Advertisement

Abstract

Five absorption features are reported at wavelengths of 3.4, 3.88, 4.05, 4.25, and 4.57 micrometers in the surface materials of the Galilean satellites Callisto and Ganymede from analysis of reflectance spectra returned by the Galileo mission near-infrared mapping spectrometer. Candidate materials include CO2, organic materials (such as tholins containing C≡N and C-H), SO2, and compounds containing an SH-functional group; CO2, SO2, and perhaps cyanogen [(CN)2] may be present within the surface material itself as collections of a few molecules each. The spectra indicate that the primary surface constituents are water ice and hydrated minerals.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Special issue on the Galileo Orbiter Observations of Jupiter and Its Satellites, Science 274, 377–403 (18 October 1996); J. D. Anderson, W. L. Sjogren, G. Schubert, ibid. 272, 709 (1996);
Anderson J. D., Lau E. L., Sjogren W. L., Schubert G., Moore W. B., Nature 384, 541 (1996);
; ibid. 387, 264 (1997); Science 276, 1236 (1997).
2
Watson K., Murray B. C., Brown H., Icarus 1, 361 (1963).
3
R. W. Carlson, P. R. Weissman, W. D. Smythe, J. C. Mahoney, the NIMS Science and Engineering Team, Space Sci. Rev. 60, 457 (1992).
4
Early results of the entire NIMS investigation (satellites and Jupiter) were reported previously by
Carlson R., et al., Science 274, 385 (1996).
5
Early results for Callisto and Ganymede were reported by T. B. McCord et al., Bull. Am. Astron. Soc. 28, 1138 (abstr.) (1996); T. B. McCord et al., Trans. Am. Geophys. Union 77, F445 (abstr.) (1996); T. B. McCord et al., ibid.78, S2O2 (abstr.) (1997).
6
Ockman N., Adv. Phys. 7, 199 (1958);
Irvine W. M., Pollack J. B., Icarus 8, 324 (1968);
; P. V. Hobbs, Ice Physics (Clarendon, Oxford, 1974); S. G. Warren, Appl. Opt. 23, 1206 (1984).
7
Fink U., Larson H. P., Icarus 24, 411 (1975).
8
Pilcher C. B., Ridgway S. T., McCord T. B., Science 178, 1087 (1972);
Fink U., Dekkers N. H., Larson H. P., Astrophys. J. 179, L155 (1973);
Pollack J. B., et al., Icarus 36, 271 (1978);
; G. T. Sill and R. N. Clark, in Satellites of Jupiter, D. Morrison, Ed. (Univ. of Arizona Press, Tucson, 1982), pp. 174–212; R. N. Clark, F. P. Fanale, M. J. Gaffey, in Satellites, J. Burns and M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1986), pp. 437–491;
Roush T. L., Pollack J. B., Witteborn F. C., Bregman J. D., Simpson J. P., Icarus 86, 355 (1990);
Calvin W. M., Clark R. N., ibid. 89, 305 (1991);
Calvin W. M., Clark R. N., Brown R. H., Spencer J. R., J. Geophys. Res. 100, 19041 (1995).
9
For spectra of minerals, see R. N. Clark, the USGS Digital Spectral Library 0.2-150 μm, in preparation [see R. N. Clark, G. A. Swayze, A. Gallagher, T. V. V. King, W. M. Calvin, U.S. Geol. Surv. Open File Rep. 93-592 (1993) for 0.2 to 3.0 μm]; J. W. Salisbury, L. S. Walter, N. Vergo, D. M. D'Aria, Infrared (2.1–25 μm) Spectra of Minerals (Johns Hopkins Univ. Press, Baltimore and London, 1991).
10
For spectra of organics, see N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, San Diego, ed. 3, 1990).
11
For spectra of gaseous and frozen volatiles, see
Rothman L. S., et al., J. Quant. Spectrosc. Radiat. Transfer 48, 469 (1992);
; U. Fink and G. T. Sill, in Comets, L. L. Wilkening, Ed. (Univ. of Arizona Press, Tucson, 1982), p. 164;
Pierson R. H., Fletcher A. N., Glantz E. S. C., Anal. Chem. 28, 1218 (1956).
12
R. M. Goody and Y. L. Yung, in Atmospheric Radiation (Oxford Univ. Press, New York, ed. 2, 1989), pp. 67–124.
13
Sandford S. A., Allamandola L. J., Astrophys. J. 355, 357 (1990).
14
Johnson R. E., Jesser W. A., Astron. J. 480, L79 (1997);
Notesco G., Bar-Nun A., Icarus 126, 336 (1997).
15
Spencer J. R., Calvin W. M., Person J., J. Geophys. Res. 100, 19049 (1995);
Calvin W. M., Johnson R. E., Spencer J. R., Geophys. Res. Lett. 23, 673 (1996);
Noll K. S., Johnson R. E., Lane A. L., Domingue D. L., Weaver H. A., Science 273, 341 (1996).
16
A. H. Delsemme, in Comets, L. L. Wilkening, Ed. (Univ. of Arizona Press, Tucson, 1982), pp. 85–130.
17
Whittet D. C. B., et al., Astron. Astrophys. 315, L357 (1996).
18
Blake D., Allamandola L., Sandford S., Hudgins D., Freund F., Science 254, 548 (1991).
19
V. C. Farmer, The Infrared Spectra of Minerals (Mineralogical Society, London, 1974);
Farrell E. F., Newnham R. E., Am. Mineral. 52, 380 (1967);
Wood D. L., Nassau K., J. Chem. Phys. 47, 2220 (1967).
20
Cruikshank D. P., et al., Icarus 94, 345 (1991).
21
The initial gas mixtures are as follows: tholin 1, 50% CH4 and 50% NH3, plus small amounts of H2O; tholin 3, 9% CH4 and 91% N2; and tholin 4, 90% N2 and 10% CH4.
22
For a description of the chemical analysis, see
McDonald G. D., Khare B. N., Thompson W. R., Sagan C., Icarus 94, 354 (1991).
23
At 150 K, cyanogen is a solid with a vapor pressure <0.1 mbar, almost identical to the behavior of SO2.
24
Sandford S. A., Allamandola L. J., Icarus 76, 201 (1988).
25
Delitsky M. L., Lane A. L., J. Geophys. Res. 102, 16385 (1997).
26
N-Butyl sulfonal chloride (n-C4H9SO2Cl) and N-nitroso piperidine (C5H10N2O). Spectra are from (10).
27
Smythe W. D., Nelson R. M., Nash D. B., Nature 280, 766 (1979).
28
F. P. Fanale, R. H. Brown, D. P. Cruikshank, R. N. Clark, ibid., p. 761.
29
Noll K. S., Johnson R. E., McGrath M. A., Caldwell J. J., Geophys. Res. Lett. 24, 1139 (1997).
30
J. L. Bishop, C. M. Pieters, T. Hiroi, Meteoritics Planet. Sci. 32, A14 (1997).
31
S. G. Warren, Appl. Opt. 25, 2650 (1986).
32
Falk M., J. Chem. Phys. 86, 560 (1987).
33
We acknowledge the use of the forthcoming U.S. Geological Survey 0.2-150 μm spectral library to be released by R.N.C. We thank D. Cruikshank for providing his published tholin spectra in digital form and D. Stevenson, J. Lunine, and many other colleagues for helpful discussions.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 278 | Issue 5336
10 October 1997

Submission history

Received: 16 June 1997
Accepted: 2 September 1997
Published in print: 10 October 1997

Permissions

Request permissions for this article.

Authors

Affiliations

T. B. McCord, G. B. Hansen, C. A. Hibbitts, F. P. Fanale, P. D. Martin, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA.
R. W. Carlson, W. D. Smythe, M. Segura, D. L. Matson, T. V. Johnson, Jet Propulsion Laboratory, Pasadena, CA 91109, USA.
R. N. Clark, U.S. Geological Survey, Denver, CO 80225–0046, USA.
J. C. Granahan, Science and Technology International, Incorporated, Honolulu, HI 56813, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Endogenous CO2 ice mixture on the surface of Europa and no detection of plume activity, Science, 381, 6664, (1305-1308), (2023)./doi/10.1126/science.adg4270
    Abstract
  2. The distribution of CO2 on Europa indicates an internal source of carbon, Science, 381, 6664, (1308-1311), (2023)./doi/10.1126/science.adg4155
    Abstract
  3. Hydrogen peroxide at the poles of Ganymede, Science Advances, 9, 29, (2023)./doi/10.1126/sciadv.adg3724
    Abstract
  4. The Galilean Satellites, Science, 286, 5437, (77-84), (2021)./doi/10.1126/science.286.5437.77
    Abstract
  5. Carbonic Acid in the Gas Phase and Its Astrophysical Relevance, Science, 279, 5355, (1332-1335), (2021)./doi/10.1126/science.279.5355.1332
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media