., & Nelson, R. J. (2012). Dim night time light impairs cognition and provokes depressive-like responses in a diurnal rodent. Journal of Biological Rhythms, 27, 319–327.

    Article  PubMed  Google Scholar 

  43. Renthlei, Z., Borah, B. K., & Trivedi, A. K. (2017). Photoperiod induced developmental effects on silkmoth, Bombyx mori. Biological Rhythm Research, 48(1), 121–128.

    Article  CAS  Google Scholar 

  44. Borah, B. K., Renthlei, Z., Tripathi, A., & Trivedi, A. K. (2022). Role of photoperiod, temperature and food on development of Polypedates teraiensis (Dubois, 1987) tadpoles. Journal of Environmental Biology, 43, 3.

    Article  Google Scholar 

  45. Renthlei, Z., Gurumayum, T., Borah, B. K., & Trivedi, A. K. (2019). Daily expression of clock genes in central and peripheral tissues of tree sparrow (Passer montanus). Chronobiology International, 36, 110–121.

    Article  CAS  PubMed  Google Scholar 

  46. Renthlei, Z., Hmar, L., & Trivedi, A. K. (2021). High temperature attenuates testicular responses in tree sparrow (Passer montanus). General and Comparative Endocrinology, 15(301), 113654.

    Article  Google Scholar 

  47. Borah, B. K., Renthlei, Z., & Trivedi, A. K. (2020). Hypothalamus but not liver retains daily expression of clock genes during hibernation in terai tree frog (Polypedates teraiensis). Chronobiology International, 37, 485–549.

    Article  CAS  PubMed  Google Scholar 

  48. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–ddC(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  49. Stenvers, D. J., Dorp, R. V., Foppen, E., Mendoza, J., Opperhuizen, A. L., Flier, E., Bisschop, P. H., Meijer, J. H., Kalsbeek, A., & Deboer, T. (2016). Dim light at night disturbs the daily sleep-wake cycle in the rat. Scientific Reports, 20(6), 35662.

    Article  Google Scholar 

  50. Honma, S., Kanematsu, N., Katsuno, Y., & Honma, K. (1996). Persistence of circadian oscillation while locomotor activity and plasma melatonin levels became aperiodic under prolonged continuous light in the rat. Neuroscience Letters, 216, 49–52.

    Article  CAS  PubMed  Google Scholar 

  51. Molcan, L., Sutovska, H., Okuliarova, M., Senko, T., Krskova, L., & Zeman, M. (2019). Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats. Life Sciences, 231, 116568.

    Article  CAS  PubMed  Google Scholar 

  52. Moaraf, S., Vistoropskya, Y., Poznera, T., Heibluma, R., Okuliarovác, M., Zemanc, M., & Barnea, A. (2020). Artificial light at night affects brain plasticity and melatonin in birds. Neuroscience Letters, 716, 134639.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi, J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 18(3), 164–179.

    Article  CAS  PubMed  Google Scholar 

  54. Trivedi, A. K., & Kumar, V. (2014). Melatonin: An internal signal for daily and seasonal timing. Indian Journal of Experimental Biology, 52(5), 425–437.

    CAS  PubMed  Google Scholar 

  55. Navara, K. J., & Nelson, R. J. (2007). The dark side of light at night: Physiological, epidemiological, and ecological consequences. Journal of Pineal Research, 43, 215–224.

    Article  CAS  PubMed  Google Scholar 

  56. Porsolt, R. D., Bertin, A., & Jalfre, M. (1977). Behavioral despair in mice: A primary screening test for anti depressants. Archives Internationales de Pharmacodynamie et de Therapie, 229, 327–336.

    CAS  PubMed  Google Scholar 

  57. Borbely, A. A. (1976). Sleep and motor activity of the rat during ultra-short light-dark cycles. Brain Research, 114, 305–317.

    Article  CAS  PubMed  Google Scholar 

  58. Plata-Salaman, C. R., & Oomura, Y. (1987). Food intake dependence on acute changes in light schedule. Physiology & Behavior, 41, 135–140.

    Article  CAS  Google Scholar 

  59. Stephenson, R., Lim, J., Famina, S., Caron, A. M., & Dowse, H. B. (2012). Sleep-wake behavior in the rat: Ultradian rhythms in a light-dark cycle and continuous bright light. Journal of Biological Rhythms, 27, 490–501.

    Article  PubMed  Google Scholar 

  60. Kenneth, P., Wright, R. J., Hughes, R. E., Kronauer, D. J., & Dijk, C. A. (2001). Czeisler, Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proceedings of the National academy of Sciences of the United States of America, 98, 14027–14032.

    Google Scholar 

  61. Meijer, J. H., Watanabe, K., Schaap, J., Albus, H., & Detari, L. (1998). Light responsiveness of the suprachiasmatic nucleus: Long-term multi-unit and single-unit recordings in freely moving rats. Journal of Neuroscience, 18, 9078–9087.

    Article  CAS  PubMed  Google Scholar 

  62. Cambras, T., & Diez, N. A. (2012). Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light. Chronobiology International, 29, 693–701.

    Article  PubMed  Google Scholar 

  63. Huang, Y., Zhou, W., & Zhang, Y. (2012). Bright lighting conditions during testing increase thigmotaxis and impair water maze performance in BALB/c mice. Behavioural Brain Research, 226, 26–31.

    Article  PubMed  Google Scholar 

  64. Namgyal, D., Chandan, K., Sultan, A., Aftab, M., Ali, S., Mehta, R., El-Serehy, H. A., Al-Misned, F. A., & Sarwat, M. (2020). Dim light at night induced neurodegeneration and ameliorative effect of curcumin. Cells, 9(9), 2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kwallek, N., & Lewis, C. N. (1990). Effects of environmental colour on males and females: A red or white or green office. Applied Ergonomics, 21(4), 275–278.

    Article  CAS  PubMed  Google Scholar 

  66. Elliot, A. J., Maier, M. A., Moller, A. C., Friedman, R., & Meinhardt, J. (2007). Color and psychological functioning: The effect of red on performance attainment. Journal of Experimental Psychology: General, 136(1), 154–168.

    Article  PubMed  Google Scholar 

  67. Soldat, A. S., Sinclair, R. C., & Mark, M. M. (1997). Color as an environmental processing cue: External affective cues can directly affect processing strategy without affecting mood. Social Cognition, 15, 55–71.

    Article  Google Scholar 

  68. Killgore, W. D. S., Vanuk, J. R., Shane, B. R., Weber, M., & Bajaj, S. (2020). A randomized, double-blind, placebo-controlled trial of blue wavelength light exposure on sleep and recovery of brain structure, function, and cognition following mild traumatic brain injury. Neurobiology of Diseases, 134, 104679.

    Article  CAS  Google Scholar 

  69. Vandewalle, G., Schwartz, S., Grandjean, D., Wuillaume, C., Balteau, E., Degueldre, C., Schabus, M., Phillips, C., Luxen, A., Dijk, D. J., & Maquet, P. (2010). Spectral quality of light modulates emotional brain responses in humans. Proceedings of the National academy of Sciences of the United States of America, 107, 19549–19554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xie, B., Zhang, Y., Yao, H., Shang, Y., Yuan, S., & Zhang, J. (2022). Red light exaggerated sepsis-induced learning impairments and anxiety-like behaviors. Aging, 12, 23739–23760.

    Article  Google Scholar 

  71. Jacobs, G. H., Fenwick, J. A., & Williams, G. A. (2001). Cone-based vision of rats for ultraviolet and visible lights. Journal of Experimental Biology., 204, 2439–2446.

    Article  CAS  PubMed  Google Scholar 

  72. La Vail, M. M. (1976). Survival of some photoreceptor cells in albino rats following long-term exposure to continuous light. Investigative Ophthalmology and Visual Science, 15, 64–70.

    Google Scholar 

  73. Bridges, C. D. (1959). Visual pigments of some common laboratory mammals. Nature, 184, 1727–1728.

    Article  Google Scholar 

  74. Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G., & Donner, K. (2000). In search of the visual pigment template. Visual Neuroscience, 17, 509–528.

    Article  CAS  PubMed  Google Scholar 

  75. Lyubarsky, A. L., Daniele, L. L., & Pugh, E. N. (2004). From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vision Research, 44, 3235–3251.

    Article  CAS  PubMed  Google Scholar 

  76. Deegan, J. F., & Jacobs, G. H. (1993). On the identity of the cone types of the rat retina. Experimental Eye Research, 56, 375–377.

    Article  PubMed  Google Scholar 

  77. Jacobs, G. H., Neitz, J., & Deegan, J. F. (1991). Retinal receptors in rodents maximally sensitive toultraviolet light. Nature, 353, 655–656.

    Article  CAS  PubMed  Google Scholar 

  78. Szel, A., & Rohlich, P. (1992). Two cone types of rat retina detected by anti-visual pigment antibodies. Experimental Eye Research, 55, 47–52.

    Article  CAS  PubMed  Google Scholar 

  79. Nikbakht, N., & Diamond, M. E. (2021). Conserved visual capacity of rats under red light. eLife, 10, e66429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Palczewska, G., Vinberg, F., Stremplewski, P., Bircher, M. P., Salom, D., Komar, K., Zhang, J., Cascella, M., Wojtkowski, M., Kefalov, V. J., & Palczewski, K. (2014). Human infrared vision is triggered by two-photon chromophore isomerization. Proceedings of the National Academy of Sciences., 111, E5445–E5454.

    Article  CAS  Google Scholar 

  81. Vinberg, F., Palczewska, G., Zhang, J., Komar, K., Wojtkowski, M., Kefalov, V. J., & Palczewski, K. (2019). Sensitivity of mammalian cone photoreceptors to infrared light. Neuroscience, 416, 100–108.

    Article  CAS  PubMed  Google Scholar 

  82. Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mufson, E. J., Binder, L., Counts, S. E., DeKosky, S. T., de Toledo-Morrell, L., Ginsberg, S. D., Ikonomovic, M. D., Perez, S. E., & Scheff, S. W. (2012). Mild cognitive impairment: pathology and mechanisms. Acta Neuropathologica., 123(1), 13–30.

    Article  CAS  PubMed  Google Scholar 

  84. Kida, S., Josselyn, S. A., Peña de Ortiz, S., Kogan, J. H., Chevere, I., Masushige, S., & Silva, A. J. (2002). CREB required for the stability of new and reactivated fear memories. Nature Neuroscience, 5, 348–355.

    Article  CAS  PubMed  Google Scholar 

  85. Bozon, B., Kelly, A., Josselyn, S. A., Silva, A. J., Davis, S., & Laroche, S. (2003). MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1432), 805–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Costa, M. M., Gobert, D., Harding, H., Herdy, B., Azzi, M., Bruno, M., Bidinosti, M., Ben, M. C., Marcinkiewicz, E., Yoshida, M., Imataka, H., Cuello, A. C., Seidah, N., Sossin, W., Lacaille, J. C., Ron, D., Nader, K., & Sonenberg, N. (2005). Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature, 436, 1166–1173.

    Article  Google Scholar 

  87. Hébert, S. S., & De Strooper, B. (2009). Alterations of the microRNA network cause neurodegenerative disease. Trends in Neurosciences, 32, 199–206.

    Article  PubMed  Google Scholar 

  88. Yelamanchili, S. V., & Fox, H. S. (2010). Defining larger roles for “tiny” RNA molecules: Role of miRNAs in neurodegeneration research. Journal of Neuroimmune Pharmacology, 5, 63–69.

    Article  PubMed  Google Scholar 

  89. Shi, J. (2015). Regulatory networks between neurotrophins and miRNAs in brain diseases and cancers. Acta Pharmacologica Sinica, 36, 149–157.

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Y., Guo, F., Pan, C., Lou, Y., Zhang, P., Guo, S., Yin, J., & Deng, Z. (2012). Effects of low temperatures on proliferation-related signaling pathways in the hippocampus after traumatic brain injury. Experimental Biology and Medicine, 237, 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  91. Braun, A. P., & Chulman, H. S. (1995). The multifunctional calcium/calmodulin-dependent protein kinase: From form to function. Annual Review of Physiology, 57, 417–445.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng, H. Y., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., Nakazawa, T., Shimizu, K., Okamura, H., Impey, S., & Obrietan, K. (2007). MicroRNA modulation of circadian-clock period and entrainment. Neuron, 54(5), 813–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hansen, K. F., Karelina, K., Sakamoto, K., Wayman, G. A., Impey, S., & Obrietan, K. (2013). miRNA-132: A dynamic regulator of cognitive capacity. Brain Structure & Function, 218, 817–831.

    Article  Google Scholar 

  94. Meiri, K. F., Saffell, J. L., Walsh, F. S., & Doherty, P. (1998). Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. The Journal of Neuroscience., 18, 10429–10437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rekart, J. L., Meiri, K., & Routtenberg, A. (2005). Hippocampal-dependent memory is impaired in heterozygous GAP-43 knockout mice. Hippocampus, 15(1), 1–7.

    Article  PubMed  Google Scholar 

  96. Zaccaria, Y. K. J., Lagace, D. C., Eisch, A. J., & McCasland, J. S. (2010). Resistance to change and vulnerability to stress: Autistic-like features of GAP43-deficient mice. Genes, Brain, and Behavior, 9(8), 985–996.

    Article  CAS  PubMed  Google Scholar 

  97. Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature, 421(6924), 753–756.

    Article  CAS  PubMed  Google Scholar 

  98. Morgan-Smith, M., Wu, Y., Zhu, X., Pringle, J., & Snider, W. D. (2014). GSK-3 signaling in developing cortical neurons is essential for radial migration and dendritic orientation. eLife, 3, e02663.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Garrido, J. J., Simón, D., Varea, O., & Wandosell, F. (2007). GSK3 alpha and GSK3 beta are necessary for axon formation. FEBS Letters, 581(8), 1579–1586.

    Article  CAS  PubMed  Google Scholar 

  100. Ochs, S. M., Dorostkar, M. M., & Aramunietal, G. (2015). Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin. Molecular Psychiatry, 2(4), 482–489.

    Article  Google Scholar 

  101. Khairova, R. A., Machado-Vieira, R., Du, J., & Manji, H. K. (2009). A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. International Journal of Neuropsychopharmacology, 12, 561–578.

    Article  CAS  PubMed  Google Scholar 

  102. Jurgens, H. A., Amancherla, K., & Johnson, R. W. (2012). Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. The Journal of Neuroscience., 32(12), 3958–3968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bobińska, K., Gałecka, E., Szemraj, J., Gałecki, P., & Talarowska, M. (2017). Is there a link between TNF gene expression and cognitive deficits in depression? Acta Biochimica Polonica, 64(1), 65–73.

    PubMed  Google Scholar 

Download references

Funding

This work is supported by a grant from the Department of Science and Technology under the Cognitive Science and Research Initiative (DST/CSRI/2017/37(C). Funding from the Department of Science and Technology under the DST-FIST program to the Department of Zoology, Mizoram University is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.K.T. conceived the idea. J.T.S. executed the experiments, collected data, analyzed data, and wrote the initial draft of the manuscript. Both the authors critically revised the manuscript and approved the final version.

Corresponding author

Correspondence to Amit K. Trivedi.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangma, J.T., Trivedi, A.K. Light at night: effect on the daily clock, learning, memory, cognition, and expression of transcripts in different brain regions of rat. Photochem Photobiol Sci 22, 2297–2314 (2023). https://doi.org/10.1007/s43630-023-00451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00451-z

Keywords

Navigation