Supplementary information of

Sequencing mitochondrial genome and phylogenetic considerations of *Haemagogus* albomaculatus, *Haemagogus leucocelaenus*, *Haemagogus spegazzinii*, and *Haemagogus* tropicalis (Diptera: Culicidae)

Fábio Silva da Silva, Ana Cecília Ribeiro Cruz, Daniele Barbosa de Almeida Medeiros, Sandro Patroca da Silva, Márcio Roberto Teixeira Nunes, Lívia Carício Martins, Jennifer Chiang Oliveira, Poliana da Silva Lemos, Gabriel Muricy Cunha, Renato Freitas de Araujo, Joaquim Pinto Nunes Neto

Supplementary Table 1. Collection information of the analyzed *Haemagogus* species.
Supplementary Table 2. List of taxa used in the phylogenetic analyzes of this study.
Supplementary Table 3. Organization of *Hg. albomaculatus* mitogenome.
Supplementary Table 4. Organization of *Hg. leucocelaenus* mitogenome.
Supplementary Table 5. Organization of *Hg. spegazzinii* mitogenome.
Supplementary Table 6. Organization of *Hg. tropicalis* mitogenome.
Supplementary Table 7. Composition and skewness of sequenced *Haemagogus*

mitogenomes. Composition and skewness in whole mitogenomes and concatenated PCGs, tRNAs, and rRNAs (**A**). AT% content in PCGs codons positions (**B**).

Supplementary Table 8. Relative synonymous codon usage (RSCU) in sequenced *Haemagogus* mitogenomes.

Supplementary Table 9. Matrix of nucleotide distances between the taxa used in this study, built by Maximum Composite Likelihood.

Supplementary Figure 1. Predicted secundary structure of tRNAs of *Hg. albomaculatus*. Supplementary Figure 2. Predicted secundary structure of tRNAs of *Hg. leucocelaenus*. Supplementary Figure 3. Predicted secundary structure of tRNAs of *Hg. spegazzinii*. Supplementary Figure 4. Predicted secundary structure of tRNAs of *Hg. tropicalis*.

Supplementary Figure 5. Phylogenetic reconstruction by the Bayesian Inference method, based on the concatenation of the 13 PCGs of the *Haemagogus* species sequenced in this study and 23 other taxa with data available on GenBank database. The subsequent Bayesian probabilities (BP) are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.

- Supplementary Figure 6. Phylogenetic reconstruction by the Maximum Likelihood methods, based on the concatenation of the 13 PCGs of the *Haemagogus* species sequenced in this study and 23 other taxa with data available on GenBank database. The values of support for bootstrapping (BPP) for 1,000 replicates are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.
- Supplementary Figure 7. Phylogenetic reconstruction by the Bayesian Inference method, based on the concatenation of the genes *ATP8*, *COI*, *ND5*, and *ND6* of the *Haemagogus* species sequenced in this study and 03 other taxa with data available on GenBank database. The subsequent Bayesian probabilities (BP) are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.

Supplementary Figure 8. Phylogenetic reconstruction by the Maximum Likelihood methods, based on the concatenation of the genes *ATP8*, *COI*, *ND5*, and *ND6* of the *Haemagogus* species sequenced in this study and 03 other taxa with data available on GenBank database. The values of support for bootstrapping (BPP) for 1,000 replicates are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.

Species	ID Code	Collected	Used	Sex	Collection location	State	Geographic coordinates	Year
¹ Hg. albomaculatus	AR_795522	5	*	Ŷ	Jaborandi	Bahia	S 13°58'92" W 44°53'36"	2013
² Hg. leucocelaenus	AR_847534	23	7	Ŷ	Canaã dos Carajás	Pará	S 06°49'75" W 49°87'83"	2016
¹ Hg. spegazzinii	AR_843225	30	*	Ŷ	Coribe	Bahia	S 13°82'94" W 44°44'92"	2016
³ Hg. tropicalis	AR_854398	6	4	Ŷ	Ilha do Combu	Pará	S 01°51'97" W 48°49'28"	2018

Supplementary Table 1. Collection information of the analyzed Haemagogus species.

¹Authorization number for collection: Not applicable.

²Authorization number for collection: MMA/ICMBio/Carajás National Forest/Direct authorization nº 021/2018

³Authorization number for collection: MMA/ICMBio/SISBIO authorization nº 60595-1

* Macerated samples gently provided for total DNA extraction, after performing routine viral isolation procedures.

Species used and taxonomic information	Size (bp)	GenBank ID	Reference
Culicidae Family			
Culicinae Subfamily			
Aedini Tribe			
Haemagogus Genus			
Conopstegus Subgenus			
Haemagogus leucocelaenus	15056	MN531847	This study
Haemagogus Subgenus			
Albomaculatus Section			
Haemagogus albomaculatus	15097	MN531846	This study
Haemagogus janthinomys	15698	NC_028025	Lemos <i>et al</i> . ¹
Haemagogus spegazzinii	15081	MN531848	This study
Tropicalis Section			
Haemagogus tropicalis	14917	MN531849	This study
Aedes Genus			
Stegomyia Subgenus			
Aedes aegypti	16790	NC_035159	Matthews <i>et al.</i> ²
Aedes albopictus	16665	NC_006817	Direct Submission
Psorophora Genus			
Janthinosoma Subgenus			
Psorophora ferox	15345	MK575485	Direct Submission
Psorophora Subgenus			
Psorophora saeva	15049	NC_044658	Direct Submission
Culicini Tribe			
Culex Genus			
Culex Subgenus			
Culex camposi	15570	NC_036008	Demari-Silva et al. ³
Culex coronator	15576	NC_036006	Demari-Silva et al. ³
Culex pipiens pipiens	14856	NC_015079	Direct Submission
Culex quinquefasciatus	15587	NC_014574	Behura <i>et al.</i> ⁴
Lutzia Genus			
Metalutzia Subgenus			
Lutzia fuscanus	15803	MH316118	Sun <i>et al.</i> ⁵
Lutzia halifaxii	15744	MH316119	Sun <i>et al.</i> ⁵
Sabethini Tribe			
Sabethes Genus			
Peytonulus Subgenus			
Sabethes undosus	15334	NC_044660	Lorenz et al. ⁶
Sabethes Subgenus			

Supplementary Table 2. List of taxa used in the phylogenetic analyzes of this study.

Sabethes belisarioi	15911	NC_037498	Aragão <i>et al.</i> ⁷
Sabethoides Subgenus			
Sabethes chloropterus	15609	NC_037499	Aragão et al.7
Sabethes glaucodaemon	15620	NC_037500	Aragão et al.7
Anophelinae Subfamily			
Anopheles Genus			
Anopheles Subgenus			
Anopheles quadrimaculatus	15455	NC_000875	Mitchell et al. ⁸
Cellia Subgenus			
Anopheles gambiae	15363	NC_002084	Beard et al. ⁹
Kerteszia Subgenus			
Anopheles bellator	15668	NC_030249	Oliveira et al. ¹⁰
Anopheles cruzii	15449	NC_024740	Direct Submission
Anopheles homunculus	15739	NC_030248	Oliveira et al. ¹⁰
Nyssorhynchus Subgenus			
Anopheles albitarsis	15413	NC_020662	Krzywinski et al. ¹¹
Anopheles darlingi	15386	NC_014275	Moreno et al. ¹²
Dixidae Family (Outgroup)			
Dixella aestivalis	16465	NC_029354	Briscoe <i>et al.</i> ¹³

References

- Lemos, P. S. *et al.* Characterization of mitochondrial genome of *Haemagogus janthinomys* (Diptera: Culicidae). *Mitochondrial DNA Part A DNA Mapping, Seq. Anal.* 28, 50–51 (2017).
- 2. Matthews, B. J. *et al.* Improved reference genome of *Aedes aegypti* informs arbovirus vector control. *Nature* **563**, 501–507 (2018).
- Demari-Silva, B. *et al.* Mitochondrial genomes and comparative analyses of *Culex camposi*, *Culex coronator*, *Culex usquatus* and *Culex usquatissimus* (Diptera:Culicidae), members of the coronator group. *BMC Genomics* 16, 831 (2015).
- 4. Behura, S. K. *et al.* Complete sequences of mitochondria genomes of *Aedes aegypti* and *Culex quinquefasciatus* and comparative analysis of mitochondrial dna fragments inserted in the nuclear genomes. *Insect Biochem. Mol. Biol.* **41**, 770–777 (2011).
- 5. Sun, L. et al. The complete mt genomes of Lutzia halifaxia, Lt. fuscanus and Culex

pallidothorax (Diptera: Culicidae) and comparative analysis of 16 *Culex* and *Lutzia* mt genome sequences. *Parasites and Vectors* **12**, 368 (2019).

- Lorenz, C., Alves, J. M. P., Foster, P. G., Sallum, M. A. M. & Suesdek, L. First record of translocation in Culicidae (Diptera) mitogenomes: Evidence from the tribe Sabethini. *BMC Genomics* 20, 721 (2019).
- Aragão, A. O. *et al.* Description and phylogeny of the mitochondrial genome of Sabethes chloropterus, Sabethes glaucodaemon and Sabethes belisarioi (Diptera: Culicidae). Genomics 111, 607–611 (2019).
- Mitchell, S. E., Cockburn, A. F. & Seawright, J. A. The mitochondrial genome of *Anopheles quadrimaculatus* species A: Complete nucleotide sequence and gene organization. *Genome* 36, 1058–1073 (1993).
- Beard, C. B., Hamm, D. M. & Collins, F. H. The mitochondrial genome of the mosquito *Anopheles gambiae*: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. *Insect Mol. Biol.* 2, 103–124 (1993).
- Oliveira, T. M. P. *et al.* Mitochondrial Genomes of *Anopheles (Kerteszia)* (Diptera: Culicidae) from the Atlantic Forest, Brazil. *J. Med. Entomol.* 53, 790–797 (2016).
- Krzywinski, J. *et al.* Analysis of the evolutionary forces shaping mitochondrial genomes of a Neotropical malaria vector complex. *Mol. Phylogenet. Evol.* 58, 469–477 (2011).
- Moreno, M. *et al.* Complete mtDNA genomes of *Anopheles darlingi* and an approach to anopheline divergence time. *Malar. J.* 9, 127 (2010).
- Briscoe, A. G., Sivell, D. & Harbach, R. E. The complete mitochondrial genome of Dixella aestivalis (Diptera: Nematocera: Dixidae). Mitochondrial DNA Part A DNA Mapping, Seq. Anal. 28, 83–84 (2017).

Haemagogus albomaculatus													
Gene	Strand	Posi	ition	Size (pb)	IGN	Anticodon	Start/Stop Codon	AT%	AT-skew	GC-skew			
		Start	End										
Ile (I)	J	1	68	68	0	GAU		75.0	0.0588	0.1765			
Gln (Q)	Ν	66	134	69	-3	UUG		81.2	-0.0714	0.3846			
Met (M)	J	134	202	69	-1	CAU		72.5	-0.0400	-0.1579			
ND2	J	224	1186	963	21		ATA/TAA	83.4	-0.1059	-0.1375			
Trp (W)	J	1234	1302	69	47	UCA		76.8	0.0943	-0.1250			
Cys (C)	Ν	1302	1368	67	-1	GCA		83.6	0.0714	0.0909			
Tyr (Y)	Ν	1369	1436	68	0	GUA		79.4	0.0741	0.4286			
COI	J	1441	2949	1509	4		ATT/TAA	71.4	-0.1484	-0.0116			
Leu (L2)	J	2972	3038	67	22	UAA		77.6	-0.0385	0.2000			
COII	J	3040	3714	675	1		ATG/TAA	77.5	-0.1205	-0.0526			
Lys (K)	J	3725	3795	71	10	CUU		73.2	0.0769	-0.0526			
Asp (D)	J	3805	3874	70	9	GUC		87.1	0.0820	-0.1111			
ATP8	J	3875	4033	159	0		ATT/TAA	84.9	-0.0963	-0.4167			
ATP6	J	4030	4701	672	-4		TTG/TAA	76.5	-0.1206	-0.1519			
COIII	J	4714	5499	786	12		ATG/TAA	73.3	-0.1597	-0.0095			
Gly (G)	J	5502	5568	67	2	UCC		80.6	0.0370	0.0769			
ND3	J	5587	5913	327	18		ATA/TAA	79.8	-0.1648	-0.0303			
Arg (R)	J	5924	5988	65	10	UCG		67.7	-0.1364	0.0476			
Ala (A)	J	5993	6059	67	4	UGC		85.1	-0.0526	0.2000			
Asn (N)	J	6061	6130	70	1	GUU		78.6	0.0545	0.0667			
Ser (S1)	Ν	6129	6195	67	-2	GCU		76.1	-0.0980	0.0000			
Glu (E)	J	6212	6277	66	16	UUC		90.9	0.0333	-0.3333			
Phe (F)	Ν	6292	6358	67	14	GAA		80.6	-0.0370	0.5385			
ND5	Ν	6379	8067	1689	20		ATC/TAA	80.3	-0.1466	0.2530			
His (H)	Ν	8107	8171	65	39	GUG		81.5	-0.1321	0.5000			
ND4	Ν	8188	9522	1335	16		ATT/TAA	80.2	-0.1821	0.2727			
ND4L	Ν	9519	9797	279	-4		ATC/TAA	83.9	-0.2308	0.3333			
Thr (T)	J	9815	9879	65	17	UGU		87.7	0.0526	0.0000			
Pro (P)	Ν	9880	9946	67	0	UGG		77.6	0.0769	0.4667			
ND6	J	9952	10455	504	5		ATA/TAA	86.9	-0.1324	-0.0909			
CytB	J	10467	11573	1107	11		ATT/TAA	75.7	-0.1599	-0.0260			
Ser (S2)	J	11602	11669	68	28	UGA		82.4	0.0714	0.1667			
ND1	Ν	11705	12616	912	35		ATA/TAA	78.0	-0.2405	0.2736			
Leu (L1)	Ν	12647	12715	69	30	UAG		85.5	-0.0508	0.4000			
rRNA 16S	Ν	12693	14052	1360	-23			83.2	-0.0618	0.2982			
Val (V)	Ν	14055	14126	72	2	UAC		80.6	0.0690	0.1429			
rRNA 12S	Ν	14126	14918	793	-1			81.6	-0.0325	0.2466			
*	-	14919	15097	179	-	-	-	-	-	-			

Supplementary Table 3. Organization of *Hg. albomaculatus* mitogenome.

Haemagogus leucocelaenus												
Gene	Strand	Posi	ition	Size (pb)	IGN	Anticodon	Start/Stop Codon	AT%	AT-skew	GC-skew		
		Start	End									
Ile (I)	J	1	67	67	0	GAU		74.6	0.0000	0.1765		
Gln (Q)	Ν	65	133	69	-3	UUG		82.6	-0.0877	0.3333		
Met (M)	J	133	201	69	-1	CAU		71.0	-0.1020	-0.2000		
ND2	J	223	1209	987	21		ATA/TAA	83.5	-0.1238	-0.1534		
Trp (W)	J	1235	1303	69	25	UCA		81.2	0.0357	-0.0769		
Cys (C)	Ν	1303	1369	67	-1	GCA		83.6	0.1071	0.0909		
Tyr (Y)	Ν	1370	1436	67	0	GUA		80.6	0.0741	0.3846		
COI	J	1441	2949	1509	4		ATT/TAA	71.2	-0.1312	-0.0369		
Leu (L2)	J	2972	3038	67	22	UAA		77.6	0.0000	0.2000		
COII	J	3040	3720	681	1		ATG/TAA	75.6	-0.0796	-0.1807		
Lys (K)	J	3725	3795	71	4	CUU		74.6	0.0943	0.0000		
Asp (D)	J	3812	3880	69	16	GUC		87.0	0.0667	-0.1111		
ATP8	J	3882	4040	159	1		ATT/TAA	82.4	-0.0382	-0.4286		
ATP6	J	4037	4708	672	-4		TTG/TAA	74.9	-0.1213	-0.2189		
COIII	J	4721	5506	786	12		ATG/TAA	72.0	-0.1378	-0.0818		
Gly (G)	J	5509	5575	67	2	UCC		79.1	0.0566	0.0000		
ND3	J	5594	5920	327	18		ATA/TAA	79.8	-0.1648	-0.0303		
Arg (R)	J	5931	5994	64	10	UCG		70.3	-0.0667	-0.0526		
Ala (A)	J	5999	6065	67	4	UGC		79.1	-0.0189	0.2857		
Asn (N)	J	6067	6136	70	1	GUU		80.0	0.1429	0.1429		
Ser (S1)	Ν	6135	6201	67	-2	GCU		73.1	-0.0612	0.0000		
Glu (E)	J	6210	6275	66	8	UUC		90.9	0.0333	-0.3333		
Phe (F)	Ν	6278	6344	67	2	GAA		83.6	0.0000	0.6364		
ND5	Ν	6369	8054	1686	24		ATC/TAA	79.7	-0.1780	0.3178		
His (H)	Ν	8094	8158	65	39	GUG		81.5	-0.0566	0.5000		
ND4	Ν	8178	9509	1332	19		ATT/TAA	79.7	-0.2064	0.3284		
ND4L	Ν	9506	9784	279	-4		ATC/TAA	81.4	-0.2863	0.4615		
Thr (T)	J	9802	9866	65	17	UGU		87.7	0.0526	0.0000		
Pro (P)	Ν	9867	9933	67	0	UGG		77.6	0.0385	0.4667		
ND6	J	9939	10442	504	5		ATA/TAA	84.7	-0.1101	-0.3247		
CytB	J	10475	11560	1086	32		ATT/TAA	74.1	-0.1404	-0.0961		
Ser (S2)	J	11590	11655	66	29	UGA		80.3	0.0943	0.0769		
ND1	Ν	11682	12614	933	26		ATA/TAA	78.1	-0.2455	0.2941		
Leu (L1)	Ν	12624	12691	68	9	UAG		85.3	0.0000	0.4000		
rRNA 16S	Ν	12664	14028	1365	-28			82.9	-0.0583	0.2704		
Val (V)	Ν	14027	14098	72	-2	UAC		80.6	0.0345	0.1429		
rRNA 12S	Ν	14098	14889	792	-1			81.7	-0.0386	0.2552		
*	-	14890	15056	167	-	_	-	-	-	-		

Supplementary Table 4. Organization of *Hg. leucocelaenus* mitogenome.

Haemagogus spegazzinii											
Gene	Strand	Posi	ition	Size (pb)	IGN	Anticodon	Start/Stop Codon	AT%	AT-skew	GC-skew	
		Start	End								
Ile (I)	J	1	68	68	0	GAU		75.0	0.0588	0.1765	
Gln (Q)	Ν	66	134	69	-3	UUG		81.2	-0.0357	0.3846	
Met (M)	J	134	202	69	-1	CAU		72.5	-0.0400	-0.1579	
ND2	J	224	1210	987	21		ATA/TAA	84.1	-0.1084	-0.0446	
Trp (W)	J	1234	1302	69	23	UCA		78.3	0.0741	-0.0667	
Cys (C)	Ν	1302	1368	67	-1	GCA		80.6	0.0741	0.2308	
Tyr (Y)	Ν	1369	1436	68	0	GUA		79.4	0.0741	0.4286	
COI	J	1441	2949	1509	4		ATT/TAA	70.8	-0.1581	-0.0136	
Leu (L2)	J	2972	3038	67	22	UAA		76.1	-0.0588	0.1250	
COII	J	3040	3714	675	1		ATG/TAA	76.3	-0.1068	-0.0875	
Lys (K)	J	3725	3795	71	10	CUU		73.2	0.0769	-0.0526	
Asp (D)	J	3810	3878	69	14	GUC		87.0	0.0667	-0.1111	
ATP8	J	3879	4037	159	0		ATT/TAA	84.9	-0.1259	-0.4167	
ATP6	J	4034	4705	672	-4		TTG/TAA	76.6	-0.1223	-0.1592	
COIII	J	4718	5503	786	12		ATG/TAA	72.9	-0.1658	0.0047	
Gly (G)	J	5506	5572	67	2	UCC		80.6	0.0000	0.0769	
ND3	J	5588	5917	330	15		ATA/TAA	80.9	-0.1760	0.0159	
Arg (R)	J	5928	5991	64	10	UCG		68.8	-0.0455	0.0000	
Ala (A)	J	5996	6062	67	4	UGC		82.1	-0.0182	0.0000	
Asn (N)	J	6064	6132	69	1	GUU		78.3	0.1481	0.0667	
Ser (S1)	Ν	6131	6197	67	-2	GCU		76.1	-0.0980	0.0000	
Glu (E)	J	6217	6282	66	19	UUC		90.9	0.0333	-0.3333	
Phe (F)	Ν	6290	6356	67	7	GAA		80.6	0.0370	0.3846	
ND5	Ν	6377	8065	1689	20		ATC/TAA	79.0	-0.1416	0.2486	
His (H)	Ν	8105	8169	65	39	GUG		81.5	-0.0943	0.5000	
ND4	Ν	8186	9520	1335	16		ATT/TAA	80.4	-0.1892	0.2824	
ND4L	Ν	9517	9795	279	-4		ATC/TAA	83.2	-0.2500	0.2766	
Thr (T)	J	9813	9877	65	17	UGU		87.7	0.0877	0.0000	
Pro (P)	Ν	9878	9944	67	0	UGG		77.6	0.0769	0.4667	
ND6	J	9950	10453	504	5		ATA/TAA	86.7	-0.0709	-0.1642	
CytB	J	10465	11571	1107	11		ATT/TAA	74.6	-0.1598	-0.0036	
Ser (S2)	J	11600	11665	66	28	UGA		81.8	0.0741	0.1667	
ND1	Ν	11711	12628	918	45		ATA/TAA	79.1	-0.2204	0.2500	
Leu (L1)	Ν	12638	12705	68	9	UAG		85.3	-0.0345	0.4000	
rRNA 16S	Ν	12672	14029	1358	-34			83.1	-0.0487	0.2926	
Val (V)	Ν	14042	14113	72	12	UAC		80.6	0.0690	0.1429	
rRNA 12S	Ν	14113	14906	794	-1			81.2	-0.0295	0.2617	
*	-	14907	15081	175	-	-	-	-	-	-	

Supplementary Table 5. Organization of *Hg. spegazzinii* mitogenome.

Haemagogus tropicalis												
Gene	Strand	Posi	ition	Size (pb)	IGN	Anticodon	Start/Stop Codon	AT%	AT-skew	GC-skew		
		Start	End									
Ile (I)	J	1	67	67	0	GAU		74.6	0.0800	0.1765		
Gln (Q)	Ν	68	136	69	0	UUG		82.6	-0.0877	0.3333		
Met (M)	J	136	204	69	-1	CAU		71.0	-0.0612	-0.2000		
ND2	J	226	1212	987	21		ATA/TAA	84.2	-0.1047	-0.0769		
Trp (W)	J	1236	1304	69	23	UCA		82.6	0.1228	-0.1667		
Cys (C)	Ν	1304	1370	67	-1	GCA		83.6	0.0357	0.0909		
Tyr (Y)	Ν	1371	1438	68	0	GUA		80.9	0.0909	0.3846		
COI	J	1443	2951	1509	4		ATT/TAA	72.2	-0.1111	-0.0190		
Leu (L2)	J	2974	3040	67	22	UAA		79.1	-0.0566	0.1429		
COII	J	3043	3714	672	2		ATT/TAA	76.0	-0.0646	-0.1429		
Lys (K)	J	3728	3798	71	13	CUU		74.6	0.0943	0.0000		
Asp (D)	J	3812	3880	69	13	GUC		87.0	0.1000	-0.1111		
ATP8	J	3881	4039	159	0		ATT/TAA	83.0	-0.0758	-0.4815		
ATP6	J	4036	4707	672	-4		TTG/TAA	76.6	-0.0990	-0.1847		
COIII	J	4732	5505	774	24		ATG/TAA	73.8	-0.1454	-0.0246		
Gly (G)	J	5508	5574	67	2	UCC		79.1	0.0566	0.0000		
ND3	J	5581	5919	339	6		ATA/TAA	81.1	-0.1709	-0.0625		
Arg (R)	J	5927	5990	64	7	UCG		71.9	-0.0870	0.0000		
Ala (A)	J	5997	6063	67	6	UGC		85.1	-0.0175	0.2000		
Asn (N)	J	6065	6134	70	1	GUU		78.6	0.0545	0.0667		
Ser (S1)	Ν	6133	6199	67	-2	GCU		74.6	-0.1200	0.0588		
Glu (E)	J	6228	6293	66	28	UUC		92.4	0.1148	-0.2000		
Phe (F)	Ν	6292	6358	67	-2	GAA		86.6	0.0000	0.5556		
ND5	Ν	6379	8061	1683	20		ATC/TAA	80.4	-0.1530	0.2606		
His (H)	Ν	8107	8171	65	45	GUG		81.5	-0.0943	0.5000		
ND4	Ν	8189	9523	1335	17		ATG/TAA	81.5	-0.1765	0.2227		
ND4L	Ν	9520	9786	267	-4		ATG/TAA	83.1	-0.2613	0.4667		
Thr (T)	J	9816	9880	65	29	UGU		87.7	0.0526	0.0000		
Pro (P)	Ν	9881	9947	67	0	UGG		80.6	0.0000	0.5385		
ND6	J	9956	10459	504	8		ATA/TAA	86.1	-0.1014	-0.2571		
CytB	J	10471	11595	1125	11		ATG/TAA	75.1	-0.1266	-0.0500		
Ser (S2)	J	11610	11675	66	14	UGA		81.8	0.0370	0.1667		
ND1	Ν	11704	12615	912	28		ATA/TAA	78.2	-0.2482	0.2764		
Leu (L1)	Ν	12646	12713	68	30	UAG		85.3	-0.0345	0.4000		
rRNA 16S	Ν	12680	14036	1357	-34			83.4	-0.0495	0.2889		
Val (V)	Ν	14050	14121	72	13	UAC		80.6	0.0345	0.1429		
rRNA 12S	Ν	14121	14912	792	-1			82.2	-0.0138	0.2624		
*	-	14913	14917	5	-	-	-	-	-	-		

Supplementary Table 6. Organization of *Hg. tropicalis* mitogenome.

Supplementary Table 7. Composition and skewness of sequenced Haemagogus

mitogenomes. Composition and skewness in whole mitogenomes and concatenated PCGs, tRNAs, and rRNAs (A). AT% content in PCGs codons positions (B).

А

Species	Size (bp)	A%	Т%	С%	G%	AT%	AT-Skew	GC-Skew
Whole mitogenome								
Hg. albomaculatus	15097	40.0	39.5	11.8	8.7	79.5	0.0055	-0.1540
Hg. leucocelaenus	15056	40.0	38.8	12.7	8.5	78.8	0.0159	-0.2005
Hg. spegazzinii	15081	39.8	39.3	12.0	8.9	79.1	0.0059	-0.1455
Hg. tropicalis	14917	40.5	39.2	11.8	8.5	79.7	0.0160	-0.1637
Average	15038	40.1	39.2	12.1	8.6	79.3	0.0108	-0.1659
PCGs								
Hg. albomaculatus	10917	33.0	45.2	10.3	11.5	78.2	-0.1556	0.0589
Hg. leucocelaenus	10941	32.6	44.8	10.9	11.7	77.4	-0.1574	0.0364
Hg. spegazzinii	10950	33.0	44.9	10.3	11.7	77.9	-0.1534	0.0625
Hg. tropicalis	10938	33.7	44.8	10.4	11.2	78.4	-0.1419	0.0386
Average	10937	33.1	44.9	10.5	11.5	78.0	-0.1521	0.0491
tRNAs								
Hg. albomaculatus	1493	40.5	39.6	8.6	11.4	80.0	0.0109	0.1409
Hg. leucocelaenus	1486	40.9	39.2	8.6	11.3	80.1	0.0218	0.1351
Hg. spegazzinii	1487	40.9	38.9	8.8	11.4	79.8	0.0253	0.1296
Hg. tropicalis	1487	41.2	39.8	8.3	10.8	81.0	0.0166	0.1307
Average	1488	40.9	39.4	8.6	11.2	80.2	0.0187	0.1341
rRNAs								
Hg. albomaculatus	2153	39.2	43.4	6.3	11.1	82.6	-0.0512	0.2781
Hg. leucocelaenus	2157	39.1	43.3	6.4	11.1	82.5	-0.0512	0.2646
Hg. spegazzinii	2152	39.5	42.9	6.3	11.2	82.4	-0.0417	0.2804
Hg. tropicalis	2149	40.0	43.0	6.1	10.9	83.0	-0.0365	0.2787
Average	2153	39.4	43.2	6.3	11.1	82.6	-0.0451	0.2754

B

Species	AT% PCGs codons										
	1st	2nd	3rd								
Hg. albomaculatus	71,2	67,4	96,1								
Hg. leucocelaenus	71,0	67,6	93,5								
Hg. spegazzinii	70,7	67,3	95,7								
Hg. tropicalis	71,7	68,0	95,6								
Average	71,2	67,6	95,2								

Supplementary Table 8. Relative synonymous codon usage (RSCU) in sequenced

		Hg. albomaculatus		Hg. leuco	celaenus	Hg. spe	gazzinii	Hg. tropicali			
Amino acid	Codons	Count	RSCU	Count	RSCU	Count	RSCU	Count	RSCU		
	GCU	100	2.58	93	2.45	99	2.51	75	2.11		
A lamina(A)	GCC	6	0.15	9	0.24	5	0.13	11	0.31		
Alanine (A)	GCA	47	1.21	46	1.21	50	1.27	54	1.52		
	GCG	2	0.05	4	0.11	4	0.10	2	0.06		
	CGU	14	1.00	12	0.87	10	0.71	15	1.11		
Ancining (D)	CGC	0	0.00	1	0.07	1	0.07	3	0.22		
Arginnie (K)	CGA	40	2.86	38	2.76	45	3.21	32	2.37		
	CGG	2	0.14	4	0.29	0	0.00	4	0.30		
Agnartata (D)	GAU	66	1.97	60	1.82	67	1.97	60	1.88		
Aspartate (D)	GAC	1	0.03	6	0.18	1	0.03	4	0.13		
Agnoraging (N)	AAU	196	1.90	191	1.85	198	1.94	213	1.98		
	AAC	10	0.10	15	0.15	6	0.06	2	0.02		
Cystoino (C)	UGU	35	1.89	36	1.89	36	1.95	36	2.00		
	UGC	2	0.11	2	0.11	1	0.05	0	0.00		
Clutamina (O)	CAA	70	1.92	73	1.95	73	1.97	72	1.95		
Giutannie (Q)	CAG	3	0.08	2	0.05	1	0.03	2	0.05		
Clutamate (F)	GAA	77	1.97	74	1.90	77	1.97	76	1.95		
	GAG	1	0.03	4	0.10	1	0.03	2	0.05		
	GGU	54	1.02	50	0.93	46	0.86	56	1.05		
Glycine (G)	GGC	2	0.04	2	0.04	2	0.04	3	0.06		
Glycine (G)	GGA	132	2.49	137	2.56	138	2.57	136	2.54		
	GGG	24	0.45	25	0.47	29	0.54	19	0.36		
Histidine (H)	CAU	71	1.82	61	1.61	68	1.74	68	1.79		
	CAC	7	0.18	15	0.39	10	0.26	8	0.21		
Isoleucine (I)	AUU	362	1.96	370	1.91	362	1.97	373	1.94		
	AUC	8	0.04	17	0.09	6	0.03	11	0.06		
Leucine (L.) IIIIN	UUA	529	5.47	496	5.17	529	5.50	520	5.33		
	UUG	12	0.12	25	0.26	7	0.07	12	0.12		
	CUU	24	0.25	29	0.30	27	0.28	28	0.29		
Leucine (L.) CUN	CUC	0	0.00	1	0.01	1	0.01	3	0.03		
	CUA	13	0.13	25	0.26	13	0.14	21	0.22		
	CUG	2	0.02	0	0.00	0	0.00	1	0.01		
Lysine (K)	AAA	87	1.91	83	1.82	79	1.74	88	1.87		
Lysine (IX)	AAG	4	0.09	8	0.18	12	0.26	6	0.13		

Haemagogus mitogenomes.

AUA

AUG

Methionine (M)

218

11

1.90

0.10

219

14

1.88

0.12

222

8

1.93

0.07

239

9

1.93

0.07

Dhonyloloning (F)	UUU	351	1.93	341	1.85	341	1.89	350	1.96
r nenylalanine (F)	UUC	12	0.07	28	0.15	19	0.11	8	0.04
	CCU	82	2.58	84	2.63	91	2.87	75	2.36
Ducking (D)	CCC	13	0.41	8	0.25	7	0.22	12	0.38
Proline (P)	CCA	32	1.01	35	1.09	29	0.91	38	1.20
	CCG	0	0.00	1	0.03	0	0.00	2	0.06
	AGU	45	1.15	41	1.05	45	1.13	39	0.99
Soving (S) ACN	AGC	2	0.05	2	0.05	0	0.00	3	0.08
Serme (S) AGN	AGA	64	1.63	65	1.66	68	1.71	67	1.70
	AGG	0	0.00	0	0.00	0	0.00	0	0.00
	UCU	108	2.75	115	2.94	104	2.62	95	2.41
Sorino (S) UCN	UCC	3	0.08	5	0.13	9	0.23	9	0.23
Serme (S) UCN	UCA	91	2.32	84	2.15	90	2.26	100	2.54
	UCG	1	0.03	1	0.03	2	0.05	2	0.05
	ACU	93	2.00	99	2.19	92	2.02	87	1.94
Throoning (T)	ACC	4	0.09	13	0.29	4	0.09	7	0.16
Threonine (1)	ACA	88	1.89	68	1.50	86	1.89	85	1.90
	ACG	1	0.02	1	0.02	0	0.00	0	0.00
Truntonhan (W)	UGA	96	1.94	93	1.86	95	1.92	98	1.96
	UGG	3	0.06	7	0.14	4	0.08	2	0.04
Turosino (V)	UAU	151	1.96	144	1.89	150	1.91	149	1.92
	UAC	3	0.04	8	0.11	7	0.09	6	0.08
	GUU	79	1.93	67	1.71	83	1.92	69	1.86
Valine (V)	GUC	2	0.05	5	0.13	6	0.14	6	0.16
vanne (v)	GUA	81	1.98	81	2.06	80	1.85	70	1.89
	GUG	2	0.05	4	0.10	4	0.09	3	0.08
Total codons in use		3639		3647		3650		3646	

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	Culex camposi NC036008																										
2	Culex coronator NC036006	0,01																									
3	Culex pipiens pipiens NC015079	0,06	0,07																								
4	Culex quinquefasciatus NC014574	0,08	0,09	0,04																							
5	Lutzia fuscanus MH316118	0,08	0,08	0,09	0,10																						
6	Lutzia halifaxii MH316119	0,09	0,09	0,09	0,11	0,04																					
7	Aedes aegypti NC035159	0,14	0,14	0,14	0,10	0,14	0,14																				
8	Aedes albopictus NC006817	0,15	0,15	0,15	0,14	0,15	0,15	0,12																			
9	Haemagogus albomaculatus MN531846	0,13	0,13	0,13	0,13	0,13	0,13	0,12	0,13																		
10	Haemagogus spegazzinii MN531848	0,13	0,13	0,13	0,13	0,13	0,13	0,12	0,13	0,05																	
11	Haemagogus janthinomys NC028025	0,13	0,13	0,13	0,12	0,13	0,13	0,12	0,12	0,05	0,06																
12	Haemagogus leucocelaenus MN531847	0,14	0,14	0,14	0,14	0,14	0,14	0,13	0,14	0,09	0,09	0,09															
13	Haemagogus tropicalis MN531849	0,14	0,14	0,14	0,14	0,14	0,14	0,14	0,14	0,10	0,10	0,10	0,11														
14	Psorophora ferox MK575485	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,14	0,12	0,12	0,12	0,13	0,14													
15	Psorophora saeva NC044658	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,14	0,11	0,12	0,12	0,13	0,13	0,09												
16	Sabethes belisarioi NC037498	0,16	0,16	0,17	0,17	0,16	0,16	0,18	0,17	0,15	0,15	0,15	0,16	0,16	0,17	0,16											
17	Sabethes chloropterus NC037499	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,19	0,17	0,17	0,17	0,18	0,18	0,18	0,18	0,13										
18	Sabethes glaucodaemon NC037500	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,15	0,15	0,15	0,16	0,16	0,17	0,16	0,11	0,10									
19	Sabethes undosus NC044660	0,17	0,18	0,18	0,18	0,17	0,17	0,18	0,18	0,16	0,16	0,16	0,17	0,17	0,17	0,17	0,12	0,12	0,11								
20	Anopheles albitarsis NC020662	0,17	0,17	0,17	0,17	0,17	0,18	0,18	0,18	0,17	0,17	0,17	0,18	0,18	0,17	0,18	0,20	0,21	0,19	0,20							
21	Anopheles darlingi NC014275	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,16	0,17	0,17	0,17	0,17	0,19	0,21	0,19	0,20	0,08						
22	Anopheles gambiae NC002084	0,16	0,17	0,17	0,17	0,17	0,17	0,17	0,18	0,17	0,17	0,17	0,18	0,18	0,17	0,17	0,19	0,21	0,19	0,20	0,13	0,12					
23	Anopheles quadrimaculatus NC000875	0,17	0,17	0,17	0,18	0,17	0,17	0,18	0,18	0,17	0,17	0,17	0,18	0,19	0,18	0,17	0,20	0,21	0,20	0,21	0,13	0,13	0,12				
24	Anopheles bellator NC030249	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,17	0,18	0,18	0,18	0,19	0,18	0,18	0,19	0,20	0,19	0,20	0,14	0,14	0,14	0,14			
25	Anopheles cruzii NC024740	0,17	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,17	0,17	0,17	0,18	0,18	0,18	0,18	0,19	0,20	0,19	0,20	0,14	0,13	0,14	0,14	0,07		
26	Anopheles homunculus NC030248	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,19	0,17	0,17	0,18	0,18	0,18	0,19	0,18	0,19	0,21	0,20	0,20	0,14	0,14	0,14	0,14	0,07	0,07	
27	Dixella aestivalis NC029354	0,26	0,26	0,26	0,27	0,26	0,26	0,27	0,27	0,25	0,26	0,26	0,26	0,26	0,26	0,27	0,27	0,28	0,27	0,28	0,26	0,26	0,26	0,26	0,26	0,26	0,26

Supplementary Table 9. Matrix of nucleotide distances between the taxa used in this study, built by Maximum Composite Likelihood.

Taxon with the lowest mean nucleotide divergence compared to sequenced *Hg. spp.*

Taxon with the highest mean nucleotide divergence compared to sequenced Hg. spp.

Supplementary Figure 1. Predicted secundary structure of tRNAs of *Hg. albomaculatus*.

Hg. tropicalis

Supplementary Figure 5. Phylogenetic reconstruction by the Bayesian Inference method, based on the concatenation of the 13 PCGs of the *Haemagogus* species sequenced in this study and 23 other taxa with data available on GenBank database. The subsequent Bayesian probabilities (BP) are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.

Supplementary Figure 6. Phylogenetic reconstruction by the Maximum Likelihood methods, based on the concatenation of the 13 PCGs of the *Haemagogus* species sequenced in this study and 23 other taxa with data available on GenBank database. The values of support for bootstrapping (BPP) for 1,000 replicates are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.

Supplementary Figure 7. Phylogenetic reconstruction by the Bayesian Inference method, based on the concatenation of the genes *ATP8*, *COI*, *ND5*, and *ND6* of the *Haemagogus* species sequenced in this study and 03 other taxa with data available on GenBank database. The subsequent Bayesian probabilities (BP) are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.

Supplementary Figure 8. Phylogenetic reconstruction by the Maximum Likelihood methods, based on the concatenation of the genes *ATP8*, *COI*, *ND5*, and *ND6* of the *Haemagogus* species sequenced in this study and 03 other taxa with data available on GenBank database. The values of support for bootstrapping (BPP) for 1,000 replicates are shown on the left, in each node. The complementary lines dotted in red indicate the newly-sequenced species.