
Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Primer to Localization of Software

Escudero Pascual Alberto <aep@it46.se>
Berthilson Louise <louise@it46.se>

2005/10/27 – Version 1.5

Table of Contents
Primer to Localization of Software... 1
Introduction to software localization.. 4
Why software localization is needed... 4

Benefits of localization... 4
What is software localization?... 6

Text localization... 6
Cultural localization.. 7
Internationalization (i18n) and localization (l10n)... 7

What is Free Software?.. 8
Why Free Open Source Software?.. 8

Localization components... 10
Locale, a very local file... 10

Common Locale Data Repository.. 10
Locale naming.. 11
Locale Data Fields... 12

XML Format.. 12
Delimiters.. 13
Calendars... 13

Glossary.. 16
How are new words created?... 16

Loanword.. 17
Transliteration... 17
Semantic expansion.. 17
Metaphors... 17

Adoption of new words... 17
Writing Systems / Scripts.. 19

Logographic... 19
Syllabic writing systems... 20
Alphabetic writing systems... 20
Abjads.. 20
Abugidas.. 20
Featural writing systems.. 21

Character Encodings.. 22
Character Repertoire and Character Encodings.. 22

mailto:aep@it46.se
mailto:louise@it46.se

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Properties of a character encoding.. 23
Stateful and stateless encodings.. 23

Single-Byte and Multi-Byte encodings.. 23
Examples of character encodings.. 24

ASCII.. 24
Base64... 25
ISO 8859... 25
UCS.. 26
Unicode.. 27

Normalisation... 28
Collation... 29

Fonts... 30
Font types.. 30

Bitmap Fonts... 30
Outline Fonts.. 30
Type1 Fonts.. 31
TrueType Fonts.. 31
OpenType Fonts... 31

FreeType Font Engine... 31
Creation of Fonts... 32

Input method... 33
Keyboards... 34

Keyboard Layout.. 34
Mnemonic keyboard layout... 34
Positional keyboard layout.. 34

Large Keyboards... 35
Modifier Keys.. 35
Dead keys... 35
Operator keys... 35
Candidate Window.. 36

Spell Checkers.. 37
Dictionary and Affix file.. 37
How to create a MySpell spell checker.. 38
Word Lists sources
... 39

Localization of text.. 40
Extract and convert strings.. 40
String Translation Process... 40
Compilation (building the software).. 41
The Gettext framework and POT files ... 41

POT files... 42
Creating a Software Installer.. 43
During the translation... 44

Sorting.. 44
Plurals... 44

How to Plan a localization projects.. 45
What is the goal of the project?.. 45
What to localize?.. 45

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

The Localization Team.. 46
Conclusion.. 46

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Introduction to software localization

We are living in a world where currently 6,900 living languages exists and approximately 350 of them (5%) are
spoken by at least 1 million people. According to Unesco Global Studies one language disappears on average
every two weeks. 80% of African tongues has no writing system at all.

English is just one of these 6900 languages, but due to the military, economic, scientific, political and cultural
influence of the British Empire in the 18th and 19th centuries and the strong influence of the United Estates
during this century, English has been imposed as “the language of the world” and by many people regarded as
“the language” of the educated and developed world. Although English is currently only the third greatest native
language with approximately 380 million speakers, a third of the world's population speak at least some English
since many countries include English as a mandatory second language to learn. Still, two thirds of the world's
population, some 4 billion people, does not speak English. As a result, a great part of the world does not have
access to a computer software in their local language. Some of them does not even have the technical possibility
to type the characters of their language as it might exist neither a standardized way nor an available
implementation.

For many people in the world, localization of software is not an issue. In many cases decision makers already
speak at least one of the worlds most “powerful” languages. In general terms, a language is regarded as
“powerful” when enables business opportunities with independence of the total number of speakers.

As a matter of fact, major proprietary softwares are never localized to a language if there is not enough business
opportunities for that specific language. This might explain why a proprietary software Microsoft Windows is
available in Islandic (spoken by 239 000 people) while is not available in Hindi (180-480 million people) or Bengali
(200 million people).

Why software localization is needed

Since so many people speak English after all, should we not just teach the rest of the people English, so that we
do not have to bother about software localization? The dilemma that face is: Either we teach billions of people
English or we teach computers to speak other languages than English.

Looking at the problem from a pure cost efficient angle, teaching computers to speak other languages than
English is definitely less expensive. But, there are also many more reasons to software localization than the pure
financial ones.

I common misconception is that computers speak English by nature. They do not. They speak zeros and ones,
bites and bytes that can be translated to any language.

Benefits of localization

Localization of computer software brings benefits to its end users independent of what language they speak and
where in the world they live. Some of the benefits include:

1. It reduces the amount of training needed to make “new “users use computers

2. Reduces the costs for licences of proprietary software

3. Gives users their right to communicate in their native language.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

4. Helps to preserve minority or nearly extinguished languages.

5. Supports higher education in native languages.

6. Provides a fair access to knowledge.

7. Enables to preserve and spread local culture

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

What is software localization?
The Localization Industry Standards Association1 (LISA) defines localization (l10n) as:

“Localization involves taking a product and making it linguistically and culturally appropriate to the target locale
(country/region and language) where it will be used and sold.”

Localization of software facilitates the use of local languages in computers and make computers accessible to
non-English speaking communities.

Software localization is generally speaking the adaptation and customization of an internationalized product to a
specific market. Localization of computer software is a topic that does not only refer to pure translation of
software strings, but it also includes adoption of the computer software to the very local way of “thinking” and
understanding computers in the target language.

The software localization can be divided into text localization and cultural localization.

Text localization
The translation part of the localization includes translation of software strings, manuals, documentation, help text,
error messages etc. to the specific language.

During the translation activity, a set of software changes (programming skills) might be needed, consider for
example that the size of dialog boxes or a combo-box might need to be altered as the translated string can
differ a great deal in length depending on the language. In average, translation of English string into any non-
English language results in longer strings that the original. For example, a very common word in computer
software is “No”, in same languages that word can be as long as the Swahili equivalent “Hapana”.

When dealing with text localization, the writing direction of the language is of great importance and will always
imply major design changes. Not all languages are read from left-to-right (LTR), like most of the western
languages written with the Latin script. For example, text in Arabic and Hebrew are read from right-to-left (RTL),
while numbers are written from left-to-right (with the most significant digit to the left). As RTL languages are often
mixed with LTF scripts, support for bidirectional (bidi) writing is generally needed.

Furthermore, since languages can be written in different directions, also the user interface of a software requires
a certain layout depending on the language. In a left-to-right language, we are used to search the information of a
page from the upper left corner down to the bottom right corner. That applies to all sort of data, text, tables,
images etc. For a right-to-left language, the most important information or the starting point of a sequence of
data is always placed in the upper right corner. A step-by-step instruction must therefore be mirrored for a right-
to-left language so that the user does not read the instructions backwards.

Many Asian scripts, such as Chinese and Japanese are written from top-to-bottom (from right to left). Mongolian
(using the traditional alphabet) is the only vertical script that is progressing from left-to right . And yes, there also
exist scripts that are written from bottom to top (Western Pacific Islands).

Some languages even change the direction depending on the content context. Imagine that in software
localization!

1 http://www.lisa.org

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

 Image 1. Sample of Mongolian written in the traditional alphabet

Cultural localization

Even though pure text localization is good enough for adoption and understanding of a computer software in a
new language, cultural localization can be needed to create that special feeling of a totally localized and user
adopted software.

The software adaptation to a local language through cultural localization includes formats (date, time, currency
etc), icons, images, colors, shapes of objects, multimedia files as sounds and videos, etc.

Cultural localization can become the most relevant task if the software is multimedia oriented and includes large
amount of images, icons and colored text.

Colors, for example, can have different meaning depending of the culture. While the red color denotes danger in
many western countries, it is a sign of happiness and good luck in Asian countries. Also, the white color is a sign
or purity and cleanness in many countries while it represents death in Japan.

Internationalization (i18n) and localization (l10n)

Internationalization is defined by LISA as :
“The process of generalizing a product so that it can handle multiple languages and cultural conventions without
the need for redesign. Internationalization takes place at the level of program design and document
development.”

Internationalization is often called ”i18n”, where the number 18 refers to the number of letters omitted. In the
same way, localization is often abbreviated as “l10n”.
Internationalization of a computer software is a prerequisite for localization to take place.

Internationalization and localization of software is nothing new. It has been going on since the first commercial
software was released. The problem with proprietary software, is that the source code is not open and hence, the
software can not be localized by anyone else. Only the owner of the software, that has access to the program
code, can localize the software. That implies, that if the market for a software in a specific language in not
beneficial enough, there will be a localized version of the software to that language. Even though there is a
demand from such kind of software from many user communities and might be people willing to do the work, it

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

can not be done as the code is not available.

And, this is where Free Software or Free Open Source Software (FOSS) comes into the picture.

What is Free Software?
The basic idea behind Free Software or Free Open Source Software (FOSS) is the availability of open (public
available) source code. Anyone has the right to make modifications and redistribute the code (full definition:
http://www.opensource.org/docs/definition.php). This means that open source code constantly is evolving and it
is accessible to anyone.

“Free software” does not mean “free of charge”, but is a matter of the users' freedom to run, copy, distribute,
study, change and improve the software. It refers to four kinds of freedom for the users:

Freedom 0: To run the program, for any purpose

Freedom 1: To study how the program works, and adapt it to your needs. Access to the source code is a
precondition for this.

Freedom 2: To redistribute copies so that you can help your neighbours.

Freedom 3: To improve the program, and release your improvements to the public, so that the whole community
benefits. Access to the source code is a precondition for this.

These freedoms implies that you have the right, with or without modifications, free or charge or not, distribute
copies a free software to anyone anywhere without permission from anyone.2

For further definition of software categories, see http://www.gnu.org/philosophy/categories.html.

Members of the (free) open source community claims that this way of working leads to better software compared
to the traditional closed model with proprietary software. Of course, representatives of proprietary software will
claim the opposite. I will leave that question for yourself to evaluate, but there is a fact that can not be discussed:
Open source software promotes localization of computer software in a way that proprietary software never can
do.

Why Free Open Source Software?
The greatest benefits of FOSS for any user community is the affordability (in terms of costs) and accessibility (in
terms of usability).

Affordability
FOSS does not need to be free of charge, but the fee for distribution is far away from proprietary software
licenses. In developing countries, where the license fee for a proprietary operating system or office suite
exceeds an annual salary, using proprietary software with legal licenses is not an option. As a result of this, an
“illegal” market of proprietary software expands. The use of FOSS also allows adaptation of the software to fit
your private needs, which can lead to savings in many in several ways.

Accessibility
As the software can be localized to any local language, the accessibility of computers in the non-English

2 http://www.gnu.org/philosophy/free-sw.html

http://www.gnu.org/philosophy/categories.html

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

speaking user groups, whether they speak an ancient tribal language of Ethiopia or a minority language of
northern Sweden, is significant increased.

Some of the opportunities that FOSS is already given in developing countries in the long term are:

1. Reduction of ICT investment in both public and private sector

2. Building internal capacity and skills in ICT

3. Improving advocacy and education though the use of ICT

4. Creating business opportunities in ICT (national and international)

5. Implementing e-government

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Localization components

Before the actual localization process of a software can take place there are a set of requirement that needs to
be fulfilled for the target language. For example, can all, if any, characters of the target language be represented
in a computer? Are there available fonts for the script that the target language? Is there a standardized way of
expressing common computer related words in the target language?

Before any “translation” can take place, these are issues that need to be solved before.

Some of other additional localization components might not fall into the category of strict requirement before
before the translation of the software strings. For example, a spell checker is very useful for text editors and
email clients, but it does not necessarily need to exists before the software strings can be translated.

The following 7 chapters will describe various localization components that are closely related to any software
localization and in many cases are dependent on each other.

Locale, a very local file

To fully localize a software to a local language requires more then just string translation. As mentioned in
“Cultural Localization”, the look and feel of a software needs to be adopted to the local conventions as well. A
great deal of those local conventions are defined in a file called Locale. The Locale identifies a set of user
preferences for a given user community. A locale commonly includes information regarding:

1. Formating and parsing of numbers, dates, times, currencies

2. Measurement units

3. Translated names for languages, countries, scripts, regions, time-zones

4. Collation ordering for sorting, searching and matching text

5. Text boundaries (character, word, line, and sentence)

6. Text transformations (including transliterations)

Common Locale Data Repository3

Most operating systems and major applications have their own repositories of locales. The fact that there are
several locales for a single languages makes things even more difficult as the way that user preferences are
expressed can differ from one software to another.

The avoid that situation, the Common Locale Data Repository (CLDR) project was created under the Unicode
Consortium. The purpose of CLDR was to provide a general XML format for locales to facilitate the exchange of
local information in application and system development. The CLDR project aims to have a common repository
by making this information openly available.

When localizing a major software that requires some level of local formats, you should investigate whether a
locale for your language exists or not. The latest version (1.3) of CLDR can be found here:

3 http://www.unicode.org/cldr/

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

http://www.unicode.org/cldr/version/1.3.html

If no locale exists for your language, you might consider creating one. A locale is not needed before the actual
string translation of the software can begin. But it is a good idea to start early to define the locale, since many
applications will use the locale to represent local values as currencies symbols or dates.

Locale naming

The first step of creating a locale is to name the locale correctly according to the naming convention for locales
specified by Open i18n4 guidelines.

The locale should accordingly to Open i18n guidelines be identified by the language, country and the character
set in use. The syntax is the following:

{language}_{territory}.{codeset}[@{modifiers}]

language: is a string representing the language in the locale consisting of letters only. The character string
should be chosen from a set of ISO standards with the following priority:

1. Pick a two lowercase letters ISO 639-1 code if exists: en, fr, fi, se etc.

2. Pick a three lowercase letters ISO 639-2 code if exists: eng, fra, fin, swe etc.

3. No ISO 639 codes are available. A string consisting of more than three (uppercase) letters should be chosen
(not to conflict with future extensions of the ISO 639 series for existing language codes)

The ISO 639-1 codes can be found at Ethnologue's website5 . The ISO 639-2 codes are handled by the USA The
Library of Congress6.

territory: is a character string (two letters) that represents the geographical territory (country or region) of the
language. If a two-letter region/country code exists in ISO 3166-1, that value should be used.

If ISO 3166-1 does not specify a value for the territory, no standard value exist and a lowercase string consisting
of more than two letters should be chosen.

The codes can be found within the International Organization for Standardization (ISO)7

codeset: describes the character set used in the locale.

Examples of codeset for locales are:
UTF-8, ISO-8859-1, ISO-8859-2, ISO-8859-5, GB-2312 etc.

modifiers: An optional field that adds additional information to the locales. The modifier consists of a keyword
and an option value. Several options are separated by commas.

Accordingly to this naming convention of locales, the name of the locale for Swahili spoken in Tanzania is:
sw_TZ.iso-8859-1

4 http://www.openi18n.org/
5 http://www.ethnologue.com/
6 http://www.loc.gov/
7 http://www.iso.org/

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Locale Data Fields

The locale definition file includes a set of locale categories that needs to be filled in. Below, each category is
briefly described.

LC_CTYPE: Specifies which characters are considered as alphabetic, numeric, punctuation, hexadecimal, blank,
control characters etc. It also defines case conversions. Note: yes, a “.” is just one way of “punctuation”.

LC_NUMERIC: Defines rules for non-monetary numeric information.

LC_MESSAGES: Defines the format of affirmative and negative system responses.

LC_TIME: Defines rules for formatting the date and time information.

LC_COLLATE: Defines the collating information for characters defined for your language.

LC_MONETARY: Defines the rules and symbols for formatting monetary information.

If you are using Linux, run the command 'locale' followed by any of the above categories. Your current locale
settings will be displayed.

For example:

root@it46:/home/it46 # locale LC_TIME

Sun;Mon;Tue;Wed;Thu;Fri;Sat

Sunday;Monday;Tuesday;Wednesday;Thursday;Friday;Saturday

Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec

January;February;March;April;May;June;July;August;September;October;November;December

AM;PM

XML Format
This section will give a brief description of the structure of the lXML format for the locale data and give some
examples of elements in the XML file.

The following elements are included in the XML file:

1. identity

2. localeDisplayNames

3. layout

4. characters

5. delimiters

6. dates

7. numbers

8. collations

9. posix

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Delimiters
The delimiter element specifies the delimiters user for bracketing quotations. While you in English write:

She said, “I'm not stupid!”

In Spanish you would write:

 Ella dice: <¡Yo no soy tonta!>

Alternate marks are used when quotations are embedded. An example in English,

She said, “Remember what I told you: ‘After rain comes sunshine!’”

The English way of defining quotation marks is in the Locale coded as follows:

<quotationStart>“</quotationStart>
<quotationEnd>”</quotationEnd>
<alternateQuotationStart>‘</alternateQuotationStart>
<alternateQuotationEnd>’</alternateQuotationEnd>

Calendars
The default value for the calendar is Gregorian8 but there are a number of another calendars that are used in
computer software (Islamic, Chinese, Islamic-civil, Hebrew, Japanese, Buddhist, Persian and Coptic calendar).

The Calendar element also specifies the translations of the name of the months, the name of the days of the
week (full name and abbreviations), first day of the week, first day of the weekend, local convention for AM/PM,
quarters of the year and AC/DC.

Consider how you translate AM/PM for a language that uses sunrise and sunset as reference times for start and
finish of time measures. For example, in greater parts of Ethiopia, a 24 hour time system is unknown.
Traditionally there are no less than 7 named divisions to a day in Amharic (one of Ethiopias three official
languages among its 849 living languages). Read the article 'Day Period Use Cases'
(http://yacob.org/notes/DayPeriods/) by Daniel Yacob (localizer of Amharic software, Geez Foundation) that
discusses the issue.

In Swahili, the name of the days of the week are called the First Day (jumamosi), the Second Day (jumapili), the
Third Day (jumanne) etc until the Fifth Day, starting with Sunday as the first day. No standardized way for
abbreviations of the names of the days exists until 2004 when the first Swahili locale was created. Normally, you
would choose the first 3 letters of the day, but that is not feasible since five our of seven start by 'juma'. In the
example below, you will see how the problem was solved.

<DaysOfWeek>
 <Day>
 <DayID>sun</DayID>
 <DefaultAbbrvName>Jpl</DefaultAbbrvName>
 <DefaultFullName>Jumapili</DefaultFullName>
 </Day>

8 http://en.wikipedia.org/wiki/Gregorian_Calendar
9 http://www.ethnologue.com/show_country.asp?name=ET

http://yacob.org/notes/DayPeriods/

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

 <Day>
 <DayID>mon</DayID>
 <DefaultAbbrvName>Jtt</DefaultAbbrvName>
 <DefaultFullName>Jumatatu</DefaultFullName>
 </Day>
 <Day>
 <DayID>tue</DayID>
 <DefaultAbbrvName>Jnn</DefaultAbbrvName>
 <DefaultFullName>Jumanne</DefaultFullName>
 </Day>
 <Day>
 <DayID>wed</DayID>
 <DefaultAbbrvName>Jtn</DefaultAbbrvName>
 <DefaultFullName>Jumatano</DefaultFullName>
 </Day>
 <Day>
 <DayID>thu</DayID>
 <DefaultAbbrvName>Alh</DefaultAbbrvName>
 <DefaultFullName>Alhamisi</DefaultFullName>
 </Day>
 <Day>
 <DayID>fri</DayID>
 <DefaultAbbrvName>Ijm</DefaultAbbrvName>
 <DefaultFullName>Ijumaa</DefaultFullName>
 </Day>
 <Day>
 <DayID>sat</DayID>
 <DefaultAbbrvName>Jms</DefaultAbbrvName>
 <DefaultFullName>Jumamosi</DefaultFullName>
 </Day>
 </DaysOfWeek>

Below follows an example of how eras can be described in a Gregorian calendar and in a Buddhist calendar.

//Gregorian

 <eras>
 <eraAbbr>
 <era type="O">BC</era>
 <era type="1">AD</era>
 </eraAbbr>
 <eraName>
 <era type="0">Before Christ</era>
 <era type="1">Anno Domini</era>
 </eraName>
 </eras>

//Buddhist

 <eras>
 <era type="0">BE</era>
 </eras>

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Here is an example of the calendar element for English and German describing relative types of days. As you
can see, there exists only three relative types for English while German have five different relative types to
express days. How many relative types does your native language have?

<calendar>
 <fields>
...
 <field type='day'>
 <displayName>Day</displayName>
 <relative type='-1'>Yesterday</relative>
 <relative type='0'>Today</relative>
 <relative type='1'>Tomorrow</relative>
 </field>
...
 </fields>
</calendars>

<calendar>
 <fields>
...
 <field type='day'>
 <displayName>Tag</displayName>
 <relative type='-2'>Vorgestern</relative>
 <relative type='-1'>Gestern</relative>
 <relative type='0'>Heute</relative>
 <relative type='1'>Morgen</relative>
 <relative type='2'>Übermorgen</relative>
 </field>
...
 </fields>
</calendars>

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Glossary

“Short list of words related to a specific topic, with brief definitions, that are arranged alphabetically”

When working with translation, consistency of translated terms is extremely important for the overall quality of the
final work. Since many strings associated to the same concept do normally appear multiple times in a software,
they need to be translated in the same way. Sometimes, an English term can mean two different things
depending on the context, so automatic translation is generally not a good approach. Also translation of related
concepts as “open file” or “close file” must ensure that the word “file” is written in the same way not to cause
confusion.

The existence of a glossary is a necessary step to ensure consistency in the use of terminology during the
translation phase. It is highly recommended to make sure that you have a good glossary for your software in
place before you start with the translation of strings.

For many minority languages, that are not official languages, no glossaries exists. If that is the case, a glossary
has to be created before the translation phase of the project start, and common guidelines needs to be provided
to the team of translators.

So how do you create a glossary suitable for a localization effort? The first thing you need is a list of word suitable
for the software you are going to localize. The word list should consists of common single words (sometimes
concepts with multiple words) from the source code. (See: section “extraction of strings” for more information on
how to extract those word lists).

The process of creating new terms involves joint work of linguistic and computer science experts. The
development of new IT terms requires that the linguistic expert fully understands the meaning of the IT term and
its context before trying to match or extend the meaning of a word in the destination language. No single
computer scientist will fully understand the meaning of each computer term that he/she comes across, so a way
to identify the correct definition of a word or expression is needed during the glossary development. That can be
done easily using popular tools as Google10 (define: <word>) or the online encyclopedia Wikipedia11.

In a language where no formal education exist, many words that belong to the industrial world, does not even
exist. It is not strange that many African tribal languages spoken in rural areas lack expressions as “Configure
Printer” or “Default gateway”. So how do you translate those words that seem not have an exact match in the
local language?

How are new words created?
This topic could be a standalone course since it is an area within linguistics with a great research scope.
However, a brief introduction to some of the techniques used in creation of new terminology will be given.

10 http://www.google.com
11 http://en.wikipedia.org

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Loanword
The approach of simply “loan” a word from another language, that does not exist in the target language, is a
common method in creating “new” words. The word can be “loaned” in is original form or slightly changed to
better fit the target language. For example, Internet and CD-ROM are English “loanwords” that many languages
have adopted straight away, while “chatta” , “maila”, “programmera” and “installera” are English loadwords that
have been slightly modified to the Swedish language.

Transliteration
Sometimes, words are loaned and then translated to the target language but keeping its original meaning. For
example the Swedish word “mjukvara” comes from “software” {mjuk/soft, vara/ware} and hårddisk is a translated
loanword of “hard drive” {hård/hard, drive/disk}. The word “mouse” for a hand held pointing device used with
computers is a common loanword in many languages (mus in Swedish, puku in Swahili, ratón in Spanish or
Maus in German).

Semantic expansion
Semantics is a subfield within linguistics that studies the actual meaning of words, phrases, sentences, and
texts. With semantics, old words can get new meanings as the true meaning of those words fits into new
situations. The word “virus” has traditionally had the meaning of “an microorganism that can infect cells and
cause disease”, but nowadays the meaning of a computer virus is widely accepted.

Metaphors
Sometimes, metaphor techniques are suitable to create new words when other techniques does not fit. One
example where metaphoric thinking often have been used, is with the character “@” which in computers are
used to indicate the location or institution of the e-mail recipient.

The funny shape of the character has contributed to a list of strange translations in various languages. In
Swedish it is called “snabel-a” (trunk-a, like in elephant's trunk) or “kanelbulle (cinnamon bun). The @-sign is
commonly called “sobatjka” (small dog) in Russinan, “kissanhäntä” (cat tail) in Finnish, “kukac” (worm) in
Hungarian, “apestaart” (monkey tail) in Dutch and Afrikaans, “Klammeraffe” (climbing monkey) in German,
“ensaimada” (spiral shaped pastery) in Catalan or “chiocciola” (snail) in Italian.

The Swahili word for “password” is another example of metaphoric creation of new words. The Swahili word
“-nywila” (password) has been derived from the historical word “nywinywila” which was used to refer to the
concept password (code word to pass inside) during the 'Majimaji war' against the Germans in the early 20th
century (1905-1907), which the Tanzanian eventually won. During the process of defining a new glossary the
word “nywinywila” was adopted in its reduced form 'nywila' just for simplification purposes.

Adoption of new words
The process of adopting new words takes time and it is not unusual that many “new” words will feel strange
(some might even say funny) and unfamiliar the first time(s) that they are used. But an unfamiliar word does not
need to be bad. It just takes some time for us, human beings, to adopt to new things. Many of you did probably
react when you heard the word “mouse” in your native language for the first time, since rodents are not or should
not very frequently present in computer environments. After some years, you probably use nowadays the word
without even thinking about its very original meaning.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

It is common to believe that a new term sounds better in a foreign language, specially for those that can master
another language as English. In many cases, a sign of social status is to be able to use foreign words rather than
local ones.

Remember that English is not that magic language that “contains” all the words in the world. It just happens to
be the language that most software are created for and has become the reference language for many areas due
to its high status in the world. I am pretty confident that early computer users also found the words “laptop” and
“download” uncomfortable to use the first time they heard them. English words are also created, think in words
like book-mark, gate-way, key-board, head-phones etc. there is nothing magic in those words.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Writing Systems / Scripts

“A writing system, also called a script, is a type of symbolic communication system used to represent elements or
statements expressible in some spoken language, for the purpose of communication. 12“

A writing system can be shared by many languages, like the Latin alphabet is for most of the west European
languages.

There exist a handful different types of writing systems that are classified accordingly to what the symbols of that
script represents.

Type of writing system What each symbol represents Example
Logographic morpheme Chinese hanzi

Syllabic syllable Japanese kana

Alphabetic phoneme Latin
Abugida consonant+vowel, vowel Indian devanagari

Abjad consonant Arabic
Featural phonetic feature Korean hangul

Table 1. Types of writing systems

Logographic

In a logographic writing system, in theory, each symbol represents one idea, in difference to other writing
systems where each symbol primarily represents a sound or a combination of sounds.

Each symbol in a logographic writing system represent parts of words or whole words (called morpheme). If the
logograph resemble the thing(s) they represent, they are sometimes known as pictograms (or pictographs). If the
logograph represent an abstract idea, they are known as Ideogram.
As each word requires an own symbol, the number of symbols in such a language, is of course high. Chinese,
that is a typical logographic writing system, use around 3-4 000 symbols for normal communication (to be
“literate”) but a good word word processor should support at least 10 000 characters. Unicode support more than
70000 Han characters that is a
The huge number of symbols in a logographic writing system, does not only cause trouble for people to learn and
memorize, but challenge also the computer industry to tackle problem with large keyboards.

The oldest known writings systems, that dates back to zzz, were primarily logographic and were based on
pictographic and ideographic symbols.

An advantage of logographic writing systems is each symbol can be used in different languages but with another
meaning. That means that closely related languages to chinese (mandarin) like dialiects of Chinese , Korean and
Japanese can use logographs from the Chinese writing system.

Many languages that are not classified as logographic, uses some logograms. For example, the Arabic numbers
(1,2,3) used by most western languages are actually logograms as well as the characters & (empersand) and @
(at).

Ideographic scripts and pictographic scripts are not thought to be able to express all that can be communicated

12 http://en.wikipedia.org/wiki/Writing_system

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

by language. That is, no full writing system can be completely pictographic or ideographic; it must be able to refer
directly to a language in order to faithfully represent that language. Hieroglyphs were commonly thought to be
ideographic before they were translated, and to this day Chinese is often erroneously said to be ideographic.
Although a few pictographic or ideographic scripts exist today, there is no single way to read them, because there
is no one-to-one correspondance between symbol and language. In some cases, only the author of a text can
read it with any certainty, and it may be said that they are interpreted rather than read. Such scripts often work
best as mnemonic aids for oral texts, or as outlines that will be fleshed out in speech.

Syllabic writing systems
A syllabary writng systems consists of a set of written symbols that represent syllables which together (or alone)
make up words. A symbol consists of consonant and vowel sounds or a single vowel sound.

Alphabetic writing systems
An alphabet (from Greek) is a small set of basic symbols which each represent a phoneme of a language. In a
perfect phonological alphabet, there would be a one-to-one matching between a letter and a phonetic sound, i.e
person could know the spelling of a word by given its pronouncation, and opposite, given the spelling a person
could pronounce the word correcly.
Pure phonological alphabets are easy to learn (for example Finnish) that languages with complex and irregular
spelling systems.

Abjads

Abjads is an alphabetic writing system that has only symbols for consonants and not for vowels. However, some
scripts based on Abjads, like Arabic and Hebrew have markings (notations) for vowels while other Abjads
solemnly represents consonants.

Abugidas

Abugida is an alphabetic writing system that has symbols for consonants with an inherent vowel and where
modifications of the basic symbol indicate other following vowels than the inherent one.
For example, in Devanagari, there is no basic sign to represent the consonant k. Instead, the k is represented in
combination with other characters . In this way, the unmodified character क represents the syllable ka (the a is
the "inherent" vowel). By changing vovel to the character k, the character k- can be represtned as कक (ki), कF
(ku) , कG (ke) and कH (ko).
In most abugidas the vowel modifications appears as letters or diacrets (accent marks) above, below, to the left
or to the right of the consonantal character (like the example above). But there are also cases where the form of
the consonant symbol changes or rotates as in.
The Ethiopic script as well as the Canadian Aboriginal Syllabics can we considered abugidas, however, both with
some exceptions. The largest group of abugias can be found in the Brahmic family of scripts that includes almost
all scripts used in India and Southeast Asia.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Featural writing systems

In a featural writing system, each part of each symbol corresponds to a phonetic feature. Sounds that are
phonetically related have symbols that are related.
The greatest featural writing system is Hangul that is used in Korean, even though Hangul also has logographic
and alphabet aspects in addition to features.

Image 2. A map of the writing systems of the world.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Character Encodings

Character Repertoire and Character Encodings
Every language is characterized by a set of characters that are defined in a writing system. A character is the
basic unit of a text and forms other textual units as words when they are put together. The set of characters that
constitutes a language is called its “Character Repertoire”. A character repertoire normally consists of (1) a set
of commonly used characters, (2) characters that are not so commonly used, and (3) characters with distinct
meanings. Such characters could for example serve as intonation modifiers which can indicate that a vowel
sound has to be prolonged. Other characters can act as modifiers and act as operators, meaning that they do not
occur by themselves, but only in conjunction with another (for example, ` and ˆ).

To be able to represent human languages in computers that just speak with zeros and ones, we need to
represent each character in a way that the computer understands. That means that we need a way to map each
“human” character to a “computer” character. This kind of character mapping is called character encoding.

When localizing a software into a specific language, we need to make sure that the encoding scheme that
includes your character repertoire is supported. If not, the character of your language will not be properly
displayed.

If your character repertoire is not supported in any existing character encoding, you must focus on standardizing
a character encoding scheme for your language. Or even worse, if your language does not even have a
standardized character repertoire, you must start by defining one.

Furthermore, a script (writing system) can have more than one character encoding scheme. For example, the
Chinese language has multiple encodings in widespread use (for example Big5 and EUC-CN) .

A given script may have multiple encodings of various reasons:

1. Historical reasons: different manufacturers may have designed and implemented their own encodings before
standardization took place. For example, IBM's EBCDIC character set encoding was implemented before the
ASCII encoding was formalized.

2. Different goals: encodings could have been designed with different goals in mind: for space efficiency (for
example, the Shift-JIS encoding for Japanese, is more space efficient than the EUC-JP encoding), or perhaps to
facilitate sorting and collating text or ensure compatibility with an existing encoding.

3. Incorrect existing encoding: errors in existing standard encodings could require a new encoding to be defined.
For example, the ISCII (Indian Standard Code for Information Interchange) standard's support for Tamil and
Kannada was sufficiently inferior that these respective language groups formulated their own character encoding
standards (TSCII and KSCLP respectively).

Some languages can be written using different writing systems, for example in Serbian, the message “Insert
Movie and Sound” can be written as “Umetni film i zvuk” using the Latin writing system or as “Уметни филм и
звук” using Cyrillic.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Properties of a character encoding

Stateful and stateless encodings

Encodings can be stateful or stateless. A stateful encoding means that the encoding has the characteristics that
a character is dependent both on its own value and on the characters already encountered. An example of
stateful encoding is Shift-JIS that is used to encode the Japanese language. Shift-JIS is grouped as multiple sets
of symbols with each set containing less than 256 symbols. Special “escape symbols” embedded in the data
stream are used to notify the application to switch between the appropriate sets.

Stateless encodings implies that each numeric value return the same meaning irrespective of the symbols that
precede it in a data stream.

Single-Byte and Multi-Byte encodings
Encodings are also classified as Single-byte or Multi-byte encodings.

Single-Byte encoding schemes use a single byte (a maximum of 8 bits) to represent each character. This is the
most efficient way to encode text since they they take least amount of space and is very fast to process as one
character is always represented by one single byte. In a single-byte encoding, a maximum of 256 characters can
be mapped. Scripts with a larger character repertoire must be encoded with a multi-Byte encoding scheme,
which applies to most languages.

In a multi-Byte encoding characters can either have a fixed or a variable number of bytes to represent a
character.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Examples of character encodings

There are many different character encodings in use today. Just take a quick look in your browser: (normally
under View->Character Encoding) and see how many are supported. If you take for example Firefox 1.0.6, no
less than 92 character encodings are supported!

Image 3: Supported encoding systems in Firefox 1.0.6

Some of the major encoding schemes in use today will be presented in the following section.

ASCII
ASCII (American Standard Code for Information Interchange) is a 7-bit (stateless, single-byte) encoding system
that was invented in the early days of Unix and C. ASCII is based on the roman alphabet used in modern
English. With its 95 printable characters (out of 127) it can represent 26 upper-case letters, 26 lower-case letters,
10 digits and about 30 punctuation marks.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Base64
Base64 is an encoding system used to convert binary-encoded data into printable ASCII characters using a base
of 64. In Base64, the 6 lower bits of a byte are used to encode binary data, as a result 64 printable ASCII
characters are used to encode binary files.

The only characters used in this encoding are the upper and lower-case Roman alphabet characters A-Z, a-z and
0-9. The remaining 2 characters are normally used for plus and minus sign depending on which version of
base64 you use.

This property has made Base64 a popular encoding to transfer email among other things.

ISO 8859

The 96 printable ASCII characters are insufficient for most modern languages (except English) based on the
Roman alphabet. Characters as å,ä å (Swedish), ñ, ¿, ¡ (Spanish), ü,ß (German) ø,æ (Danish) are needed to
fully encode some character repertoires.

The standardization bodies ISO and IEC tried to solve that problem by using all the 8 bit in a byte. ASCII was
using the 8 bit for parity check. By using the 8th bit IEC/ISO was able to add another 128 characters (256 in total).
However, not even with the 8th bit, all character repertoires based on the Roman alphabet could not fit into a
single byte (they exceeded 256 characters together) so several sub-mappings were defined.

ISO 8859 (AKA ISO/IEC 8859), is a joint ISO and IEC standard for a number of sets of 8-bit character encodings.
The standard ISO 8859 is divided into 15 different separate groups (such as ISO 8859-1, ISO 8859-2, etc) where
each and one of them is regarded as a standard of its own.

ISO 8859-1 is a 8-bit character encoding for the West European languages. ISO 8859-1 supports Afrikaans,
Basque, Catalan, Danish, Dutch, English, Faeroese, Finnish, French, Galician, German, Icelandic, Irish, Italian,
Norwegian, Portuguese, Spanish and Swedish.

The table below gives you an overview of what languages are covetered in the 15 ISO 8859 standards.

Standard Type of language Comment
ISO 8859-1 Latin-1

Western European
Covering most modern European languages: Danish, Dutch,
English, Faeroese, Finnish*, French*, German, Icelandic, Irish,
Italian, Norwegian, Portuguese, Rhaeto-Romanic, Scottish
Gaelic, Spanish, Swedish, Albanian and the African languages
Afrikaans and Swahili.

ISO 8859-2 Latin-2
Central European

Supports Central and Eastern European languages that use
the Roman alphabet, including Polish, Croatian, Czech,
Slovak, Slovenian and Hungarian.

ISO 8859-3 Latin-3
South European

Supports South European languages such as Turkish,
Maltese and Esperanto.

ISO 8859-4 Latin-4
North European

Supports the North European languages Estonian*, Latvian,
Lithuanian, Greenlandic and Sami.

ISO 8859-5 Latin/Cyrillic Covers most Slavic languages that use the Cyrillic alphabet
such as Belarusian, Bulgarian, Macedonian, Russian, Serbian
and Ukrainian.

ISO 8859-6 Latin/Arabic Covers the most common Arabic characters. Doesn't support

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

other languages using the Arabic script since they need
support for bidi and cursive joining.

ISO 8859-7 Latin/Greek Covers the modern Greek languages but can also be used for
Ancient Greek written without accents or in monotonic
orthography. Lacks the diacritics for polytonic orthography
which is introduced in Unicode.

ISO 8859-8 Latin/Hebrew Covers the modern Hebrew alphabet as it is used in Israel.

ISO 8859-9 Latin-5
Turkish

Almost the same as ISO 8859-1, but replaces the rarely used
Icelandic characters with Turkish ones. Also used for Kurdish.

ISO 8859-10 Latin-6
Nordic

A rearrangement of Latin-4 that is considered to be more
useful for Nordic languages. Baltic languages use Latin-4
more.

ISO 8859-11 Latin/Thai Contains most glyphs needed for the Thai language (same as
TIS 620)

ISO 8859-12

NOT EXISTING

Latin/Devanagari The work to support Devanagari in ISO 8859 was officially
abandoned in 1997. For example, Unicode is covering
Devanagari. The standard does currently not exist.

ISO 8859-13 Latin-7
Baltic Rim

Support for some additional characters used in Baltic
languages which were missing in Latin-4 and Latin-6.

ISO 8859-14 Latin-8
Celtic

Covers Celtic languages such as Gaelic and Breton.

ISO 8859-15 Latin-9 A revision of ISO 8859-1 that removes some little-used
symbols, replacing them with the Euro symbol (€) and the
letters Š, š, Ž, ž, Œ, œ, and Ÿ, which completes the coverage
of French, Finnish and Estonian.

ISO 8859-16 Latin-10
South-Eastern European

Covers Albanian, Croatian, Hungarian, Italian, Polish,
Romanian Slovenian, Finnish, French, German and Irish
Gaelic with focus on letters rather than than symbols. The
Euro symbol is included.

• * Partially supported. Missing characters are supported in ISO 8859-15.

Table 2. Description of all ISO 8859 encoding standards.

UCS
The first draft of UCS (Universal Character Set) was defined by the international standardization bodies ISO/IEC
in 1990. The purpose was to compose a universal character set of all existing languages.

UCS (ISO 10646) constitutes of a 31-bit character set that allows a maximum of 2,147,483,648 characters . UCS
maps each character to integers called numeric code points and assigns each character an official name. The
most commonly used characters, including all characters supported in earlier defined encodings can be found in
the first 65 534 positions. This subset of UCS is called the Basic Multilingual Plane (BMP). Characters that has
been added outside of this subset, are normally characters that are used for specific application such as
historical scripts or scientific notation.

Two version of UCS exists, UCS-2 and UCS-4. UCS-2 uses 2 bytes per character (65 000 characters) while
UCS-4 uses 4 bytes per character. While UCS-2 only can represent the characters of the Basic Multilingual

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Plane, UCS-4 can also represent all the “Unicode standard” characters.

Unicode
Unicode is an effort of the Unicode Consortium to create a single Character Repertoire covering all the possible
characters across the world.

Just like UCS, Unicode uses unique code points for each character. The code points are then mapped into a
sequence of code units that can be 8, 16 or 32 bits. This kind of code point mapping is called the Character
Encoding Form (CEF).

Unicode has defined three CEF, UTF-8, UTF-16 and UTF-32.

UTF-32 is the simplest possible form of Unicode encoding. 32-bits are used to store the code points of all the
possible characters and hence the name.

The greatest problem with this encoding is that documents encoded with UTF-32 that contain ACSII-like
encoding, will be very inefficient as only 7 bits are actually needed to represent one character. If UTF-32 is used,
a four times the space of ASCII encoding will be required. Due to that reason, UTF-32 is rarely used.

UTF-16 is a variable width encoding which uses either one or two 16-bit words for each character. Since the
order of the bytes are dependent on the hardware in use, the first byte of the data stream is allocated to indicate
the order of the bytes.

UTF-8 is also a variable width encoding since it uses one or more 8-bit bytes for each character. The first 128
code-points are represented by one single byte and are similar to the ASCII encoding. The remaining code-points
use from two up to six bytes. This is the most frequently used Unicode encoding and it has several advantages:

1. Files and strings containing only 7-bit ASCII characters have the same encoding in both UTF-8 and ASCII.

2. Good compatibility with most functions of the standard library of the C programming language due to its use
of 8-bit values

3. For text that uses few (but some) non-ASCII characters, UTF-8 is very efficient since it will only use more than
one byte for those characters and not for the ASCII characters. In average, one character will be represented
with a little bit more than 1 byte.

UTF-7 is another Unicode standard that was originally designed to become a Mail-Safe Transformation Format of
Unicode (i.e. a Unicode encoding for e-mail without the need of MIME encapsulation). UTF7 is similar to UTF-8,
it is a variable-length character encoding but it uses only 7 bits of a byte and leaves the most significant byte to
be zero. UTF-7 is rarely used due to the complexity to process.

It is highly recommended that you use Unicode (specially UTF-8) as your encoding if your target language is
supported by Unicode. Unicode is the only universal Character repertoire that currently exist and it is being
updated continuously by the Unicode Consortium to support more encodings. Unicode has been widely adopted
and is used by industry leaders as Apple, HP, IBM, JustSystem, Microsoft, Oracle, SAP, Sun, Sybase and many
others. Unicode is supported by many operating systems and all modern browsers.

If you are curious about what characters that are included in Unicode, try the “Unicode character pickers” (by
Richard Ishida, Internationalization Activity Lead in the World Wide Web Consortium) at
http://people.w3.org/rishida/scripts/pickers/ . The Unicode Character Pickers allows you to input and display Thai,
Bengali and other non Latin based scripts.

Try also the UniView (by Richard Ishida, W3C), where you can get the Unicode mapping for all encodings
included in Unicode 4.1.0 (http://people.w3.org/rishida/scripts/uniview/help.html).

http://people.w3.org/rishida/scripts/uniview/help.html
http://people.w3.org/rishida/scripts/pickers/

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Normalisation

As mentioned before, characters can be encoded in one or several different encoding systems. In addition, some
characters can have multiple representations in the same encoding systems, which can cause problems for
many fundamental operations in text processing.

For instance, in ISO 8859-1 the letter 'ç' can only be represented as the single character E7 'ç'. In Unicode the
same character can be represented as the single character U+00E7 'ç' OR as a combination of 'c' and '¸'.
Additionally, in HTML it could be represented in three different ways: as ç OR ç(decimal) OR \xE7
(hexadecimal).

Some operations that are vulnerable to such multiple representations of a single character is string matching,
indexing, searching, sorting, regular expression matching, selection, etc. The operation of string matching is
normally done by comparing two string byte per byte (binary comparison). In the case that some of the characters
in a string are represented in different ways, even though they refer to the same original character, such string
matching is not possible. Also, if the two string are encoded in different encoding systems, the string matching
will not work properly.

The solution to this problem lies in normalization which means that strings are converted to a common canonical
encoding before the binary matching takes place, in order to compare them correctly.

Image 4: Swahili Spellchecker

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Collation
Collation is a general term for the process of ordering (sorting and arranging) strings of characters in a certain
predefined order. The operation of sorting strings is fundamental in computer systems, but not trivial. Sorting of
strings is frequently used in user interfaces since humans prefer to look for data when it is presented in a certain
order. The sorting process is also common in databases.

Collation is language and culture dependent. For example, Germans and Swedes sorts the same characters
differently. In German ö goes before z while in Swedish z goes before ö. Another example is the character ø that
in the majority of Latin languages is sorted as a variation of o and is sorted alongside o. In languages as
Norwegian and Danish however, the ø is treated as a unique sorting element that comes after z.

Languages that uses non-alphabetic scripts can be sorted by its phonetics (the second) or the root (appearance)
of a character.

The Unicode Collation Algorithm is a general purpose algorithm for sorting all Unicode based strings. The main
algorithm has four steps.

1. Normalize each input string

2. Produce an array of collation elements for each string

3. Produce a sort key for each string from the collation elements

4. Compare sort keys with binary comparison

Briefly, the Unicode Collation Algorithm takes a Unicode encoded string and a produces a collation element,
which is an ordered list of three or more 16-bit weights, that represents the string. From the collation element a so
called sort key is created which is a binary string. Finally, two or more sort keys are binary compared to give the
correct comparison between the strings for which they were generated.

The specification of the Unicode Collation Algorithm can be found here: http://www.unicode.org/reports/tr10/

http://www.unicode.org/reports/tr10/

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Fonts
In computer systems, we are used to fonts like New Times Roman and Arial. Depending on the font you choose,
characters typed in that font get a certain graphical look. A font can be defined as

“The visual representation of characters from a particular character set.”

 or

“A description of how to display a set of characters that includes the shape of the characters, spacing between
characters, type of characters (bold, italics, underline) and the size of the characters.”

Both of the definition are correct although the first one refers to the visual representation of the font while the
second definition refers to the file that defines the visual font.

A (visual) font for a character normally consists of a set of images that are called glyphs. A glyph can constitute
the whole visual representation of a character or just a part of it. Also, one glyph may be part of many characters.
That means that the mapping between characters and glyphs is not often one to one, but many to many.

Fonts play a very important role in localization since a localized software that a computer is not able to render
and visualize, does not make much sense. Having fonts that support all characters in a specific character set is a
basic requirement for localization.

There exists many free and open source fonts that are freely available to download from the Internet. Some of
them can be found here:

1. freedesktop.org: http://freedesktop.org/wiki/Software_2fFonts

2. Unicode Font Guide For Free/Libre Open Source Operating Systems:
http://eyegene.ophthy.med.umich.edu/unicode/fontguide/

If no fonts for the target language exist, fonts need to be created (see section 'Creation of Fonts')

Font types

Bitmap Fonts
A bitmap is a matrix of pixels where each character or glyph is stored as an array of pixels. Bitmap fonts are
easy to create and they do not require complex rendering as other types of fonts. The problem with bitmap fonts
is their lack of scalability. They work fine in a terminal window, console or in a text editor, where scalability
normally is not an issue, but do would not like to use them to create a document to print.

A bitmap font file normally has the extension bdf or pcf.

Outline Fonts

An outline font can, in opposite to bitmap fonts, be scaled to any size keeping the quality of the font. This
operation of scaling an outline font needs sophisticated rendering technology which requires a lot of numerical

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

processing. Opposite to defining a character by an array of bits, in outlines fonts the character or a glyph is
defined as a set of lines and curves. By performing complex rendering operations on the font, a character
represented as an outline font can be hinted (reduced in size) and anti-aliased (enlarged in size).

Below follows a list of various types of outline fonts that are commonly used.

Type1 Fonts
Type1 fonts are developed by Adobe Systems and are widely used vectorial fonts under UNIX and Linux.

A Type1 fonts contain two files, (1) a metric file (that contain information regarding kerning, ligatures, spacing
etc.) and (2) an outline file (that contain information regarding the characters shape)

The outline fonts are stored in two formats, pfa (PostScript Font ASCII) and pfb (PostScript Font Binary) while the
metric file are distributed in afm (Adobe Font Metric) format.

Before a visual representation of a Type1 Font can be created, the font must be rendered into a bitmap, either by
the PostScript interpreter or by a specialized rendering engine, such as Adobe Type Manager.

One disadvantage of this type of fonts is that Type1 metrics are very limited for some complex scripts like
Arabic, Thai etc.

TrueType Fonts
TrueType Fonts is an outline font standard that was originally designed by Apple Computers in the late 1980s as
a competitor to Adobe Systems Type1 fonts that were used in Postscript. Later, the TrueType Fonts standard
was extended by another big player, Microsoft.

The TrueType fonts are distributed in one single file (.ttf) which contains both metric and shape information.

TrueType fonts are supported by GNU/Linux, Microsoft Windows, and Apple Macintosh, and all BSD variants.

OpenType Fonts

OpenType is an outline font standard that was initially designed and developed by Microsoft and later joined by
Adobe Systems. Since Adobe converted their entire font library to OpenType fonts in the end of 2002, there are
now (2005) more than 7000 fonts available in OpenType format.

The OpenType font is an extension of the TrueType font format.

The aim of the OpenType format standard was to create an advanced font format with full support for
internationalization.

The OpenType fonts are distributed in a single file (.otf) which contains both metric and shape information.

The OpenType font format offers cross-platform compatibility (the same font file works on Macintosh, Windows
and Linux computers). Since the font encoding is based on Unicode, OpenType fonts can support a large
amount of languages and also enable multiple languages at one.

FreeType Font Engine
FreeType is, despite its name, not a type of font, but a Free and Open Source Software font engine that is worth
to be mentioned in this discussion. FreeType is designed to be a small, efficient and highly customizable and
portable font engine.

FreeType 2 provides a simple and easy-to-use API to access font content in a uniform way, independently of the

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

file format. Additionally, some format-specific APIs can be used to access special data in the font file.

The latest version of FreeType is FreeType 2.1 which by default support all the above mentioned type of fonts.

FreeType is licensed under the GNU General Public License and a license, created by FreeType, that is similare
to the BSD license.

You can read more about FreeType at http://freetype.sourceforge.net/freetype2/index.html

Creation of Fonts
Thousands of fonts for various scripts are created and made available by various institutions. If you need to
create fonts, a good hint is to start with existing fonts used for languages related to your target language and
modify the existing fonts. In many cases, most characters can be common to other languages, while a few
characters are unique to that language.

If the target languages is supported in Unicode, it is a good idea to develop a Unicode font instead of a font that
only covers the specific encoding of the target language.

In order to create fonts, a generic font editor that supports editing in multiple font formats and multiple character
encodings is needed. One free font editor is Fontforge which can be downloaded at
http://fontforge.sourceforge.net/.

Font creation is a great topic in itself and could be offered as a separate course. Creation of fonts is not only a
combination of visual design and mathematical science, it also requires an understanding of the thousand years
of language development that has formed scripts to what they are today.

http://fontforge.sourceforge.net/
http://freetype.sourceforge.net/freetype2/index.html

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Input method

An input method is a software component that deals with all aspects of entering text to the computer screen such
as typing keys, speaking or writing using a pen device to generate text input. These aspects includes layout
description of your keyboard as well as mapping characters to keys or combinations of keys (keymap).

For most Latin languages advanced input methods are not needed, as each character in the encoding scheme is
mainly represented by one key in the keyboard and hence, the mapping is one to one. These languages only
needs a keymap, with defines how the keyboard input/output is processed.

There are some language, especially those that use ideographs, that have thousands of characters in their
character repertoire. For obvious reasons, a keyboard can not contain thousands of keys, so a special input
method that combines a number of keystrokes into a character is needed.

Some scripts also needs to be processed before they can be displayed. For example, the input method for Hindu,
that uses the Devanagari script, is defined in a way that it reorders and transforms letters that are combined
together and produces an output that is different from the original input characters.

Input methods is a complicated issue when it comes to ideographic languages. Ideograms13 are graphical
symbols that represents words and ideas. Each ideogram is composed by a number of visual elements that can
be arranged in different ways.

In some ideographic languages, for example the CJK family14, each ideogram represent an actual object and not
sounds. This leads to a very large character repertoire and difficulties in mapping characters into keystrokes.

There are also ideographic languages where each ideograph is a combination of sounds. A keymap can be
created by combining phonetics with keystrokes. In this group of languages, a character can be typed by inputing
the set of keystrokes that reproduce its sound (phonems). However, it can be the case that more than one
ideographic characters can have the same phonetic sound, which leads to a “one-to-many” situation. In that
scenario, the user must be given the option to choose the character to display from a group of possible
characters that matches the input phonetics.

There exist a number of frameworks that enables the collaboration between text editing components and input
methods, for example X KeyBoard Extension (XKB), X Input Method (XIM), GTK+ IM and IIIMF Framework.

Currently, the IIIMF Framework (Internet/Intranet Input Method) developed by Hideki Hiura is a popular
framework that is platform neutral, window system independent, implementation sortlanguage independent and
offers a multilingual distributed IM infrastructure. IIIMF is based on UTF16.

13 from Greek ιδεα idea "idea" + γραφω grapho "to write"
14 CJK refers to Chinese, Japanese and Korean

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Keyboards
In order to be able to input data to a computer in the target language, a keyboard with full character support is
desired. For languages based on the Latin alphabet, that might not be a big issue since existing keyboards can
be used and modified to fully fit the target language. Unfortunately that is not the case for all languages and a
physical keyboard might need to be developed.

The first thing you need to consider, having a character encoding in hand, is to decide the mapping between the
code points of the character encoding and the keystrokes. If your character encoding includes more characters
than keystrokes available, that process requires some thinking and planning. The mapping of code points and
keystrokes can be done in many different ways, some better than others. For example, a good keyboard layout
should aim to minimize the distance the fingers have to travel to write a text, right? The usage (frequency) of
characters in the language should also be considered, where the most frequently used characters should be
easy to reach while seldom used characters can be placed in the periphery. Funny enough, the QWERTY
keyboard that has become the most common modern-day keyboard layout, was designed in the complete
opposite way! As a matter of fact, the original prototypes of QWERTY typewriters from 1874 had a problem with
the bars colliding with each other and jamming. To avoid the problem with colliding bars, the keys were arranged
in a way to slow typists down by putting frequently-used pairs of letters separated.

Keyboard Layout
Keyboard layout refers to the process of giving each character a distinct place on a keyboard. This section will
present two different approaches to keyboard layout. As a proof of concept, let take the German character 'ü' as
an example. Where should it be placed on a keyboard? Should it have a key of its own or should it be a
combination of key strokes? Whatever solution, where on the keyboard should the key(s) be placed?

Mnemonic keyboard layout

Mnemonic means “memory aid” and in terms of computer keyboards, it refers to that the layout of keys is chosen
in a way that helps the user to remember the keying of the character. Mnemonic keyboards is commonly used for
Latin-bases scripts. In mnemonic keyboards, there is little difference in what the user want to type and what is
painted on the keys.

So, how should the German 'ü' be represented in a Swedish mnemonic keyboard?

In the Swedish QWERTY keyboard the German 'ü' is considered as a 'u' with umlaut. It can be typed using the
combination <¨>+<u>.

Positional keyboard layout
In positional keyboards the layout of the keys are defined positionally in relation to each other. It is not the
character printed on the key that is important, but rather which key is located next to which key and on which row
that are positioned. Typically, commonly typed letters will be placed in the keys in the middle of the keyboard
while less frequently typed letters will be placed in the periphery. The Dvorak layout is an attempt to provide a
positional keyboard layout which allows typists to type English faster. As mentioned before, the QWERTY
keyboard is rather the opposite.

In a positional keyboard, we might should have chosen to represent 'ü' in one single key and placed it in the

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

middle of the keyboard, easy to reach, if 'ü' is frequently used character or in the peripheries if it is not. In the
German keyboard, the character 'ü' has an own key and is placed in the middle of the keyboard as it is a very
common character in the German language.

This approach to keyboard design is commonly used when a whole keyboard needs to be designed opposite to
when it is a matter of adding a single extra character to an existing keyboard.

Large Keyboards
Most languages requires more keys that can be offered by any normal size keyboard. There are many
approaches to extend a keyboard to support more characters. Some of those approaches are presented below.

Modifier Keys
The most common way to extend an existing keyboard is to use modifier keys such as Shift, Ctrl, Alt, Alt-Gr etc.
The problem with these modifier keys are that they are frequently used by applications as acceleration keys. An
accelerator key is a key on your keyboard that you can press to quickly access a menu or a function of a
application. This collision can lead to complications. Either, the acceleration key of the application will not be
accessible and can not be used in the application. Or, the application will have first priority to the key and will not
allow that key to be used for typing a combination of characters.

Dead keys
Dead keys are another approach to extend keyboards which is commonly used for Latin keyboards. The
implementation of dead keys allows the user to type a single character as a combination of two or more keys (in
a certain order). Only the last key will result in a character on the screen, which will be the visual representation
of the combination of characters inserted. In that way, ê is inserted as

<^>+<e>.

The usage of dead keys requires a strong mnemonic relationship between the dead key, the input character and
the output character for the user to memorize the combination. Also, the dead key sequence should not be too
long. One problem with dead keys is the fact that some keystrokes does not result in any visual feedback
requires a little bit of training not to confuse the user.

Operator keys
A slightly different approach to dead keys is to place the modifier (the dead key) after the key that it modifies
instead of before. In the example of ê, we would type the combination <e>+<^> instead of <^>+<e>. In this way,
the user would get a visual feedback of each keystroke.

The problem of this approach is the implementation. Among other things, you need a system that can go back
and replace characters in a document when the user is typing, which is not trivial to implement. Tools as
Keyman15 has worked this out, but with some limitation.

15http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=keyman

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Candidate Window
An approach to solve the problem of thousands of characters to map (for example Chinese) is the use of a
“popup” window. As a special key is pressed, a window with a set of possible options is displayed and the user
can select the desired one by either using the mouse, pressing the initial key or using the arrows. As the user
types more keys, the set of possible options are changing and narrows down.

Using a candidate window is a powerful method of languages with large amount of characters. The drawback of
the approach would be the screen space that it takes up.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Spell Checkers

For applications as OpenOffice.org and mail clients where text creation is the main purpose, the existence of a
spell checker is important for a satisfactory usage of the application. For Linux there are four main spell
checkers: Ispell, Aspell, MySpell and Hunspell.

Ispell is a very old program that was originally written in 1971, by R. E. Gorin. Since then, many people has
contributed and evolved Ispell to what it is today. For example, international support has been added as Ispell
today supports a large number of European languages.

Ispell is a fast screen-oriented spell-checker that displays errors and suggests possible corrections when the
such can be computed. Ispell is used as a part of the GNU system.

GNU Aspell is a Free and Open Source spell checker that was designed to eventually replace Ispell. The GNU
Aspell can be used as a library or as an independent spell-checker. Its primary advantage over Ispell and other
existing spell-checkers is the suggesting of possible replacements for a misspelled word. Aspell has also the
capability to spellcheck UTF8 encoded documents without the use of an additional dictionary. Also, Aspell
includes support for multiple dictionaries at once, which Ispell does not do.

MySpell is a spellchecker based on Ispell. MySpell is used by OpenOffice.org and Firefox/Mozilla and works on
both Windows and Linux.

Hunspell is a new spell checker and morphological analyzer library and program designed for languages with rich
morphology and complex word compounding or character encoding. Hunspell is planned to replace MySpell
since it offers more sophisticated spelling functionalities. The main features of Hunspell is:

• Unicode support (first 65535 Unicode character)

• Morphological analysis (in custom item and arrangement style)

• Support for a Max. of 65535 affix classes and twofold affix stripping (for agglutinative languages, like
Azeri, Basque, Estonian, Finnish, Hungarian, Turkish, etc.)

• Support complex compoundings (for example, Hungarian and German)

• Support language specific algorithms (for example, handling Azeri and Turkish dotted i, or German sharp
s)

• Handling conditional affixes, forbidden words, pseudoroots and homonyms.

• LGPL license

Dictionary and Affix file

All the above mentioned spell checkers include a dictionary file (.dic) and supports for affix compression be
means of a second file (.aff). The dictionary (.dic) is a list of words with their corresponding affix rules. The affix
file describes each of the prefix based on aspell/myspell based rules.

Affix is a linguistic element added to a word to produce an inflected or derived form. An affix can be placed at the
beginning (prefix), middle (infix), or end (suffix) of the root or stem of a word, but in the spell checkers mentioned
above, an affix can only be prefix or a suffix (not an infix).

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

The fact that dictionaries supports affix compression means that the dictionary need only to contain the root of a
word, since the affix file specifies all possibles derived forms of the word. By using an affix file, the size of the
dictionary decreases dramatically.

The dictionary and the affix file is compiled to a hash table to form the spell checker. The size of the hash table
will affect the speed of the spell checker. So, the smaller the dictionary is (only roots) and the larger the affix file
is (definition of derivate), the faster will the spell checker will be.

For example, one row in the English dictionary looks like this:

imply/S

That means that the rule S (defined in the affix file) applies to the word 'imply'.
The rule S in the affix file is defined as:

flag *S:
 [^AEIOU]Y > -Y,IES # As in imply > implies
 [AEIOU]Y > S # As in convey > conveys
 [SXZH] > ES # As in fix > fixes
 [^SXZHY] > S # As in bat > bats

The first line for the flag S implies the following:
Two conditions must be fulfilled in order for the rule to me applied
1. The word must finish by an 'y' (suffix) and
2. The character next to the last character in the word must NOT be any of the following a, e, i, o, u.

3. Any such word in the dictionary can be derived by the rule -Y,IES (remove 'y' and append 'ties').

How to create a MySpell spell checker
Below follows a very general methodology on how to create your own spell checker based on MySpell.

A. Create Dictionary

• Collect many correct words as possible in the target language.

• Select the roots of the words (unique) and remove the rest

• Apply affix rules to each word

B. Create the affix file based on the grammar of the target language

C. Create the installation packs for Myspell

D. Submit the results to the FOSS responsible at MySpell

The methodology to create a spell checker depends greatly on the existing resources that you have for the target
language. For example the creation of the affix file requires linguistic knowledge since the file specifies great
parts of the grammar of the language. Such vast linguistic resources might not be available. If that is the case,
the spell checker may only consist of the dictionary and contain no affix file. Since the purpose of the affix file is
to speed up string matching and reduce the size of the dictionary, the spell checker will not be as fast as it should
have been with an affix file.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Furthermore, dictionaries, i.e. lists of words, might not exist in the target language, at least not in digital form. If
that is the case, as it is for many minority languages, words have to be collected “manually” to form a very first
dictionary.

Word Lists sources

Word list can be collected from many institutions and online resources but is can be a time consuming work.
Below follows some hints on how word lists can be collected.

Webcrawler
'An crúbadán Corpus builder16' (by Kevin Scannell) is a web crawler that searches the Internet via Google for any
document (HTML,DOC or PDF) containing words in a specific language and extract relevant words.
The goal of the software is automatic development of large text corpora for minority languages that lacks content
in digital form. The 'An crúbadán' is designed to exploit text that is freely available on the web, which can be a
large quantity even for minority languages.
The crawler is initially fed with a small amount of correct spelled words, called “seed” text (a few hundred words
is sufficient), in the target language. From those words, queries based on combination of the seed words are
passed on the Google API which returns a list documents that with high probability is written in the target
language. Those documents are downloaded, converted into plain text and formatted. Statistical techniques
based on the initial text in the target languages are applied to the plain text in order to determine what documents
or parts of them, is actually written in the target language. The “seed text” will grow larger as more words in the
target language has been identified. The crawler words recursively and follows links from documents that has
been determined to contain text in the target language. As a set of new identified words in the target language
has been identified, the process is repeated and new Google queries will be executed.

For example, over 8000 new words where included in the second release of the Swahili Spellchecker17 by using
this method.

Linguistic Institutions
Contact linguistic institutions and ask for dictionaries in various areas. The dictionaries does not need to be
technical as they should serve the purpose of spell checking any kind of text. Normally, the Bible is a good
reference text as it is normally translated and stored in digital form in many languages.

International Resources
Search for resources outside of the country where the target language is spoken. In many cases, expertise and
research in a minority language is based in Western Universities.

16 http://borel.slu.edu/crubadan/
17 http://www.it46.se/downloads/openoffice/dictionary/sw_TZ/README_sw_TZ.txt

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Localization of text
When you are able to type all characters of the target language and represent them in a computer according to a
certain character encoding, you are ready for the actual text localization.

This sections will give you an overview of the different steps that text localization implies.

Extract and convert strings

This first thing to do is to identify and extract the strings that need to be translated out of the source code of the
software. Different scenarios on how to extract the string are possible since software is coded differently
depending on its vendor or developer. Here are some examples of formats that we can expect to find.

Text strings embedded in the source code
This it the worse of the scenarios. The only way to localize the software is to edit the strings embedded in the
source code and do fully recompile the code. A software with embedded strings can be considered as not
internationalized.

(Un)known non-standard formating of strings
In this scenario, there is normally a specific tool to extract the strings to translate. It is recommended to extract
the strings and convert them to a known standard format that we can use in a common translation environment.

For example, OpenOffice.org uses a internal format known as GSI/SDF and a tool called transex3 to extract the
strings out of the source code. Strings are embedded in a set of files called resources files.

Documentation
Sometimes documentation is written as pure user guides or help documents. In this case, we need to rewrite the
whole file trying to keep layout and structure. (ie keeping the meta-code)

Portable Object (PO)
If the software is using PO format for localization (like Gnome or the KDE desktop) we can use functions from
the 'gettext' framework to extract strings into Template files or POT files to later create PO files in the target
language out of them (see 'The Gettext framework and PO files').

String Translation Process

Big projects as OpenOffice.org can include the translation of more than 40,000 strings. To handle this huge
amount of strings, special editing tools are needed. The translation also requires procedures for translation peer
reviews and in many cases the advice of external linguistic experts.

When it comes to translation tools, Poedit is freely available for Windows and Linux. Other tools are available
under Linux only systems as Kbabel (KDE) and GTranslator (Gnome).

For a small community that together want to localize a software or for people that for some reason is not allowed
to install certain software on his/her computer, a web-based translation tool can be used. Possible options are
Pootle, Rosetta and Kartouche.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Some localization teams also like to do the job in the “hard way” and use no other editor than 'vi'. Some teams
just convert POT files to Comma Separated Files (CSV) and edit them using a spreadsheet program. The best
way to do it is the one that works better for team and the very concrete circumstances of every localization
project.

XLIFF (XML Localization Interchange File Format) is an emerging translation interchange standard. We will see
much more available in this format as converters are being created to move PO files to Xliff and a number of
editors both GPL and commercial are being made available.

Compilation (building the software)

As the translation of the strings is completed and peer review and quality assurance has been performed, the PO
files should be merged into the code. PO files are converted to a binary format as MO and then used by the the
application at run-time.

Merging back the translation into the code and recompile a new version can be a very challenging task in some
projects. Some softwares as Firefox allows the creation of languages packs with the translations and enables
the possibility of adding new languages without the need of recompiling the source code. In other projects like
KDE or Gnome, PO files are compiled into binary form and easily integrated in the system operative locale
messages repository. In another projects like OpenOffice.org building a localize version will pass through
recompiling the whole code.

Quality Assurance
The final quality assurance of the software must be done by using the software during some time trying to
identify what translated strings needs modification or existing bugs in the system. During the QA phase you need
to make sure that users can file bug reports and collect feedback. After the testing or evaluation period, the
software should modified accordingly and finally released.

The Gettext framework and POT files
The 'gettext' framework is the GNU Internationalization (i18n) library that is commonly used for writing
multilingual programs. Gettext was created to support software Internationalization, which means that an
application/software can easily be localized/modified to another language. The 'gettext' framework has set up
rules for how to standardize the way applications should be written/designed in order to facilitate adaption to a
particular language.

The 'gettext' library offers an integrated set of tools and documentation to programmers, translators, and even
users to support internationalization.

The functions gettext and ngettext are used to extract strings and create POT file out of them.

Today, almost 90% applications on Linux platform are localized using the gettext framework.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

POT files
Extracting strings from an application that is based on gettext is trivial and results in a set of POT files (.pot).

The POT files are ready for the translator to edit, either by hand or using an editing tool. The original string in a
POT file is represented by the keyword 'msgid' and the string between a pair of “”. Under each string, there is
pair of empty “” and the keyword 'msgstr' to be filled up by the translators.

In general, a POT file looks the following:

white-space
translator-comments
#. automatic-comments
#: reference...
#, flag...
msgid “string1”
msgstr “”

#: reference...
#, flag...
msgid “string2”
msgstr “”

etc.

As the translator fills up the missing word, a PO file is created. The difference between a POT file and a PO file
lies only in the filename extensions and intended usage. POT file has empty msgstr fields and is intended to act
as a template for the translators, while the PO file is the translated version of its corresponding POT file.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Creating a Software Installer
As the software has been translated and built, an installer for the application must be created. Sometimes a
software installer is part of a third party development environment. If the software installer does not support your
encoding, you might need to encode the strings of the “installation process” in an encoding supported by the
installer.

The picture below shows a encoding problem in a beta-release of the Vietnamese OpenOffice.org.

 Image 5: Font encoding problems in a OpenOffice.org Installer (development phase)

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

During the translation

Sorting
The issue of sorting text is a language dependent problem that can cause trouble. Swahili is a good example for
that. In Swahili, like in a Bantu languages, the nouns are arranged in a number of classes (15 classes for
Swahili). Swahili uses a group of stems to which a number of prefixes are attached to. One of those prefixes are
'ki' that indicates that the stem that follows in a language. In that way the Swahili words for English and Spanish
are composed as 'Kiingereza' and 'Kihispania'.

The image below shows an example how the languages are sorted in the Swahili version of OpenOffice.org. The
prefix -ki does the sorting a bit difficult for the brain, right?

 Image 6: Sorting problem in Vantu languages

Plurals
The issue of plural forms in English is trivial since there only exist only way of doing it, append a 's' in the end of
the word. In Bantu languages the case are a bit more complex since plurals are created with prefixes. For
example, the Swahili word 'mtoto' (child) is called 'watoto' in plural (children). Another example is 'kitabu' (book)
and 'vitabu' (books).

In softwares you can see strings like 'Add file(s)' as an indication that you can add one or more files. The
corresponding string in Swahili would be 'Ongeza (ma)faili'.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

How to Plan a localization projects
What is the goal of the project?

The first thing you need to do to start a localization project is to define a clear goal of the project that is suitable in
terms of resources (technical, linguistic, financial). Also, the goal must be adopted to the potential users of the
software, and not just to your own dreams, if you want to see an user adoption of the software. When you define
the goal, you should not have a specific software in mind but rather choose a software depending on your goal.

For example, “Our goal is to localize KDE to Somalii”, just specifies What you will do, not Why you should do it.
KDE is a deskop for Linux, is there really such a large Linux community among the Somalii speakers? Maybe is
there other software that is more suitable for Somalii.

Avoid the use of very general and undefined goals as “Our goal is to make sure that Somalii speakers can use
computers in their native language”. Consider the following: What is needed for a person to use a computer in
his/hers native language? To write a document and being able to input all characters of her native language or to
be able to change settings of her mail client in her native language?

Defining a clear and narrow goal is of utmost importance for the outcome of the project.

Our experience is, that if no software of any kind exists, but the issues about fonts, encoding systems and
keyboards are solved, and you aim to localize a software that as many as possible has access to and will benefit
from, the office suite OpenOffice.org or the browser Firefox is suitable softwares to begin with.

What to localize?

Depending on your goal there are a number of useful applications, desktops and linux distributions to localize.
However, you should consider the following.

If there exists very little online content in the target language, is it really worth localizing a browser? As,
mentioned before, consider how large a potential Linux community in the target language could be? Is it worth
localizing a software that only runs in Linux or should you choose one that is cross-platform.

Our recommendations when it comes to defining the goal and the software to localize are the following:

1. End-user Focused
Have in mind the desktop bound end-user and not the system administrator when deciding which software
to localize. A system administrator is more likely to speak English or another international language, than
the end user. Consider what application that the end user could benefit from the most (office suites, email
programs, web-browsers, instant messaging) etc.

2. Free Software
In order to reach out to as many as possible, hurdles like license fees must be eliminated, especially in
developing countries. Therefore, the software that you localize should be Free of charge.

3. Cross-Platform
No matter how much you will like to see a world wide Linux community for your native language, you must
face the reality and consider a plan to make it happen. Investigate how the situation looks like for your
native language first and take that information as a starting point. The reality is that most computers are
using Microsoft Windows today. Because of that, it makes little sense to localize a product that can only be
used in Linux. At the same time, you should NOT limit yourself to a product that can only be used in
Windows. The best way is to choose a cross platform application that allows Windows users to use the
product but still offers them to change to a Free Operating System as soon as they are ready for that.

Introduction to ICT for Development
Course code: 2I4360, 2I1160, IB7000
23 October 2005, Creative Commons Deed. Attribution-NonCommercial-ShareAlike 2.0

Some major applications that are popular to localize are Mozilla, Firefox, Thunderbird and OpenOffice.org. Both
OpenOffice.org and Mozilla fits well into the recommendations given above. GNOME, KDE and XFCE are
localizable desktop systems for Linux (*BSD).

The Localization Team
After you decide what is the goal of your project and what you want to localize... you need a team, a localization
team. You will need to identify which human resources you need and make a time plan for the activities that
needs to be under taken.

In a localization team, one person often has many roles. Here follows a list of people that can be useful in a
localization project.

• Project manager (overall project coordination)
• Localization engineer (responsible for all technical matters)
• Translator (text translation)
• Linguist (glossary, creation of new terms etc.)
• Web designer/manager (project website, important for visibility)
• Testing engineer (software tester)
• Volunteers (testers of software,)
• Font designer
• QA Specialist (assurance of quality in the final product)

In a big localization project, the key persons of the team are the overall project coordinator and the translators.
Having a good project coordinator will ensure that the project is on track and moving in the right direction.
Localization is not a one-day task, it requires perseverance and project planning.

Conclusion
This “Primer to Localization of Software” aims to provide to the reader with a basic understanding of the
technical and human aspects that a full localization project requires. Far from what many think, localization is not
just the simple translation of strings, but a complex task that includes several interrelated subcomponents. A
good project management and planning is essential to achieve good results.

Finally, keep always in mind that tools need to adapt to people and not people to tools!

	Primer to Localization of Software
	Introduction to software localization
	Why software localization is needed
	Benefits of localization

	What is software localization?
	Text localization
	Cultural localization
	Internationalization (i18n) and localization (l10n)

	What is Free Software?
	Why Free Open Source Software?

	Localization components
	Locale, a very local file
	Common Locale Data Repository3
	Locale naming
	Locale Data Fields
	XML Format
	Delimiters
	Calendars

	Glossary
	How are new words created?
	Loanword
	Transliteration
	Semantic expansion
	Metaphors

	Adoption of new words

	Writing Systems / Scripts
	Logographic
	Syllabic writing systems
	Alphabetic writing systems
	Abjads
	Abugidas
	Featural writing systems

	Character Encodings
	Character Repertoire and Character Encodings
	Properties of a character encoding
	Stateful and stateless encodings

	Single-Byte and Multi-Byte encodings
	Examples of character encodings
	ASCII
	Base64
	ISO 8859
	UCS
	Unicode

	Normalisation
	Collation

	Fonts
	Font types
	Bitmap Fonts
	Outline Fonts
	Type1 Fonts
	TrueType Fonts
	OpenType Fonts

	FreeType Font Engine
	Creation of Fonts

	Input method
	Keyboards
	Keyboard Layout
	Mnemonic keyboard layout
	Positional keyboard layout

	Large Keyboards
	Modifier Keys
	Dead keys
	Operator keys
	Candidate Window

	Spell Checkers
	Dictionary and Affix file
	How to create a MySpell spell checker
	Word Lists sources

	Localization of text
	Extract and convert strings
	String Translation Process
	Compilation (building the software)
	The Gettext framework and POT files
	POT files

	Creating a Software Installer
	During the translation
	Sorting
	Plurals

	How to Plan a localization projects
	What is the goal of the project?
	What to localize?

	The Localization Team
	Conclusion

