Fig. S1 The phylogeny of the genus Lophuromys inferred from the L. zena Cytochrome b gene using Bayesian Inference in MrBayes. There were a total of 238 sequences in the analysis, L. stanleyi **NONETHFLAVO2** representing all unique haplotypes from the initial alignment of 803 sequences. The numbers above L. machangui branches represent the % posterior L. sabuni probability values <95%. L. dudui L. cf. cinereus L. makundii L. laticeps L. rita L. melanonyx 2 L. menageshae L. simensis 2 **ETHFLAVO2** L. chercherensis L. pseudosikapusi L. flavopunctatus L. brunneus L. brevicaudus L. melanonyx_1 94 L. flavopunctatus L. kilonzoi NONETHFLAVO1 group L. aquilus L. verhageni L. simensis 1 ETHFLAVO1 L. chrysopus L. sikapusi group L. sikapusi 93 sp.1 a'nsorgei rahmi Kivumys roseveari L. group angolensis huttereri L. L. nudicaudus 82 luteogaster woosnami

0.04

Fig. S2 Map showing the type localities (red, green outlied crosses '+') of species described under the non-Ethiopian *flavopunctatus* group, with the corresponding species names labeled in red fonts. The sampling points of samples used in the study are also shown, outlined to illustrate their distribution extents.

Fig. S3 A Maximum likelihood phylogeny of the non-Ethiopian *L. flavopunctatus* members inferred from the concatenated mitochondrial genes (Cytochrome b gene + cytochrome oxidase subunit 1) in IQ-TREE. The taxa labels represent the consensus species identities of main OTUs identified by species delimitation. Values above branches represent percentage Ultrafast Bootstrap support values.

MN817441 ET chrysopus MN817442_ET_chrysopus MN817466 ET chrysopus MH297517 ET chrysopus MN817449 ET chrysopus MN817453_ET_melanonyx MN817454 ET melanonyx MN817457_ET_melanonyx MN817456 ET melanonyx MN817455 ET melanonyx MH297516_ET_melanonyx MH297514 ET melanonyx MH297513_ET_melanonyx MH297515 ET melanonyx AJ698899_CD_sikapusi MN817430_KakamegaKE_ansorgei KC953390_BugalaUG_sikapusi MN817450 ET brunneus MN817452 ET flavopunctatus MN817451 ET flavopunctatus MN817431 ET brunneus MN817434 ET brunneus ET brunneus MN817433 ET brunneus MH297518 ET brevicaudus MH297519_ET_brevicaudus MN817435 ET flavopunctatus KE20151374_MtKenyaKE_zena FMNH149536_EpuluCD_dudui FMNH181191 Mulanje MW machangui FMNH155592_UdzungwaTZ_machangui MN817467_ET_simensis MN817470 ET simensis MN817445 ET simensis MN817444 ET simensis MN817443 ET simensis MH297511 ET simensis FMNH231291 KakamegaKE zena FMNH230997_LoitaKE_zena FMNH230993 LoitaKE zena KE20150308 MtKenyaKE zena KE20150756_MtKenyaKE_zena FMNH231300_KakamegaKE_zena FMNH231285 KakamegaKE zena FMNH147301 UsambaraTZ kilonzoi FMNH166931_UkaguruTZ_kilonzoi FMNH197830 RubehoTZ kilonzoi FMNH166926_UkaguruTZ_kilonzoi FMNH153954_SPareTZ_kilonzoi FMNH158356_UluguruTZ_kilonzoi FMNH168333_NguruTZ_kilonzoi FMNH147302_UsambaraTZ_kilonzoi FMNH150193_UsambaraTZ_kilonzoi FMNH158360_UluguruTZ_kilonzoi FMNH158359 UluguruTZ kilonzoi FMNH161273_NguruTZ_kilonzoi FMNH168193_NguruTZ_kilonzoi FMNH166930_UkaguruTZ_kilonzoi

•	FMINH166929_Okaguru12_kilonzol
•	KE20150951_MtKenyaKE_zena
	KE20151354 MtKenvaKE zena
	KE20150393 MtKenvaKE zena
	EMNH204688 LivingstoneT7 machangui
	EMNH140544b IturiCD dudui
••	KE20150506_MikenyakE_zena
•	KE20150611_MtKenyaKE_zena
•	FMNH227728_MtKahuziCD_cinereus
	FMNH192960_MinziroTZ_stanleyi
L	FMNH232206 MorungoleUG stanleyi
•	FMNH231303 KakamegaKE zena
-0	EMNH155580 UdzungwaTZ machangui
	EMNH181184 MulanieMW machangui
	EMNH205150 RujingjijaTZ machanguj
	KE20151145_MIKenyaKE_zena
	MH297508_E1_menagesnae
	KE20150673_MtKenyaKE_zena
	KE20151519_MtKenyaKE_zena
	FMNH177904_MahaleTZ_sabuni
	FMNH171399 MbiziTZ sabuni
	MH297509 ET simensis
•	KE20150428 MtKenvaKE zena
	KC053301 AberdaresKE zena
	KE20150572 MtKonvoKE zona
-	KE20150572_MIKENYaKE_Zena
•	KE20150007_MikenyakE_zena
	KE20150387_MikenyakE_zena
	KE20151398_MikenyakE_zena
	MN817468_E1_simensis
	FMNH227723_MtKahuziCD_cinereus
	FMNH227712_MtKahuziCD_cinereus
•	FMNH230999_LoitaKE_zena
	FMNH171382_MbiziTZ_sabuni
•	FMNH211553 NyikaMW machangui
	FMNH149544 IturiCD dudui
	KE20151800 MtKenvaKE zena
	KE20150950 MtKenvaKE zena
	KE20150732 MtKenvaKE zena
_	MN817436 ET nseudosikanusi
	MN817427 ET pseudosikapusi
••	KE20150095_MikenyakE_zena
	MH297507_E1_menageshae
•	FMNH177907_MahaleTZ_sabuni
	FMNH177905_MahaleTZ_sabuni
•	FMNH177902_MahaleTZ_sabuni
	KE20150139_MtKenyaKE_zena
	KE20150762 MtKenyaKE zena
•	FMNH171374 MbiziTZ sabuni
-0	FMNH177704 UdzungwaTZ machangui
••	FMNH195094 MizimuCD cinereus
100	MH297512 FT simensis
100	MN817447 ET simensis
	MN817446 ET simensis
	MN1917449 ET simensis
•••••••••••••••••••••••••••••••••••••••	
•	
	FMNH225073_LuwungaUG_stanleyi
•	AY326091_ET_flavopunctatus

FMNH155575_UdzungwaTZ_machangui FMNH168109_KituloTZ_machangui FMNH168110_KituloTZ_machangui KE20151479_MtKenyaKE_zena FMNH137783_BugalaUG_stanleyi FMNHSS208_ImatongSS_stanleyi FMNH232419_AgoroAguUG_stanleyi FMNHSS196_ImatongSS_stanleyi FMNHSS080_ImatongSS_stanleyi FMNH232417_AgoroAguUG_stanleyi FMNHSS271 ImatongSS stanleyi FMNH215102_BuhangaRW_stanleyi KE20151786_MtKenyaKE_zena MN817464_ETH1346_simensis MN817465 ET simensis MN817460_ET_simensis MN817462 ET simensis MN817461_ET_simensis MN817463 ET simensis FMNH155594_UdzungwaTZ_machangui FMNH204689_LivingstoneTZ_machangui MN817469 ET simensis KE20150904 MtKenyaKE zena MN817459 ET chercherensis MN817458_ET_chercherensis MN817440 ET chercherensis MN817439_ET_chercherensis MN817438_ET_chercherensis FMNH171400_MbiziTZ_sabuni KE20151017 MtKenyaKE zena KE20150188_MtKenyaKE_zena KE20150001_MtKenyaKE_zena KE20151305 MtKenyaKE zena KE20151603 MtKenyaKE zena KE20151855 MtKenyaKE zena KE20151117_MtKenyaKE_zena KE20151848 MtKenyaKE zena KE20151161 MtKenyaKE zena KE20151278 MtKenyaKE zena KE20150861 MtKenyaKE zena FMNH210704 ManyaraTZ makundi FMNH210924_ManyaraTZ_makundi FMNH210698_ManyaraTZ_makundi FMNH210926 ManyaraTZ makundi FMNH211161 NgorongoroTZ makundi FMNH211172_NgorongoroTZ_makundi FMNH211167_NgorongoroTZ_makundi FMNH174239_KilimanjaroTZ_aquilus FMNH208098_MeruTZ_verhageni FMNH174237_KilimanjaroTZ_aquilus FMNH208485_MeruTZ_verhageni FMNH174242_KilimanjaroTZ_aquilus FMNH174244 KilimanjaroTZ aquilus FMNH174225_KilimanjaroTZ_aquilus

Fig. S5 Haplotype network structure in selected non-Ethiopian *L. flavopunctatus* members inferred from *Cytochrome b* using the Median Joining Network algorithm in PopART. The networks show genealogical relationships between sampling locality in the *L. zena, L. machangui,* and *L.* stanleyi clades which were selected for being sampled from more localities. The number of base substitutions between haplotypes are shown as hatchmarks on branches. The node sizes correspond to the haplotype frequency (number of samples per haplotypes) and branch lengths are relative to the number of mutations between haplotypes.

Fig. S6 Time calibrated maximum clade credibility tree of evolutionary relationships and divergence times of the non-Ethiopian *L. flavopunctatus* members reconstructed from concatenated alignments of *Cytochrome b* (*CYTB*), *cytochrome oxidase subunit 1*, and *Interphotoreceptor retinoid binding protein*, time-callibrated using most recent common ancestor ages. Branch labels show the posterior probability support values and node bars show the highest posterior density interval. The corresponding gene trees are also presented to illustrate the phylogenetic informativeness of the individual genes. Here it is apparent that only the *CYTB* topology offer a reliable outlook of the phylogenetic associations between the non-Ethiopian *L. flavopunctatus* members.

	Dataset	Species	1	2	3	4	5	6	7	8	9	10	11	N
	Linear	1 L. aquilus	92.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.7	0.0	13
Fig. S7 Classification results following		2 L. cf. cinererus	4.9	47.5	3.3	8.2	18.0	4.9	4.9	0.0	6.6	1.6	0.0	61
		3 L. dudui	0.0	13.8	55.2	3.4	17.2	0.0	0.0	0.0	6.9	0.0	3.4	29
discriminant analysis in using linear and		4 L. kilonzoi	1.4	12.2	2.7	35.1	14.9	12.2	4.1	0.0	9.5	2.7	5.4	74
		5 L. laticeps	0.0	23.1	3.8	11.5	38.5	3.8	0.0	3.8	15.4	0.0	0.0	26
gometric craniodental datasets of the		6 L. machangui	1.2	4.7	4.7	11.8	1.2	52.9	0.0	9.4	4.7	1.2	8.2	85
		7 L. makundii	0.0	3.3	0.0	0.0	0.0	0.0	83.3	0.0	6.7	0.0	6.7	30
non-Ethiopian L. flavopunctatus		8 L. sabuni	0.0	0.0	0.0	9.1	0.0	9.1	0.0	77.3	0.0	0.0	4.5	22
		9 L. stanleyi	1.4	11.8	11.4	10.0	11.4	5.7	7.1	1.4	29.9	0.5	9.5	211
mambang Valuag indicate areas		10 L. verhageni	0.0	0.0	0.0	0.0	0.0	0.0	5.9	0.0	0.0	94.1	0.0	17
members. values mulcate cross-		11 L. zena	1.3	2.5	10.8	5.7	6.4	12.1	19.1	5.7	7.6	2.5	26.1	157
validated (leave-one-our bootstrapping)	Geometric	1 L. aquilus	100	0	0	0	0	0	0	0	0	0	0	13
		2 L. cf. cinereus	0	52.6	8.8	1.8	7	5.3	5.3	0	17.5	0	1.8	57
percentage success by which samples		3 L. dudui	0	20.7	55.2	0	6.9	0	0	3.4	13.8	0	0	29
		4 L. kilonzoi	0	1.5	1.5	74.6	0	1.5	1.5	0	10.4	1.5	7.5	67
were classified into a priori and predicted		5 L. laticeps	0	14.3	9.5	4.8	42.9	0	0	4.8	14.3	0	9.5	21
		6 L. machangui	2.5	0	2.5	5.1	0	75.9	1.3	6.3	2.5	1.3	2.5	79
species groups. The shaded diagonal		7 L. makundii	0	0	3.6	3.6	0	0	82.1	0	0	0	10.7	28
		8 L. sabuni	0	0	0	21.1	0	21.1	0	47.4	0	0	10.5	19
values indicate the success by which		9 L. stanleyi	0	12.1	5.5	8.5	8	3.5	3	0.5	48.7	0.5	9.5	199
		10 L. verhageni	0	6.7	0	0	0	0	0	6.7	0	80	6.7	15
complex were madiated into their own		11 <i>L. zena</i>	2.8	1.9	1.9	6.5	5.6	5.6	7.5	3.7	6.5	4.7	53.3	107
samples were predicted into their own	oquilus	vorbogoni sobuni	macha	naui k	ilonzoi	of cine	nous i	makun	dii zon	2 4	d:	otonl	ov <i>i</i> lo	tioono
anoung which company and to distinct	aquilus 0 ⊏ I	I I	Inaciia	ngui ni	1011201			I		a u	luuui	Starii	eyi ia	liceps
groups which correspond to distinct						L	-							
Cutochnome haladag N = number of			Ľ				J							
Cytochrome b clades. IN – humber of	p ⁵													
complex See Fig 6 in main manuscript	troi													
samples. See Fig. 0 in main manuscript														
for stratified grapping aloggification regults														
for stratified species classification results.	8													
	15 -													
	dis													
	20													

Fig. S8 Cranial landmarks used in geometric morphometric analyses of the non-Ethiopian L. flavopunctatus members. 1, Anteriormost point between upper incisors; 2, Superiormost point of upper incisive alveolus; 3, Anterior most margin of the incisive foramen; 4, Posteriormost margin of incisive foramen; ; 5, Anterior most margin of the first molar; 6, Between first molar and second molar; 7, Between the second molar and third molar; 8, Posteriormost margin of the third molar; 9, Posterior most point of the palate; 10, midpoint on the auditory bulla where it meets the piriform fenestra posteriorly; 11, Medial point of the junction between tympanic bullae and Eustachian tube; 12, Midpoint of suture between basisphenoid and basiocciptal; 13, Posteriormost margin of occipital condyle; 14, Anterior most point of the Foramen magnum viewed ventrally; 15, Posteriormost point of superior margin of foramen magnum; 16, Anteriormost margin of zygomatic plate; 17, Posteriormost margin of the posterior zygomatic plate; 18, Posteriormost margin of the anterior zygomatic plate; 19, Posterior most point of suture between jugal and squamosal; 20, Tip of the eustachian tube; 21, caudal end of the external opening of the auditory channel.

Fig. S9 Principal component analysis (PCA) of linear measurements used in the study. The plots show how samples cluster based on the first and second component scores. The top left scatter plot shows samples do not cluster in a distinct pattern consistent with the taxonomic units currently acknowledged in literature (top right). The bottom left plot shows the variances accounted for by all the component loadings.

