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Derivation of the backward Master equation for p(n, T )

The fundamental quantity of the branching process is the probability distribution, p(n, T ), of observing n copies
of the allele T generations after it originated. A backward equation for p(n, T ) can be derived by considering the
probability p(n, T |k, t, x) of having n copies at time T , given their were k copies on a background with fitness x at
time t. p(n, T |k, t − Δt, x) now can be expressed as a sum over possible intermediate states at time t:

p(n, T |k, t − Δt, x) =p(n, T |k, t, x)(1 − Δtk(2 + x − x̄(t) + s + r))
+ Δt [k(1 + x − x̄(t) + s)p(n, T |k + 1, t, x) + kp(n, T |k − 1, t, x)]

+ Δtrk
∑
n′

∫
x′

Kxx′p(n − n′, T |k − 1, t, x)p(n′, T |1, t, x′) ,

(1)

where x̄(t) is the mean fitness of the population at time t. The different terms have straightforward interpretations:
The first term is the probability that nothing happens in the small time interval Δt, the second accounts for a division
of one of k individuals, which happens with rate k(1 + x − x̄(t) + s), the third term accounts for the death of one of
the k, while the last term accounts for outcrossing of one of the k, producing a new individual with fitness x′ and
removing one with fitness x. The outcrossing term is then summed over all possible ways the k − 1 individuals with
fitness x and the one with fitness x′ can give rise to n individuals at time T . Sending Δt to zero and rearranging
terms results in an ODE for p(n, T |k, t, x)

−∂tp(n, T |k, t, x) = − p(n, T |k, t, x)k(2 + x − x̄(t) + s + r)
+ k(1 + x − x̄(t) + s)p(n, T |k + 1, t, x) + kp(n, T |k − 1, t, x)

+ rk
∑
n′

∫
x′

Kxx′p(n − n′, T |k − 1, t, x)p(n′, T |1, t, x′)
(2)

This is equation 1 from the main text.

Derivation of the equation for the generating function

To remove the convolution over n it is convenient to consider the generating function p̂(λ, T |k, t, x) =∑
n λnp(n, T |k, t, x). Multiplying the above equation by λn and summing over n yields

−∂tp̂(λ, T |k, t, x) = − k(2 + x − x̄(t) + s + r)p̂(λ, T |k, t, x)
+ k(1 + x − x̄(t) + s)p̂(λ, T |k + 1, t, x) + kp̂(λ, T |k − 1, t, x)

+ rk

∫
x′

Kxx′ p̂(λ, T |k − 1, t, x)p̂(λ, T |1, t, x)
(3)

All k initial individuals are independent, hence p̂(λ, T |k, t, x) = p̂k(λ, T |t, x) and the right hand side is
−∂tp̂

k(λ, T |t, x) = −kp̂k−1(λ, T |t, x)∂tp̂(λ, T |t, x). We can therefore divide the equation by p̂k−1
x (λ, T |t, x) to obtain

−∂tp̂(λ, T, t, x) = − (2 + x − x̄(t) + s + r)p̂(λ, T, t, x) + (1 + x − x̄(t) + s)p̂2(λ, T, t, x) + 1 + r

∫
x′

Kxx′ p̂(λ, T, t, x)

(4)

The generating function has the boundary condition p̂(λ, T |T, x) = λ, which follows from p(n, T |k, T, x) = δnk.
Substituting p̂(λ, T |t, x) = 1 − φ(λ, T, t, x) removes the constant term.

∂tφ(λ, T, t, x) = − r

∫
x′

Kxx′φ(λ, T, t, x′) − (x − x̄(t) + s − r)φ(λ, T, t, x) + (1 + x − x̄(t) + s)φ2(λ, T, t, x) (5)
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which now has boundary condition φ(λ, T, T, x) = 1 − λ. Assuming that selection is weak on the timescale of one
generation (σ � 1), we can approximate 1 + x − x̄(t) + s by 1 and arrive at Eq. 18 of the main text:

−∂tφ(λ, T, t, x) = r

∫
x′

Kxx′φ(λ, T, t, x′) + (x − x̄(t) + s − r)φ(λ, T, t, x) − φ2(λ, T, t, x) (6)

Solution for Φ(τ) at low r̃

In the main text, we presented a solution to the two equations (Eqs. (21) and (23))

ψ(τ, χ) =

{
reθ2/2

∫ τ

0
dτ ′Φ(τ ′)e−θ′2/2 θ < Θc

θ/ε θ > Θc

(7)

and

∂τΦ(τ) = s̃Φ(τ) − ε

∫
dχP (τ, χ)ψ2(τ, χ) (8)

in a regime of intermediate r̃ (1/
√

log N < r̃ < 1). An additional solution with qualitatively different properties exists
at low r̃. While the assumption of a Gaussian fitness distribution is questionable in this range of r̃, we nevertheless
present the solution here for completeness. Proceeding as before, we evaluate the integral in Eq. (7) by expanding
exponent around its maximum. The maximum is located at τ ′ = τ − θ − α(τ ′) where α(τ) = −Φ(τ)−1∂τΦ(τ).
Assuming α(τ) changes slowly with time, we have

ψ(τ) ≈
√

2πr̃Φ(τ)e
(θ+α)2

2 (9)

This solution is valid below Θc, where ψ(τ) crosses over the linear saturated form θ/ε. In addition to the matching
condition at Θc, we use Eq. 8 for s = 0 to determine α:

∂τΦ(τ) = −αΦ(τ) = −r̃Φ(τ)eΘc(α−r̃)+α2/2−r̃2/2 (10)

For r̃Θc � 1 we recover the solution with small α given in the main text. For smaller r̃, however, we find α(τ) ≈ log r̃
Θc

.
Solving the matching condition for Θc and differentiating with respect to τ yields ∂τΘc = − 1

Θc
α(τ). This is readily

solved for this case of Θcr̃ < 1

Θc(τ) = (−3(τ − τ0) log r̃ + Θ3
0)

1/3 . (11)

Substituting this solution for Θc(τ) into the expression for the rescaled generating function yields

Φ(τ) =
Θc

εr̃
e−

(Θc+α)2

2 ∼ e−
[−3(τ−τ0) log r̃+Θ3

0]2/3

2 (12)

Hence in this low r̃ regime, the decay of the survival probability is qualitatively different from the regime of intermediate
r̃.

Effective clone-based model

To rationalize the behavior of the continuous time branching process, we considered the following simplified model
discussed in the main text: Genotypes expand clonally and produce recombinant offspring. The offspring start growing
simultaneously in the next “effective” generation after all clones from the previous generation have disappeared. The
relevant quantity now is the number of clones or distinct genotypes, rather than the number of individuals. To
understand the dynamics of the number of clones, we need to know how many clones a single clone can produce.

Consider a single genotype with background fitness χ which is carrying a mutation of effect size s̃. The expected
number of recombinant offspring from this genotype is ξ = r̃

∫ ∞
0

dtnχ(t), where nχ(t) is the copy number trajectory.
The Laplace transform p̂(ξ) of p(ξ) obeys the equation (φ(z) = 1 − p̂(z))

∂χφ(χ, z) = r̃z + (χ + s̃ − r̃(1 − z))φ(χ, z) − φ(χ, z)2 , (13)
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which is a simpler version of the Eq. (42) (main text) since only one single clone is considered and recombination to
daugther clone is ignored. This equation can be solved asymptotically in the regimes of large and small χ − r.

φ(χ, z) =

{
r̃ze(χ+s̃−r̃(1−z))2/2

∫ χ+s̃−r̃(1−z)

−∞ dxe−x2/2 χ − r̃ � Θc

(χ − r̃(1 − z)) χ − r̃ � Θc

(14)

where Θc ≈ √−2 log r̃z. The initial fitness of the genotype, χ, is Gaussian distributed and the Laplace transform has
to be averaged over χ.

φ(z) =
∫ ∞

−∞

dχ√
2π

e−χ2/2φ(χ, z) (15)

Let’s look at the mean number 〈ξ〉 of recombinant offspring first, which is given by differentiating with respect to z
and setting z = 0, which in turn sends Θc to infinity. Integration by parts yields

〈ξ〉 = ∂z

∫ ∞

−∞

dχ√
2π

e−χ2/2φ(χ) = r̃

∫ ∞

−∞

dχ√
2π

e−χ(r̃−s̃)+r2/2

∫ χ−r̃+s̃

−∞
dxe−x2/2 =

r̃

r̃ − s̃
(16)

Hence the mean number of recombinant offspring is 1 for a neutral mutation and approximately 1+ s̃/r̃ for mutations
with small effect. To evaluate the integral in Eq. (15) at finite z, we have to account for the cross-over of φ(χ, z) at
χ − r̃ = Θc ≈ √−2 log r̃z. For small z, the cross-over translates into a cut-off of the integral. Again, the integral can
be evaluated by parts:

φ(z) =
∫ Θc+r̃−s̃

−∞

dχ√
2π

r̃ze−χ(r̃(1−z)−s̃)+r̃2(1−z)2/2

∫ χ−r̃(1−z)+s̃

−∞
dxe−x2/2 +

∫ ∞

Θc+r̃−s̃

dχ√
2π

e−χ2/2(χ − r̃(1 − z))

≈ r̃z

r̃ − s̃

[
1 − e−Θc(r̃−s̃)−r̃2/2

] (17)

Hence, the generating function of the average number of recombinant offspring generated by a random genotype is
given by

p̂(z) = 1 − φ(z) ≈ 1 − r̃z

r̃ − s̃

[
1 − e−Θc(r̃−s̃)

]
, (18)

where the last expression is valid for z � 1 and r̃ � 1.
The actual number m of recombinant offspring (novel clones) generated by one clone is Poisson distributed with

mean ξ. The generating function of m is therefore∑
m

λmP (m) =
∑
m

λm

∫ ∞

0

dξ p(ξ)e−ξ ξm

m!
=

∫ ∞

0

dξ p(ξ)e−ξ(1−λ) = p̂(1 − λ) = 1 − φ(1 − λ) (19)

We will now use this result to calculate how the number of clones that descend from a particular genotype evolves
over time.

The stochastic dynamics of the number genotypes

As long as the clones we are tracking constitute a small fraction of the population, different clones are independent.
The probability to go from k to m clones in one effective generation has therefore the generating function P̂ (λ, k) =
P̂ k(λ, 1) = (1 − φ(1 − λ))k. To study the dynamics of the number of clones over many generations, we need to know
how this propagator behaves when iterated.∑

m

λm
∑

m1,...mn

P (m,mn)P (mn,mn−1) . . . P (m1, k) =
∑
mn

P̂mn(1 − λ)
∑

m1,...mn−1

P (mn,mn−1) . . . P (m1, k)

=
[
P̂ (1 − P̂ (1 − P̂ (1 − . . . P̂ (1 − λ))))

]k

= [1 − φ ◦ φ . . . ◦ φ(1 − λ)]k = [1 − Φn(1 − λ)]k
(20)

Using the result for the Laplace transform in Eq. (18), we arrive at the difference equation

Φn+1 − Φn ≈
[
s̃/r̃ − e−r̃

√−2 log r̃Φn

]
Φn (21)

This is exactly the differential equation we have derived using the continuous time mode when the effective generation
time is set to r̃−1. The latter is reasonable since the r̃−1 is the turnover time by recombination.


