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Abstract

The main concrete result of this paper is the first explicit construction of constant degree lossless
expanders. In these graphs, the expansion factor is almost as large as possible: �����
	��� , where  is
the degree and 	 is an arbitrarily small constant. Such graphs are essential components in networks that
can implement fast distributed, routing algorithms e.g. [PU89, ALM96, BFU99]. They are useful in
expander-based linear codes e.g. [SS96, Spi96, LMSS01]. Their highly unbalanced relatives are used
in various storage schemes [UW87, BMRS00] and are the basis of hard tautologies for various proof
systems [BW99, ABRW00, AR01]. The best previous explicit constructions gave expansion factor ���� ,
which is too weak for the above applications. The ���� bound was obtained via the eigenvalue method,
and as shown in [Kah95], this method cannot give better bounds.

The main abstract contribution of this paper is the introduction and initial study of randomness con-
ductors, a notion which generalizes extractors, expanders, condensers and other similar objects. In
all these functions, certain guarantee on the input “entropy” is converted to a guarantee on the output
“entropy”. For historical reasons, specific objects used specific guarantees of different flavors (eg in
expanders entropy means “support size”, and their property is satisfied whenever input entropy is small.
In contrast, in extractors, entropy means “min-entropy” and their property is satisfied whenever input
entropy is large). We show that the flexibility afforded by the conductor definition leads to interesting
combinations of these objects, and to better constructions such as those above.

The main technical tool in these constructions is a natural generalization to conductors, of the zig-zag
products defined by [RVW00] for expanders and extractors. This product maintains certain conductivity
properties of the conductors it combines, leading to new iterative constructions.
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1 Introduction

The quest for explicit construction of extractors, expanders, and their relative functions which “enhance”
randomness, has been one of the richest areas in the interaction between computer science and pure mathe-
matics. Moreover, the huge by now, and still growing, diverse set of applications of such functions in both
computer science and pure mathematics makes them central objects of further understanding. We will not
elaborate here on either the constructions nor the applications which are not directly relevant to this paper.

Our paper can certainly be viewed as another step in this important process. The progress made here is
of two types. The first is in resolving a long-standing open problem in this area — the explicit construction
of “lossless” expanders and their unbalanced relatives. The second is in suggesting a framework (which
we call conductors that encompasses all previously studied “randomness enhancing” functions. Needless to
say, the two are related – our new construction was discovered in, and is best described by, the framework
of conductors. The rest of the introduction describe both.

1.1 Lossless Expanders

In this subsection we define lossless expanders1, and explain why they were hard to construct by existing
techniques. We then briefly discuss their applicability in several areas.

Consider a bipartite graph � with � inputs � , � outputs � , and every input connected to � outputs. �
is called an ���
	��� -expander if every set � of at most � inputs is connected to at least ����� ��� outputs.

Clearly, the best one can hope for with these parameters is � as close as possible to � ; when ��������������
� for a small � we call the expander lossless. We can hope for such expansion factor only up to �����! "� .
A nonconstructive probabilistic argument shows that such graphs do exist with �#�$�%��&('*)+���, -�./ , and
this value of � is best possible.

Our main result is an explicit construction of such “lossless” expanders for any setting of the parameters
�0	1� . When they are within a constant factor of each other, the degree of our graphs is constant, and linear-
sized subsets of � expand losslessly. More specifically, the degree of our graphs is �2�43+'5&(6�&('*)7���, -�.
when �, -� is relatively small (so that an optimal graph of size 3+'5&(6+���, -�8 can be found by, say, exhaustive
search) and �9�;:-<�3=�>3+'5&(6�&('*)5&('*)7���, -�8/ in general. (Here, for simplicity, we fix � to be an arbitrarily small
constant). The size of sets that expand losslessly in all cases is ?@�A�; "�B , which is the best possible up to a
constant factor.

1.2 Previous Work

The best previous construction of constant degree, even for the special case �C�D� , achieved only expan-
sion �E���B GF . It is obtained from expanders which have optimal second largest eigenvalue — namely, the
Ramanujan graphs of [LPS88, Mar88]. Moreover, Kahale [Kah95] showed that some Ramanujan graphs
do not expand by more than �B GF , showing that to get lossless expanders one has to bypass the eigenvalue
method.

Lossless expanders with weaker parameters were obtained before. Ta-Shma, Umans and Zuckerman
[TUZ01] coined the term “lossless condenser”(which we call here “lossless conductors”), and gave a very
elegant construction for the very unbalanced case ( ��HI� ), with almost optimal degree �9�;3+'5&(6�&('*)7���J
(though with a suboptimal bound �IK��ML on the size of sets which losslessly expand). The only constant-
degree lossless expanders (with �N��� ) were obtained by Alon [Alo95] based on graphs of high girth, but
again only very small sets ( �E�!�%O for some constant P ) expand losslessly.

1We use this term here for both the balanced and unbalanced variety. We later use the term lossless conductors for them.
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Also, weaker objects of a similar nature were constructed before. Raz and Reingold [RR99] introduced
a method which appends a buffer to a “lossy” extractor, which retains the “lost” entropy. This translates to
highly unbalanced, nonconstant degree graphs which are lossless for sets of size of a given size � (rather
than for all sets of size up to � ). Their technique is essential in our construction. Very recently, Ca-
palbo [Cap01] constructed explicit unique neighbor expanders (for the case � ��� ) of constant degree. In
these graphs, for any set �
	 � � � � � of inputs, a constant fraction of the vertices in ���>�  has a unique
neighbor in � . This property trivially holds in lossless expanders, but turns out to be sufficient in some
of their applications. Capalbo’s construction uses the high min-entropy extractors of [RVW00] and graph
products. Our paper may be viewed also as a significant extension of his construction, as well as that of the
”min-entropy” expanders in [RVW00].

1.3 Applications

We now turn to list a wide variety of known applications of (balanced and unbalanced) lossless expanders.
In almost all of them the application depended on a probabilistic construction of such an object, and our
construction is the first to make them explicit.

Recall from above that a ���0	��  expander is a bipartite graph with � input nodes of degree � and �
output nodes, such that every input set � of size at most � has at least �!��� � � output nodes as neighbors,
and a lossless expander is one in which �2� ��� �;�  � . We will maintain this notation throughout the
applications below.

� Distributed Routing in Networks

There has been substantial interest, and literature, on constructing networks in which many pairs of
nodes can be connected via vertex or edge disjoint paths, and furthermore so that these paths may be
found efficiently, hopefully in a distributed manner and even if requests for connections arrive on-line.
Examples are the papers [PU89, ALM96, BFU99] In essentially all of them the networks are lossless
expanders, or at least contain them as components. To see why consider the following easier problem,
which is actually at the heart of most of these algorithms.

Assume that the network is itself a lossless expander � , that � is some set of inputs with � ���+K�� ,
and that these inputs wish to find a matching to the output quickly and distributively (this may be
viewed as the first step in constructing vertex disjoint paths). Note that in constant time, by sending
messages to their direct neighbors, a constant fraction of the elements in � can match themselves to
their unique neighbors, and remove themselves from � . Iterating this will end in �%��&('*)�� ���  steps
(which in a more general algorithm will be pipelined) and linear work.

� Linear Time Decodable Error-Correcting Codes

Again, a large body of work, best known under LDPC (Low Density Parity Check) codes, constructs
good codes from graphs with good expansion properties. (See [LMSS01, SS96, Spi96] and the ref-
erences therein.) The following, which is from [SS96], illustrates the power of lossless expanders in
this context. Specifically, they yield asymptotically good linear codes of every constant rate, with a
trivial linear-time (and �%��&('*)��= parallel steps) decoding algorithm.

Let � be a lossless expander. A codeword (of length � ) is an assignment of bits to the inputs, so that
every output has zero parity of the inputs it is connected to (in other words the outputs describe the
parity check matrix of the code). The rate is �����; � , which can be made an arbitrarily close to
1 with constant degree � . We now show how to correct any set of at most � errors. The (possibly
corrupted) message is an assignment to the input nodes which induces some values on the output
nodes via parity. While not all outputs have a zero value, every input node (independently) acts as
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follows: if flipping its value will decrease the number of 1’s in the outputs by (say) �B �� , it flips. It is
easy to see, that the total number of 1’s in the output will shrink by a constant factor each round, and
that every input needs only a constant time to decide what to do.

By using our lossless expanders in this construction, the resulting codes have relative rate � ��� and
minimum distance �G 3 '5& 6�&('*)+���  ��" , which, for small � , beats the Zyablov bound and is quite close to
the Gilbert-Varshamov bound.

� Bitprobe Complexity of Storing Subsets

An ingenious scheme for storing � -subsets of � ��� in binary vectors of length � was recently pro-
posed by [BMRS00]. The scheme allows to determine (with high probability) membership of any
element �	�
� ��� in the stored set by querying only one random bit in the vector. The optimal con-
struction of smallest value of � (for constant error) relies on lossless expanders. Let us see how.

Let � be an �AFG�0	 ��� �;�� �B expander with � inputs, � outputs, and degree � (this value is not
important for this application). Given a set � of inputs of size � , we will label the outputs with binary
values so that the vast majority of neighbors of each neighbors would correctly give membership.
Namely, every element of � has most (say) �*�1� of its neighbors labelled � , and every element not
in � will have at most �*�1� neighbors labelled � . If we achieve that, querying a random neighbor of
��	� �
� will only err with probability �*� about membership of � in � .

Why should such a labelling exist? As in the previous examples, let’s attempt to get it greedily. First,
label all output vertices �M�>�J that are connected to � by � , and the rest by � . This classifies correctly
vertices in � , but might misclassify vertices in a set � disjoint from � , each of which has at least
�*�1� neighboring outputs in �M�>�J . Fix the problem by (re)labelling all outputs in �����  by � . This
certainly fix the problem in � , but may create one in a subset � of � . Fix �����  to � , etc. The key
point is that losslessness implies that the size of the new “problematic set” is at most half the size of
the previous one. This is indeed an efficient algorithm for finding the labelling.

� Fault-tolerance and a Distributed Storage Method

Lossless expanders have an incredible fault-tolerance: an adversary can remove most of the neighbors
of every input, and the graph will remain a lossless expander! More precisely, let � be an ���0	 �����
�  �  -expander of degree � . For every subgraph of input degree ��� ��� � , is a ���0	 �������  ��  ���  -
expander.

This property was used (with �
�I�  GF ) in a distributed storage scheme due to Upfal and Wigder-
son [UW87], who gave a near-optimal deterministic simulation of PRAMs by a network of communi-
cating processors. Both models have � processors, but they differ in that in the first, every data item
can be accessed in unit time, whereas in the second, items which reside in the same processor cannot
be accessed simultaneously. If the number of data items � used (read and updated) by the PRAM
program is much larger than � , any naive method for distributing the data items will fail.

The idea in [UW87] is to use a lossless expander where the inputs represent the � data items, and the
outputs represent (the memories) of the � processors. Each item has �2� F�� �!� “copies”, which
are distributed to its neighbors in the. When attempting to read or update a data item, each processor
is required to access only � copies. When updating, it updates all � (and time-stamps them). When
reading, it takes the value of the most recently updated among the � “copies” it has. Intersection of
any two � subsets implies consistency.

How about efficiency? In each phase (simulating one PRAM step) all processors try to access some
data item each. They follow a ( nontrivial) distributed algorithm to collect � copies each. The analysis
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heavily uses the fact that at any point in this algorithm, the residual graph (between data items and
their yet unobtained copies) is still a lossless expander (by the above fault-tolerance and the fact that
at least � neighbors still remain for each unrecovered data item). This guarantees convergence in �,��� 
rounds.

� Hard Tautologies in Proof Complexity

The field of Proof Complexity studies propositional proof systems, and tries to prove lower bounds
on the size of such proofs for concrete tautologies. There has been significant progress in this field,
especially in accomplishing this task for relatively simple proof systems. (See, e.g., the excellent
survey [BP98]. A sequence of works [Tse68, Urq87, CS88, BW99, ABRW00, AR01] has gradually
elucidated expansion as a key to hard tautologies for several complexity measures (width/degree, size,
space) in the important (simple) proof systems Resolution and Polynomial Calculus.

Here is a general recipe for constructing such tautologies from any lossless expander � , as suggested
in [ABRW00]. View � as a circuit, where each input node computes some function of the output
nodes connected to it. (Note that this is in reverse to the parity circuit in the coding application.) The
choice of functions depends on the proof system, and these choices are made in [ABRW00, AR01]
for resolution and the polynomial calculus, respectively. Now the tautology, whose propositional
variables are the potential values on output nodes, encodes a statement such as “the zero vector is
not generated by this circuit for any setting of values on the output nodes”. The unique neighbor
property is used (nontrivially) to show that, in some sense, the statements for every input are “nearly
independent” (in much the same way near-disjointness is used in the Nisan-Wigderson pseudorandom
generator [NW94]), and thus every proof will have to examine exponentially many “possibilities”.

It should be noted that the probabilistic proof of existence for lossless expanders was sufficient for
this application; in proof complexity, unlike computational complexity, existential lower bounds are
as interesting as constructive ones. Still, explicit examples are always more informative.

1.4 Randomness Conductors

In this subsection we try to motivate a general framework for studying “randomness enhancing” functions.
Each of the many variants on this theme: expanders, concentrators, dispersers, extractors, condensers, ...
may be viewed a function ��� � ����� � � ��� � � � . Each function guarantees some randomness properties
of the distribution � �>�0	��� given some guarantees on the randomness in the distribution � , where � is the
uniform distribution on � ��� .

As these objects were originally defined for different sets of applications and motivations, what is exactly
meant by “randomness” and “guarantees” in the above description can vary quite a bit. These choices have
different advantages and disadvantages. For example:

Vertex Expansion This is the most classical measure of expansion — the support of � �>�
	��@ should be
larger than the support of � , provided the latter is not too large. It is also used to define dis-
persers [Sip88] and 	 -expanding graphs [Pip87], though these refer to � of given size support. While
this measure is often the one that we want in applications, it tends to be too weak for compositions.

Eigenvalue Expansion It is well-known that the second largest eigenvalue of a graph is a good measure of
its expansion [Tan84, AM84, Alo86]. This measure turns out to be equivalent to measuring the Renyi
entropy of � �>�
	��� as a function of the Renyi entropy of � . The eigenvalue was very convenient
for analyzing algebraic constructions of expanders, and indeed was the measure of choice for almost
all previous constructions of constant-degree expanders. However, in some ways it is too strong. As
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mentioned earlier, it cannot give expansion greater than �  GF and also cannot achieve small degree for
very unbalanced graphs.

Extractors Extractors, introduced by Nisan and Zuckerman [NZ96], ask that � �>�0	��� is close (in statistical
difference) to the uniform distribution on � �
� provided that � has sufficient min-entropy. This turns
out to overcome most of the deficiencies of the notions mentioned above — extractors can have very
small degree for unbalanced graphs, and are eminently composable. (For example, since the output of
an extractor is close to uniform, it is very natural to use the output of one extractor as the second input
to another.) On the other hand, extractors cannot be lossless [NZ96, RT97], and also their definition
only discusses � whose min-entropy is at least some value and thereby does not guarantee expansion
of small sets.

Condensers Condensers differ from extractors in that, instead of asking that � �>�
	��� is close to uni-
form, they only require � �>�0	��� is close to some distribution having at least a certain amount of
min-entropy. Various formalizations of this basic idea have appeared in the recent extractor litera-
ture [RR99, RSW00, TUZ01], where it has been seen that condensers can be lossless, and can be used
to discuss expansion of small sets. However, since condensers do not provide an almost-uniform out-
put, they are not quite as composable as extractors (though they compose quite nicely with extractors).

Not surprisingly, there are numerous connections and reductions between the above objects, and our
paper could be viewed as making more specific connections of this type. However, we feel that a global
view of all these objects (as conductors) is a better description of how we came about our construction, and
that these objects merit more study in the future. In particular, it seems useful to have a single notion which
captures both extraction (which must be lossy) and lossless condensers simultaneously.

In the most general form, randomness conductors2 capture all of the above objects: every function � is
a conductor, and its quality is measured for all values of parameters: for every two values of entropy, �����
and �����	� , we measure the statistical difference of � �>�
	��@ to the nearest distribution of entropy �
���	� , taking
worst case over all sources � of entropy �	��� . In this paper we choose “entropy” above to mean min-entropy,
but we suspect that similar results can be obtained when it means Renyi’s 2-entropy.

In this work we’ll restrict ourselves to simple conductors3. In these we fix both error (statistical differ-
ence) as well as the difference between the input and output entropies ( �����	� ������� ) to fixed values. When
this difference is %��& '*)�� � , the conductor is lossless, as all the incoming entropy (from the source � and
the uniform distribution � is close to being preserved at the output. When the output entropy can reach
� �!&('*) � � , we have an extracting conductor, which combines extractors and condensers in one. Needless
to say, there are other types of conductors we use, but we’ll delay their description to the technical section.

It turns out that quite a few known objects, such as expanders, hash functions, and some special con-
structions of extractors (e.g. those of Trevisan [Tre99, RRV99]) are conductors of good parameters. We just
need to combine them in the right way! Our main technical result is a new zig-zag product for conductors
which, like in the zig-zag products for expanders and extractors in [RVW00], combines (three) conductors
into a larger one, maintaining their conductivity properties. This leads in particular to our construction of
constant-degree lossless expanders. While the intuition behind the new zigzag product is similar to the two
old ones in [RVW00], the technical details involved in proving its properties are more delicate, due to the
higher requirements from conductors.

2The analogy with water, heat or electricity conductors is meant to be suggestive.
3which are still more general than what we really need.
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2 Preliminaries

Expanders are graphs which are sparse but nevertheless highly connected. The standard definition of ex-
panders is based on the notion of set expansion – every (not too large) subset of vertices in an expander
should be connected to a large number of neighbors. A quantitative version of such a definition follows:

Definition 2.1 A bipartite graph � �$� � ��� 	�� �
� 	��  is a ���0	��  -expander if every subset ��� � ��� of at
most � vertices is connected to at least � �5� � � neighbors. (Note that the parameters � and � must satisfy
�! "� � � � � .)

Typically we are interested maximizing the expansion factor � while minimizing the left-degree � . Every
bipartite graph as above can be viewed as a function E � � ��� � � ��� � � �
� , where E ��� 	��  is the � ’th neighbor
of � , and conversely. (We allow multiple edges between two vertices.) In this representation, a (somewhat
convoluted) way of viewing set expansion is to say that for every probability distribution � on � ��� whose
support �
	 3 3 �>�  is of size at most � , E �>�0	��� has support of size at least � ����	 3 3 �>�  . Thus, if we think
of “support size” as a measure of randomness, then expanders can be viewed as “randomness enhancing”
functions. However, it turns out to be extremely useful to adopt stronger measures of “randomness” than
support size, and to do so we need some definitions.

Let � and � be random variables over a set  (throughout the paper we identify random variables and
their distributions). The min-entropy of � is defined to be

��� �>�  ������$&('*)+���  ����"<����� �! � ��� 	 �>�	

where here and throughout this paper, all logarithms are base 2. � is a � -source if
�"� �>� $# � . (In

particular, the uniform distribution on a set of size F&% is a � -source.) We say that � and � are ' -close if the
statistical difference between � and � is at most ' . That is, if

���"<(�) � � �* � � �,+ � � �* � � �-+ � �*� �
F
.
�/��� �

�! � ��� 	 �7� �! � ��� 	 � � � '

� is a ��� 	�'" -source if it is ' -close to some � -source. In Appendix A, we discuss another useful entropy
measure, namely Renyi entropy, and its relationship to min-entropy.

Now we are prepared to discuss other kinds of “randomness enhancing” functions, and in doing so, it
will be convenient to represent everything in bits. For any integer � , we denote by � �= the set of all � -bit
strings, 0���	��21�3 . Denote by � 3 the uniform distribution over � �= .
Definition 2.2 ([NZ96]) A function E � � �= � � �54 � � �  is a ��� 	�'" -extractor if for any � -source � over
� �= , the distribution E �>�
	��76" is ' -close to �78 .

Viewed as a bipartite graph, an extractor guarantees that all subsets of the left-hand side � ��� of size at least
� vertices have a neighborhood of size at least ��� �9'G �*� (and even more, that the edges are distributed
almost uniformly among the neighbors.) Here, and throughout the paper, we adopt that capital letters are F
taken to the corresponding lowercase letter, e.g. � ��F 3 , ����F:% , � ��F 8 .

3 Conductors

3.1 Conductors, a broad-spectrum approach

As discussed in the introduction, we consider one of the main contributions of this paper to be the intro-
duction of randomness conductors. In this definition we would like to to encompass a wide spectrum of
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“randomness enhancing” combinatorial objects. Loosely, all of these objects can be viewed as functions
E � � �= � � � � � �  with some relation between the randomness guarantee on the distribution � of their
first input and the randomness guarantee of their output distribution E �>�
	�� 6G .
Definition 3.1 (randomness conductors) Let ' be a real valued function ' � � ��	 � � � � ��	 � � 4� � ��	�� � 	 (where
� 	 	 � � denotes the real interval between 	 and

�
). A function E �+� �= � � � 4� � �  is an ' � �(	 �  randomness

conductor if for any � ��� � 0���	��G	1F�	������G	 � 1 , any �����	� � 0���	��G	1F�	������G	 � 1 and any � ��� -source � over � �= ,
the distribution E �>�
	��76" is a �������	�1	�'�������� 	 � ���	� / -source.

Note that any function E �7� �= � � � 4� � �  , is an '�� �(	 �  randomness conductor for ' which is identically
one. More generally, the requirement of Definition 3.1 from E, is moot for any specific pair ������ 	 � � � �� such
that '���� ��� 	 � � � �� �$� . This property makes objects as extractors or condensers a restricted special case of
conductors.

Entropy Measures. Definition 3.1 is flexible enough to handle a wide variety of settings, previously dealt
with by expanders, extractors, condensers, hash functions and other objects. In particular, the definition
can handle (a) The balanced case ( � � � ) and the imbalanced case ( � K � ). (b) The lossless case
( � � � � � � �����  ) and the lossy case ( � ���	� K ��� ���  ). (c) The extracting scenario (where � ��� � � � ) and
the condenser scenario (where � ���	� may be much smaller than � ). Nevertheless, for our definition we fix
a particular measure of randomness. Namely, we use a combination of statistical difference ( �	� norm) and
min-entropy. In this we follow the definition of extractors. As discussed in the introduction, our motivation
for such a definition includes the following considerations:

� This definition is strong enough to imply vertex expansion: For every � ��� 	 � � � � , if the support of a
distribution � is at least F %�
 � , then the support of E �>�
	�� 6G is at least ��� � '���� ���7	 � ��� � / � F�%����� .

� This measure if randomness is very amenable to composition as demonstrated by the extractor litera-
ture and by the results of this paper.

� This definition is not “too strong” in the sense that it allows relatively small seed length (the parameter
 ) even in the unbalanced case where � K � . The corresponding definitions that are based solely on
min-entropy or Renyi entropy require very high degree in this case (cf., Remark 3.2).

We note that an alternative definition may involve a combination of statistical difference and Renyi entropy
(rather than min-entropy). We suspect that similar results can be obtained with this definition. (In fact, the
two definitions are closely related — see Appendix A.)

Remark 3.2 It is tempting to define conductors in terms of min-entropy alone. That is, for E � � �= � � �!4�
� �  , and some collection of pairs 0 ��� ���7	 � ��� �  1 to require that every � ��� -source � will be transformed
into a � � � � -source E �>�
	�� 6" (this is equivalent to restricting ' � �(	 �  in Definition 3.1 to only assume 0���	��21
values). However, such a definition is too strong unless the setting of parameters is trivial (i.e., � ���	� �  or
� � � � � ������� � � � ): Let � be any value in � �  and define the source ��� to be the uniform distribution
over  � � 0/� � � �= � � ��� 	��  ��� for some � � � � 1 . If for some � �D� �  , the set  � is of size at least
F�%�
 � , then we have that ��� is a � ��� -source while

�5� � E �>���*	�� 6 / �  (since
�! � E �>���*	���6  ����� # F�� 6 ).

Otherwise, let �	�E� �  be such that the set of pairs 0 ��� �D� �=�	����D� �/ � � ��� 	��  ����1 is of size at least
F 3�� 6 � 8 . (Such a � exists by a simple counting argument.) Let � be the uniform distribution over some
set of size F/%�
 � that contains  � . Then � is a � � � -source while

� � � E �>�0	�� 6 / � � ���!� � � � since�! � E �>�
	�� 6G �"��� # F 3#� 6 � 8  GF�%�
 � � 6 .
We conclude that employing statistical difference in the definition of conductors is indeed essential.
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3.2 Special cases of interest

For the constructions of this paper, it will simplify notation to work with several special cases of conductors.
In these special cases, both the error parameter and the difference between the input and output min-entropies
will be fixed rather than varying as in the general definition.

Definition 3.3 (simple conductors) A function E �7� �= �J� �*4 � � �  is an ����������	�'5	 	  simple conductor if
for any � � � � ������� , and any � -source � over � �= , the distribution E �>�
	�� 6G is a ����� 	 	�'" -source.

In the above definition, we allow 	 to be negative, so that we can discuss conductors which lose more
than  bits of entropy. Now we look at two further restrictions. The first of these requires that the conductor
is an extractor when the input min-entropy is large. This forces ������� � � � 	 , so we drop �	����� from the
notation.

Definition 3.4 (extracting conductors) A function E � � �= �M� �54 � � �  is an �&' 	 	� extracting conductor
if for any � � � � � � 	 , and any � -source � over � �= , the distribution E �>�0	���6G is a ����� 	 	�'" -source.

Note that if E � � �= � � �!4� � �  is an �&' 	 	� extracting conductor then it is also an � � � 	7	�'G extractor.
The second restriction is that the conductor is lossless. That is, the output min-entropy equals the total

amount of randomness invested, namely the input min-entropy plus the number of truly random bits. In
other words, 	%�  , so we drop 	 from the notation.

Definition 3.5 (lossless conductors) A function E � � �= ��� � 4� � �  is a ���
������	�'" lossless conductor if
for any � � � � ������� , and any � -source � over � �= , the distribution E �>�
	�� 6G is a ����� 7	�'" -source.

As observed by Ta-Shma, Umans, and Zuckerman [TUZ01], lossless conductors4 are equivalent to bipartite
graphs of left-degree � �CF 6 such that every set of left vertices of size at most F % expands by a factor
��� � 'G ��� .

The last two special cases combine the above two cases, by requiring that we have a lossless conductor
such that a prefix of the output is an extracting conductor.

Definition 3.6 (buffer conductors) A pair of functions
�
E 	 C � �+� �= � � � 4� � � ���� �  is an ���
����� 	�'5	 	 

buffer conductor if E is a �&' 	 	� extracting conductor and E� � �
E 	 C � is an �������� 	�'G lossless conductor.

It will also be useful for our construction to consider a restricted type of buffer conductors, where
E � � �

E 	 C � is a permutation (note that in this case, E� is trivially also an � � 	 �  lossless conductor).

Definition 3.7 (permutation conductors) A pair of functions
�
E 	 C � � � �= ��� � 4� � �  ��� �  , where

� ��,� � �
�

is a �&'5	 	  permutation conductor if E is a �&'5	 	  extracting conductor and E� � �
E 	 C � is a

permutation over (n+d).

4 Some Constructions and lower bounds

In this section we describe some basic conductors. The first set of conductors are constructed probabilisti-
cally. The parameters achieved by these probabilistic constructions are essentially optimal, as demonstrated
by the lower bounds given in Appendix B (which also contains the proofs of most results from this section).
These will serve us in two ways. They will be components in our zig-zag product when their size is a fixed

4They referred to such objects as lossless condensers.
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constant (as they can be found by brute force). Furthermore, we’ll see that for every size, our final explicit
constructions come very close to the performance of these random constructions.

The second set are ”known” explicit conductors. By this we mean past constructions of random-like
objects, such as expanders, extractors and hash functions, which happen to have useful parameters as con-
ductors for our zig-zag.

We later extend known composition techniques from extractors and condensers to conductors. This will
help improve the parameters of the above.

The proofs for Theorems 4.1–4.3 employ standard probabilistic arguments and are deferred to the final
version. Closely matching lower bounds can be obtained by reductions to the known lower bounds for
extractors [NZ96, RT97]; details are given in Appendix B.

Lemma 4.1 (nonconstructive extracting conductor) For every � , � �
� , and '���� , there is an �&' 	 	�

extracting conductor E �7� �=�� � � � � �  with

�  �!&('*) � � � � �!�  � F & '*) ���  2'" � �%���  ,
� 	%�  � F &('*)+���  2'" �M�%��� 

In terms of graphs, these parameters say the degree is � ���%��&('*) �AFG�, -�8/ 2' �  , and the expansion factor is
�.��� �&' � �  . The expression for 	 says that even these optimal extracting conductors lose F &('*) ���  2'G bits
of entropy.

Lemma 4.2 (nonconstructive lossless conductor) For every � , � �
� , and '�� � , there is a ��� ����� 	�'G

lossless conductor E � � �= � � ��� � �  with

�  �!&('*) � � � � �!�  ��& '*) ���  2'" � �%���  .
� � ����� � � �  � &('*) ���  ��	��
G � �,���  .

In terms of graphs, these parameters say that � ���%��&('*) �AFG�, -�8/ 2'" and the size of sets that expand
losslessly is � ����� ��� �&' �! "�  .

The above two can be combined into one, as a buffer conductor.

Lemma 4.3 (nonconstructive buffer conductors) For every � , � ,
� �

� � � , �� � , there is a ��� ����� 	�'5	 	 
buffer conductor

�
E 	 C � � � �= � � ��� � � �� � �  with

�  �!&('*) � � ��� � �
�  �!�  � F &('*) ���  2'G � �,���  , and

� 	%�  � F &('*)+���  2'" ���%��� 
� � ����� � � �

� �  � &('*)+���  2'" �M�%��� 
We now describe several explicit conductors implied by a number of known constructions. The first two

are well-known, based on expanders with bounded eigenvalue and almost-pairwise independent hashing,
respectively. The analysis merely involves converting the guarantees on Renyi entropy directly provided
by these objects into ' -closeness to min-entropy (via Lemma A.3). For the case of extraction (output min-
entropy equals output length), this kind of analysis was done for expanders in [GW97] and for hashing in
[GW97, SZ98] (generalizing Rackoff’s proof of the Leftover Hash Lemma [HILL99, IZ89]). What follows
is a generalization to lower min-entropies.

Any constant-degree expander on � �= with bounded second eigenvalue yields a conductor which uses
the  random bits to do a random walk on the graph. Roughly speaking, each step adds ?@���  bits of entropy,
so this gives 	 �.?@� � . We get a permutation conductor, by letting the buffer “remember” the sequence of
edges taken (equivalently, take the rotation map of graph in the sense of [RVW00]). This gives:
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Lemma 4.4 (eigenvalue-based conductors) For every � , 	 �
� , and ' � � , there is an explicit �&'5	 	 

permutation conductor
�
E 	 C � �7� �= � � � � � �=�� � � with  �E�,� 	 � &('*) ���  2'"/ .

The key feature of the above conductors is that  does not depend on � .
Using existing constructions of almost pairwise independent families of hash functions [NN93, AGHP92],

we also obtain interesting conductors (both extracting and lossless). Here the  truly random bits are used to
select a hash function

�
from the family, and E ���=	 �  � � � 	 � ��� / . Actually, we divide

� ���+ into two pieces,
using one as part of the extracting conductor, and one to create a buffer.

Lemma 4.5 (conductors from hashing) For every � , � ,
�
, and ' � � , there is an explicit ��� ����� 	�'5	 	 

buffer conductor
�
E 	 C � ��� �= �!� � � � !� �  �!� �  with  �I�,��&('*) � � � �

�
�D& '*) ���  2'"/ , 	;�

 � F &('*) ���  2'G � � , and � ����� � � �
� � &('*) ���  2'" � F .

The above conductors are optimal (up to additive constants) in terms of 	 and � ����� , but  is quite large,
growing linearly with � and

�
. To improve on  , we obtain explicit conductors come from the extractor

literature, in particular the recent series of works building on the construction of Trevisan [Tre99]. For the
first ones, we exploit the fact that the extractors of [RRV99] have the property that for any � � � � � the
extractor for min-entropy � � can be obtained by taking a subset of the output bits of the extractor for min-
entropy � � . Hence, we have guarantees on the output even when the min-entropy is smaller than needed
for a uniform output.

Lemma 4.6 ([Tre99, RRV99]) For any � , � , ' � � , there exist explicit �&' 	 	� extracting conductor E �
� �= � � ��� � �  , with  �E�,��&('*) � � �= 2'" � &('*) �  and 	 �8� �%� � .

Proof Sketch: In [RRV99, Thm. 22], ��� 	�'" extractors E � � �= � � � � � �  with  �D�%��&('*) � � �= 2'""� & '*) � 
and � � � � �,� � are given. For � � � � � � � , this construction has the property that the extractor for
output length � � can be obtained by taking a subset of the output bits of the extractor for output length � � .5
Thus, if we take the extractor E �=� �= �M� � � � �  for output length � then for every � � � � 	 , every
� -source � gets transformed into a ����� 	 	�'" -source for 	 �8� �,� � . �

The next ones are the “lossless condensers” of Ta-Shma, Umans, and Zuckerman.

Lemma 4.7 ([TUZ01]) For any � , �	����� � � , and ' � � , there is an explicit ��� ������	�'" lossless conductor
E � � �= � � � � � �  with  �E�%��&('*)��= , � � ��������  2'G � .

In [RRV99, TUZ01], there are also other constructions of conductors for different settings of the param-
eters, but we won’t need them here. Also, other recent extractor constructions, such as those in [TZS01,
SU01], have the property that prefixes of the output correspond to the same extractor construction for lower
min-entropies. This implies that they give rise to interesting conductors, which are better than the above
ones for some settings of parameters (e.g. when one is willing to lose more than a constant fraction of the
input min-entropy).

5This “restriction property” is stated explicitly in [RRV99, Remk. ] for their extractors which extract up to a constant fraction of
the min-entropy; for those, even an appropriate prefix of the output bits are enough. The extractors used here, which extract nearly
all the min-entropy, are obtained by repeatedly applying the extractors which extract half of the min-entropy, and thereby inherit
the desired property (though not necessarily for a prefix).
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4.1 Simple Compositions

In this section we describe two simple but useful methods for composing conductors. The first is for com-
posing any two simple conductors with each other, which generalizes the popular “repeated condensing”
and “condense-then-extract” paradigms used in the recent extractor literature [RSW00, TUZ01].

Lemma 4.8 Let E � � � � � �� �  � �� � � �  be a ��� � 	�' � 	 	 �  simple conductor, and let E� � � � �  � �  �  �
� � �  be a ��� � � 	 � 	�' � 	 	 �  simple conductor, and define E � � � �  �J�  � �  �  � � � �  by E ��� 	 ��� � 	�� � / �
E � � E � ��� 	�� � �	�� �  . Then E is an ��� � 	�' � � ' � 	 	 � � 	 �  simple conductor.

Taking E � to be the lossless conductor of Lemma 4.7 and E� to be the extracting conductor of Lemma 4.6,
we obtain:

Lemma 4.9 For every � , � , and ' � � , there is an �&'5	 	  extracting conductor E � � �=���� ��� � �  with
 �E�%��&('*) � ��&('*)��5� �  2'G/ and 	%�8� �%��& '*)��*� �  2'"/ .

The next composition shows that we can “improve” an buffer conductor by applying another conductor
to just the buffer.

Lemma 4.10 Let
�
E �-	 C � � � � �= �;�  �  � � � �� � � � �  be a ��� ��	�'�� 	 	 �  buffer conductor and let E� �

� � �  � �  �  � � � �  be a ��� � 	�' � 	 	 �  simple conductor, with � � � � ��� 0 � � �  � � � � 	  � � 	 � 1 . Define
E � � �= � �  � �  � �� � � � � � �  by

E ���=	 ��� � 	�� � / � E � ���=	�� � �� E � � C � ��� 	�� � �	�� � 
Then E is a ��� � 	1F�' � � ' � 	  � � 	 �  simple conductor.

Proof: Let � be any � -source on � � �  with � � � � , and let ��� 	 �  � �
E � 	 C � �-�>�
	���6G . Since

�
E � 	 C � � is

a ��� ��	�'�� 	 	 �  buffer conductor, it follows that ��� � 	 � �  is F�'�� -close to a distribution ��� � 	 � �  where � � is a
� ��� 0 � � 	 ��� 	 � 1 -source and ��� �>	 � �  is a ���  � -source.

We now analyze the effect of E� on � � . Since ��� � 	 � �  is a � �  � -source, for any � in the support of � � ,
��� �A� � �7� �  is a �	� -source, for

�
� � ���  � � & '*) � ��! � � � � � �
� ���  � � � ��� 0 � � 	 ��� 	 � 1
� � � �

This implies that E � �/��� �A� � � � � �	�� 6��� is a ���	� � 	 � 	�' �  -source, which implies that � �� E � ��� � 	�� 6��� is a
�����  � � 	 � 	�' �  -source. Recalling that ��� � 	 � �  is F�' � -close to ��� 	 �  , we conclude that E �>�0	�� 6�� � 6��- ���� E � ��� 	�� 6��  is a �����  � � 	 � 	1F�' � � ' �  -source, as desired.

Now we show how to use the above composition to construct buffer conductors from extracting con-
ductors. First, note that a trivial way to extend an extracting conductor E � � �= � � � � � �  to an buffer
conductor

�
E 	 C � is to define C ��� 	��  �����=	��  . Of course this creates a very large buffer. The above lemma

shows that we can shrink the size of this buffer by applying a lossless conductor to it. If we take the lossless
conductor to be one based on hashing from Corollary B.5, we obtain exactly the Raz–Reingold method for
converting extractors into “extractor-condenser pairs” [RR99]. The above lemma is more general, however,
and also shows that if we apply an extracting conductor to the buffer, we get an extracting conductor. It
thus also generalizes the method of Wigderson and Zuckerman [WZ99] for decreasing the entropy loss of
an extractor.

The two cases (lossless and extracting) can be combined to yield the following composition for buffer
conductors (which is proven by appealing to the previous lemma twice):
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Lemma 4.11 Let
�
E � 	 C � ��� � �= �
�  �  � � � �  �0� � �  be a ��� � 	�' � 	 	 �  buffer conductor and let

�
E� 	 C � � �

� � �  �,�  �  � � � �  �,� � �  be a ��� � 	�' � 	 	 �  buffer conductor, with � � � � � �  � � � � , � � ���  � � 	 � �� 	 � .
Define

�
E 	 C � �7� �=�� �  � �  �  � � � � � � � �� � � �  by

E ���=	 ��� � 	�� � / � E � ���=	�� �  � E � � C � ��� 	�� � �	�� � �	 and

C ���=	 ��� � 	�� � / � C � � C � ��� 	�� � �	�� � 
Then

�
E 	 C � is a ��� ��	1F�'�� � ' � 	  � � 	 �  buffer conductor.

Using this composition to combine the conductors of Lemmas 4.9 and 4.5, we get:

Lemma 4.12 For any � , � and ' � � , there exists an explicit � � � 	7	�' 	 	� buffer conductor
�
E 	 C � �7� �= �

� ��� � �  �
� �  with  �E�,��&('*) � �J&('*) � � �  2'"/ , 	%�  �0F &('*) ���  2'" � �%���  , and
� � � & '*) ���  2'" � �%���  .

Proof Sketch: Consider the conductors of Lemma 4.9. They have the desired seed length  , but have a
small, but suboptimal entropy loss  � 	 �D�%� � , and no buffer. We will take the trivial buffer, i.e. the entire
input and seed, and then apply the hashing-based conductors of Lemma 4.5 to the reduce the entropy loss to
optimal and also obtain a very short buffer. Since we are only using the hashing-based conductor to recover
up to �%� � bits of unextracted randomness, we only need to take its output length to be �%� � � &('*) ���  2'" ,
and hence it only costs us �,��&('*) � �� � &('*) ���  2'"/ bits of additional seed length. A more detailed proof is
given in Appendix B �

Finally, combining these conductors with themselves via Lemma 4.10, we get:

Lemma 4.13 For any �	����� �
� , � , and ' � � , there exists an explicit ��� ������	�' 	 	� buffer conductor�

E 	 C � �7� �= � � � � � �  � � �  with  �E�,��&('*) � �%&('*) � � �  2'G � & '*) � ��������� 2'"/ , 	 �  � F &('*) ���  2'"*� �%���  ,
and � �

� � ������� �  ��& '*) ���  2'" � �%���  .

5 The Zig-Zag Product for Conductors

In this section we show how to compose conductors via the zig-zag product of [RVW00]. When applied
to the conductors described in Section 4, this composition will imply constant-degree, lossless expanders
(details appear in Section 7).

The analysis of [RVW00]. Let us first briefly recall the intuition of the zig-zag product for expanders
from [RVW00]. This intuition relies on the view of expanders as graphs that “increase entropy”. This
roughly means that a random step on an expander, starting from a distribution � on the vertices, arrives at a
distribution � � with “higher entropy” (as long as � did not contain “too much” entropy to begin with). The
analysis in [RVW00] as in most previous constructions of expanders interprets “entropy” as Renyi’s

� � -
entropy. In this section we analyze zig-zag with respect to a combination of �#� distance and min-entropy
(which indeed gives us much more flexibility). Nevertheless, the intuition in both cases can be described
using a very abstract notion of entropy.

Let � � F 3 � , � � �4F 6 � , and � � �4F 6�� . Let E � � � � �  � �  �  � � � �  be the neighbor function of a
� � -regular expander graph � � on � � vertices and let E � � �  �  � �  �  � �  �  be the neighbor function
of a � � -regular expander graph � � on � � vertices. For simplicity, let us assume that for every � � � � � �1 ,
� � �.�  �  the function E � � E � ��� � 	�� � �	�� �  � � � and similarly for E � (i.e., every edge has the same label
when viewed from either of its endpoints). The zig-zag product of � � and � � is a ��� �  � -regular expander
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graph � �N� � � z � � on � � �5� � vertices. The neighbor function E of � is defined as follows: For any
� � � � � �  , � � � �  �  , � � � �  �  and � � � �  �  define

E ��� � � � � 	�� � � � � 
��� �
� � � � � � 	 where

� � ��� �
� E � ��� � 	�� � �	

� �
��� �
� E � ��� � 	�� � �	 and

� �
��� �
� E � ��� � 	�� �  �

Note that a random step on � consists of a (random) step on � � followed by a (deterministic) step on � �
and finally another (random) step on � � .

Assume now that � � and � � are both expander graphs and that for � ���G	1F , a random step on ��� “adds
	�� bits of entropy”. Further assume that � ��� � � (hence we will refer to � � as the “large graph” and to
� � as the “small graph”). The analysis of [RVW00] shows that � is also an expander and more specifically
that a random step on � “adds 	%� � ��� 0 	 ��	 	 � 1 bits of entropy”:

Consider a random step starting at a distribution � � �>� � 	/� �  on the vertices of � (that is missing
at least 	 bits of entropy). It can be shown that it is sufficient to consider two extreme cases, based on the
conditional distributions of � � induced by particular assignments � � � � � (where � � is in the support of
� � ). In the first case, all of these conditional distributions of � � are far from uniform (i.e., missing at least
	 bits of entropy). In this case, the first step on � � (in the evaluation � � � E � ��� � 	�� �  ) will add 	 bits of
entropy (taken from the randomness in � � ). It is easy to verify that the next two steps preserve this entropy.
In the second case, the conditional distributions of � � are all uniform. In this case, the first step on � � is
useless. However, now the second step ( � � � E � ��� � 	�� �  ) is in fact a random step on � � . This step shifts 	
bits of entropy from � � to � � . Finally, the last step ( � � � E � ��� � 	�� �  ) on � � adds (the now missing) 	 bits of
entropy to � � (taken from the fresh randomness in � � ).
The new zig-zag product. The zig-zag product discussed above combines a large graph with a small
graph, the resulting graph inherits (roughly) its size from the large one, its degree from the small one, and
its expansion properties from both. Iteration of this powerful product was used in [RVW00] to construct
constant-degree expanders with an elementary analysis. However, these expanders have the disadvantage
that their expansion is suboptimal (as a function of their degree). This deficiency can easily be traced back
to the expander composition itself: Although the degree of � is quadratic in the degree of � � , the expansion
of � is at most that of � � . Indeed, the analysis sketched above only guarantees that one of the random
steps on � � adds entropy. The zig-zag theorem for conductors presented here manages to avoid exactly this
problem. For that we use a different variant of the zig-zag product that applies to (possibly unbalanced)
bipartite graphs (essentially the same variant was used in [RVW00] to construct extractors for high min-
entropy). The main differences are: we will augment the first application of E� so that we also obtain a
buffer which will retain any entropy that would have otherwise been lost in the first step, and we will replace
the application of E� in step 3 with an application of a conductor E� to both buffers from the earlier steps
to carry all of the remaining entropy to the output. (In the description above, � � plays the role of the buffer
in the application of E � , but the product below will be more general.) This generalization forces us to work
with unbalanced graphs, and in a sense, the advantage of the new zig-zag theorem is in the ability to perform
the “expander analysis” in the setting of unbalanced graphs.
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Definition 5.1 (zig-zag product [RVW00]) Let
�
E � 	 C � ��� � � � �� �  � *4� � � � �� � � �  , � E � 	 C � ���+� � � ��

�  � *4� �  � �� � � �  , and E � �7�
�
� �

� �  � �  � !4� � � �  be three functions. Set the parameters

� � � � � � � 	
 �  � �  � 	� � � � � �

�
and define the zig-zag product

E � � �= � � �!4 � � � 
of these functions as follows: For any ��� � � � �� , � � � � � �  , � � � �  �  and � � � �  �  define

E ��� � � � � 	�� � � � � 
��� �
� � � � � � 	 where

� ��� 	 ��� � ��� �
� �

E � 	 C � �-��� � 	�� � 
�
� � 	 � � �

��� �
� �

E � 	 C � �-��� � 	�� � �	 and

� �
��� �
� E � � ��� � � � 	�� �  �

In Section 6 we analyze the way the zig-zag product operates on conductors. We consider a very wide
setting of the parameters, and show how the zig-zag product can produce both extracting conductors and
lossless conductors (in fact, it can produce conductors that are simultaneously extracting and, for different
parameters, lossless). The remaining of this section however, discusses a particular, simplified example that
demonstrates the operation of the zig-zag product (and in particular, how this product can imply constant-
degree lossless expanders).

Since this example is solely for demonstrational purposes, its parameters are quite inferior to those
we actually obtain. Let � be some fixed large constant multiple of &('*) �*���  G�� . The graphs we use in the
composition are the following:

� The “big graph”
�
E � 	 C � � � � � �  � ��� � � �  4� � � �  � ��� � � �  , is an �&'5	�� �  permutation conductor (that

can be taken from Lemma 4.4).

� The first small graph
�
E� 	 C � ��� ��� ��� �  � � �  4� ��� � � �" � ��� �" , is an �&' 	 �  extracting conductor and

E � � ��� ��� �  � � �  4� ��� ��� �" is a ��� �5F �*	�'" -lossless conductor. (Both
�
E� 	 C � � and E � can be taken

from Lemma 4.13.)

Let E � � � � � � ��� �" � �AF �  4� � � � �B� ��� �  be the zig-zag product of these functions. The zig-zag theorem for
conductors implies that E is an � � � �!� � � �5	��%�&'"/ -lossless conductor (as a “bonus”, E is also unbalanced).

A rather good intuition for why this is true can be obtained by a simple (though informal) “bookkeeping”.
As with the description of the expander composition earlier, we try to follow the “entropy flow” from the
input �>� � � � � 		� � �
� �  to the output � � � � � through the computation of E. Where � � � � � is a � -source
for some � � � � � � � � � , and � � , � � are both uniform over � �  . The intermediate steps in this computation
are ������	 � �� � E � �>� ��� � �  , ��� ��	 � �  ���>� ��		� �  , and � � � E � ��� � � � � 		� �  . The output is � � � � � .

As in the expander analysis, it is sufficient to consider two extreme cases, based on the conditional
distributions of � � induced by particular assignments � � � � � (where � � is in the support of � � ):

� Case I: For every � � in the support of � � , there are less than � � � � bits of entropy in � � ��� � � � � .
� Case II: For every � � in the support of � � , there are at least than � � � � bits of entropy in � � ��� � � � � .
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In the first case, applying E� squeezes the entropy of � � into � � (the progress we have made is con-
densing the source by � � bits). Therefore, � � � � � contains some � � # � bits of entropy and � � contains
the remaining � � � � ��� � � bits. Since

�
E � 	 C � � is a permutation, ��� � 	 � �  still contains � � bits of entropy,

from which at most � � � � are in � � (since it is � � � � long) and the rest are in � � . We can conclude that � �
contains some � � � # � � � � � � bits of entropy and � � � � � contains the remaining � � � � � � � � � � � � bits.
Finally, applying E � squeezes all of the entropy from � � � � � and the additional � bits from � � (coming to
a total of ��� F � � � � � ) into � � . We can therefore conclude that, � � � � � contains the desired ��� F � bits.

In the second case, � � is close to uniform (even conditioned on � � ). Furthermore, � � contains at least
� �!� ��� � bits of entropy (since � � may contain at most � ��� � bits of entropy). Since � � � � � � � � � , we
have that � � � ��� � � � � � � � . Therefore, the application of E � pushes � � bits of entropy from � � to � � (in
addition to the � �J� ��� � bits from � � ). We can deduce that � � contains some � � # � �J� � � � bits of entropy.
It is easy to see that the remaining � � � � � � � � �5F � bits are in � � � � � . Therefore, as before, applying E�
squeezes all of the entropy from � � ��� � and the additional � bits from � � (coming to a total of � �JF � � � � )
into � � . In this case too, � � � � � contains the desired ��� F � bits of entropy.

6 The Zig-Zag Theorem

In this section, we state the general zig-zag theorem for conductors. It treats a much more general setting of
parameters than the one needed for our constructions. We try to clarify the interaction between parameters
below, but still it may help to think of the components of the composition as follows (which is what we will
use to obtain our main results):

� The “big graph”
�
E � 	 C � � will be the permutation conductor of Lemma 4.4, � � � � � ,

�
� �  � , and

 � will be taken to be a sufficiently large constant,

� The “small graphs”
�
E � 	 C � � and E � will be optimal “constant-size” nonconstructive conductors from

Lemmas 4.1, 4.2, 4.3 or explicit ones from Lemma 4.13, so  � �;3+'5&(6�& '*) � � ,  � � 3+'5&(6�&('*) �
�
� �

� �  .

Theorem 6.1 Let
�
E � 	 C � � �7� � �  � �  �  4� � � �  � � � �  be an �&' 	 	 �  permutation conductor. Let

�
E� 	 C � � �

� � �  � �  �  4� �  �  ��� � �  be an � � � 	�' 	 	 �  buffer conductor. Let E� � �
�
� �

� �  � �  �  4� � � �  be an
�&'5	 	 �  extracting conductor.

Let E � � �= � � � 4� � �  be the zig-zag product of
�
E ��	 C � � , � E � 	 C � � and E � and set

	 � � ��� 0  � � 	 � 	 	 � ��� � � � �
�  �J&('*) �  2'5	 � � � 	 � �  � ��� � � � � �� � &('*) �  2' 1��

Then E is an ����'5	 	  extracting conductor.

In Theorem 6.1, all of the conductors E� , E � and E � are extracting conductors. This is necessary if we
want E to also be an extracting conductor. However, the composition still gives meaningful results even if
the only extracting conductor is E� (this conductor must be extracting so that when � � has large entropy � �
will indeed be close to uniform and the application of E� useful). A particularly useful case is when E� is
a lossless conductor, as then we can obtain a lossless conductor (which is how we will beat the degree  GF
barrier).

Theorem 6.2 Let
�
E ��	 C � � �7� � �� � �  �- 4� � � �  � � � �  be an �&' 	 	 �  permutation conductor. Let

�
E� 	 C � � �

� � �  � �  �  4� �  �  ��� � �  be an � � � 	�' 	 	 �  buffer conductor. Let E� � �
�
� �

� �  � �  �  4� � � �  be an
� � � � 	 � � 	�'" lossless conductor.

Let E � � �= � � �*4 � � �  be the zig-zag product of
�
E � 	 C � � , � E � 	 C � � and E � � If the following conditions

hold:
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� 	 � #  � � 	 � � �!� � � �
�
�  ��&('*) �  2' �

� �
� #  � ��� � � � � �  ���  � � 	 �  � 	 � � � &('*) �  2'��

Then E is also a ��� � ����� 	���'G lossless conductor, for � � ����� � � � 	 � � �  � .

Interpretation. As discussed above, the goal of the conductor composition is to avoid the inherent (factor
of F ) entropy loss of the expander composition. For any distribution on the vertices � � � � ��� � (of
min-entropy � � � � 	 ), we want the output � � � � � � E �>� � � � � 		� � � � �  to gain entropy from both
parts of the random input � � � � � (the “edge label”). In fact, in some settings of the parameters (which will
be ones we use), Theorem 6.1 implies that the entropy in � � � � � is ���  � � 	 � . That is, we gain all of the
entropy in � � and all of the entropy that E� is capable of adding. Furthermore, if E� is a lossless conductor
then Theorem 6.2 will imply that E is also lossless. An additional useful feature of the product is that the
output length � of E may be shorter than its input length � (which is naturally more difficult for achieving
losslessness).

Under which conditions will the resulting conductor E in Theorems 6.1 and 6.2 be able to add the
desired  � � 	 � (or  � � 	 � � ) bits of entropy? First, we will need that the first part of the output ( � � ) together
with the two buffers ��� ��	 � �  , will contain all of the entropy in the system so far. That is, they contain � bits
of entropy from the source plus the  � bits of � � . This will follow easily from the losslessness of

�
E� 	 C � �

and
�
E � 	 C � � . The next condition is nontrivial. We need ��� to contain enough entropy so that the conditional

entropy left in the buffers ��� � 	 � �  will be less that � � � 	 � . In such a case, E � will manage to condense
into � � all of the entropy from the buffers plus 	 � additional bits. As our analysis will show, this condition
can be translated into two (more concrete) conditions:

� When � � is close to uniform, the conductor E� must “push” enough entropy into � � . More specifically
we need that:

	 � #  � � 	 � �E� � � �
�
�  ��&('*) �  2' �

� The length of �
� must be large enough to contain the entropy that may remain in � � 	 � � and the

additional 	 � bits from � � . More specifically we need that:

�
� #  � ��� � � � � �  ���  � � 	 �  � 	 � ��&('*) �  2'

Under these conditions, we indeed have 	 �  � � 	 � . Otherwise, the application of E� loses some entropy
as can be seen in the (somewhat complex) definition of 	 . Note, that under almost the same conditions, the
application of E � in the setting of Theorem 6.2 is indeed lossless (which allows E to be lossless as well).

Proof Intuition. A rather good intuition for the operation of the zig-zag product on conductors can be
obtained by a simple (though informal) “bookkeeping.” In this we generalize the intuition for the concrete
example which appears in Section 5 (which follows the intuition of the zig-zag product for expanders). As
before, we try to follow the “entropy flow” from the input �>� � � � � 		� � � � �  to the output � � � � � through
the computation of E. For most of the intuition we concentrate on the proof of Theorem 6.1 (the proof of
Theorem 6.2 only differs in the last step of the argument).

As in the expander analysis, we can first show that it is sufficient to consider two extreme cases, based on
the conditional distributions of � � induced by particular assignments � � � � � (where � � is in the support
of � � ):

� Case I: For every � � in the support of � � , the distribution � � �G� � � � � contains less than  � � 	 �
bits of entropy.
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� Case II: For every � � in the support of � � , the distribution � � � � � � � � contains at least  � � 	 � bits
of entropy.

In the first case, applying E� squeezes the entropy of � � plus 	 � bits of entropy from � � into � � . It
is important to note that we have made progress in two ways: adding entropy from � � and condensing the
source by � � �  � bits. Since

�
E �-	 C � � is a permutation, the entropy in ��� � � � equals the entropy in � � � � � ,

which is � � 	 � as argued above. Since � � is of length
�
� �  � � � � � � � it may contain at most this amount

of entropy. We can therefore conclude that � � contains at least ��� 	 � �  � � � � � � � �  bits of entropy.
In the second case, � � is close to uniform (even conditioned on � � ). Furthermore, � � contains at least

� � � � bits of entropy (since � � may contain at most � � bits of entropy). From the properties of E� we can
deduce that � � contains at least �&� ��� 0 � � 	 � � � � � 	 � 1" bits of entropy.

We can conclude from this case analysis that � � contains at least �&� ��� 0 � � 	 � � � � � 	 � 	 � � 	 � �  � �
� � � � � �  1" bits of entropy. In addition, � ��	 � � 	 � � contain together ���  � bits of entropy, since

�
E� 	 C � �

is a buffer conductor and
�
E � 	 C � � is a permutation conductor. Furthermore, as long as the entropy in � � 	 � �

(conditioned on � � ) is less than �
� � 	 � then � � will contain all the entropy in � � 	 � � plus 	 � bits of entropy

from � � . Otherwise, � � is close to uniform (i.e., has �
� bits of entropy). We can therefore conclude that

� � 	 � � has at least �&� ��� 0 � �  � � 	 � 	
� � �

� �
� � 	 � � � � � � � � 	 � 	 � � � � � 	 � �  � ��� � � � � �  1"

bits of entropy.
For the proof of Theorem 6.2, we must be guaranteed that the conditional entropy in � � 	 � � (given � � )

has at most � � � 	 � � bits of entropy. It is not hard to see that if � � � � ����� then under the conditions stated
in the theorem this is indeed the case.

To carry on the manipulations of (min) entropy that are required by the informal arguments above,
we use known techniques from the extractor literature. In particular, the arguments we use are strongly
influenced by the notion of block sources [CG88] and its usefulness for randomness extraction [NZ96] (see
more details in [RVW00]).

Proof Sketch: (of Theorem 6.1 and Theorem 6.2) We combine the proofs of the two theorems since they
only diverge at the final step of the argument. For all possible values � � � �= , � � ���  �  and � � � �  �  , the
computation of E ��� 	�� � � � �  produces the following intermediate values: � � 	�� � 	�� � 	 � � 	�� � 	 � � , and � � . Let
� � 	/� � 		� � 	 � � 	 � � 	 � � , and � � be the corresponding random variables in the computation E �>�
		� � � � �  ,
where � is some � -source over � �= with � � � � 	 , � � is uniformly distributed in �  �  and � � is uniformly
distributed in �  �  . Our goal is to prove that ��� � 	 � �  is a ��� � 	 	���'" -source. The heart of this proof is
showing that � � contains enough entropy.

Lemma 6.3 � � is a ��� ������ 	 ��'" -source, where

� ������
��� �
� � ��� 0 � � 	 � � � � � 	 � � & '*) ���  2'"�	 ��� 	 � �  � ��� � � � � �  � &('*) ���  2'" 1��

Proof: (of Lemma 6.3) We first consider two special (“good”) cases:

Case I: For every � � in the support of � � , ��� �>� � ��� � � � �  K  � � 	 � .
Case II: For every � � in the support of � � , ��� �>� � ��� � � � �  #� � � 	 � .

We then show that � can be essentially “decomposed” into a convex combination of these cases (at the price
of losing &('*) �  2' bits of entropy). This will allow us to deduce the lemma.
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In Case I:

Lemma 6.4 Assume that � is a � � source (for some � � ) and that for every � � in the support of ��� ,��� �>� � � � � � � �  K  � � 	 � . Then � � is a ��� � � 	 � �  � ��� � � � � � �	�'" -source.

Proof: For any � � in the support of � � , define ��� � � ��� �>� � �5� � � � �  . Since for every such � � we
have that ��� � K  � � 	 � , we can conclude from the properties of E� that ��� � � � � � � �  � E � �/�>� � � � � �
� ���		� �  is a ��� � � � 	 � 	�'G -source. Since for every � � as above, we have that � � � # � � � &('*) ���  �! � � � � � � �> ,
it is not hard to argue that �>� � 		� �  is a ��� � � 	 � 	�'" -source. Since

�
E � 	 C � � is a permutation we have that

��� � 	 � �  is also a ��� � � 	 � 	�'G -source.
Let ��� �� 	 � ��  be a ��� � � 	 �  -source that is ' -close to ��� � 	 � �  . Since � �� is a distribution on

�
� �

 � � � � � � � bit strings it follows that � �� is a ��� � � 	 � �  � �E� � � � � � / -source and therefore � � is a
��� � � 	 � �  � � � � � � � ���	�'G -source.

In Case II:

Lemma 6.5 Assume that � is a � � source (for some � � ) and that for every � � in the support of � � ,��� �>� � � � � � � �  #  � � 	 � . Then � � is a �&� ��� 0 � � 	 � � � � � � 	 � 15	1F�'G -source.

Proof: Since for every � � in the support of � � , � � �>� � ��� � � � �  #  � � 	 � , we can conclude from the
properties of E � that for every such � � , ��� � �G� � � � �  � E � �/�>� � �*� � � � � �		� �  is ' -close to uniform.
This implies that �>� � 		� �  is ' -close to �>� � 	���6��� and thus that � � � E � �>� � 		� �  is ' -close to E � �>� � 	���6��  .

Since �>� � 	/� �  is a � � -source and � � is distributed over � � -bit strings, we can deduce that � � is a
��� � � � �  -source. Therefore, since E � is an �&' 	 	 �  -extractor we have that E � �>� � 	�� 6��� is a �&� ��� 0 � � 	 � � �
� � � 	 ��15	�'" -source. Therefore, � � is a �&� � � 0 � � 	 � � � � � � 	 ��15	1F�'" -source.

Decomposing � into the good cases: To complete the proof of Lemma 6.3, it remains to show how to
decompose � into the two cases (without losing too much in entropy):

Lemma 6.6 Let � be any � -source then � is ' -close to a convex combination P �>� �� 	/� ��  � � �>� � �� 	/� � �� 
(with P � � �8� ) of two � � -sources, where

1. � � � � � &('*) �  2' .
2. For every � � in the support of � �� , � � �>� �� � � �� � � �� K� � � 	 � .
3. For every � � in the support of � � �� ,

��� �>� � �� � � � �� � � �  #  � � 	 � .

Proof: Let � be the set of strings � � in the support of � �� , such that
� � �>� �� �-� �� � � �  K  � � 	 � . Define

the sources:

�>� �� 	/� �� 
��� �
� �>� ��	/� �  � � � ���

�>� � �� 	/� � ��7
��� �
� �>� � 	/� �  � � ������

Finally, define P�� � if
�! � � � ��� � K ' , P��9� if

�* � � � ��� � � � � ' and P�� �! � � � ��� � otherwise.
Define

� ����� � P  .
By these definitions, it is clear that conditions (2) and (3) above are satisfied. Furthermore, it follows

easily that � is ' -close to P �>� �� 	/� ��  � � �>��� �� 	/��� ��  . Finally, it is not hard to verify that in case P � � then
�>� �� 	/� ��  is a � � -source and in case

� � � then �>� � �� 	/� � ��  is a � � -source.
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From Lemma 6.4, Lemma 6.5 and Lemma 6.6 we can conclude that � � is ��' -close to a convex combi-
nation P��� �� � � �� � �� (with P � � �8� ), where �� �� is a ����� 	 � �  � � � � � � � � =�J&('*) ���  2'G/ -source and �� � ��
is a �&� ��� 0 � � 	 � � � � � 	 � 1 �J&('*) ���  2'"/ -source. Therefore both �� �� and �� � �� are � ������ sources and so is their
convex combination P � �� � � � � �� . This implies Lemma 6.3.

We now show that altogether ��� � 	 � � 	 � �  contain all the entropy of �>�0		� �  :
Lemma 6.7 ��� � 	 � � 	 � �  is an �����  � 	�'" -source.

Proof: For any � � in the support of � � , define ��� � � ��� �>� � � � � ��� �  . Since
�
E � 	 C � � is an

� � � 	�'" lossless conductor, we have that for every such �	� , the conditional distribution �/��� ��	 � �  � � � �
� � %� �

E � 	 C � �-�/�>� � ��� � � � � �		� �  is a ��� � � �  � 	�'" -source. For every � � as above, we have � � � #
� �;&('*) ���  �* � � � � � � �> , and it follows that �>� � 		� � 	 � �  is a ��� �  � 	�'G -source. Since

�
E � 	 C � � is a

permutation we have that ��� � 	 � � 	 � �  is also a �����  � 	�'" -source. (Note: it is important that
�
E � 	 C � � is

one-to-one and not just � � 	�'" -lossless, because its seed ( � � ) is not necessarily random.)

From Lemma 6.3 and Lemma 6.7 it is possible to deduce the following:

Lemma 6.8 ��� �-	 � ��	 � �  is � ' -close to a source ���� � 	��� ��	��� �  , where

� �� � is a � ������ source, and

� ���� � 	��� � 	��� �  is a ���  � source.

This is the point where the proofs of Theorem 6.1 and Theorem 6.2 diverge.

Completing the proof of Theorem 6.1. Here we assume that E� is an �&'5	 	 �  extracting conductor and
� � � � 	 . Let us define �� � � E � ���� � ���� � 		� �  . To conclude the theorem it is enough to prove that ���� ��		�� � 
is a ��� � 	 	�'" -source, which implies that ��� � 	 � �  is a ����� 	 	���'" -source (since ��� � 	 � �  and � �� � 	 �� �  are
� ' -close).

For any � � in the support of �� � , define ��� � � ��� � �� � 	 �� � � �� � � � �  . Note that �	� � � &('*) ���  �* � �� � �
� � �> # � �  � . Furthermore, if � � � K �

� � 	 � then �
�� � ���� � � � �  is a ���	� � � 	 � 	�'G source. Otherwise,
���� � ���� �J� � �� is ' -close to uniform (i.e., it is an � � � 	�'" source). We can conclude that ��� ��		�� �  is a
�&� ��� 0 � �  � � 	 � 	 �

�
����� � �

� 15	�'" -source. Taking into account the definition of � ������ (which is � ��� 0 � � 	 � �
� � � 	 � � &('*) ���  2'G�	 � � 	 � �  � ��� � � � � �  � & '*) ���  2'" 1 ) and the fact that � � � � 	 we can conclude
that � �� � 	 �� �  is a ����� 	 	�'" -source as desired.

Completing the proof of Theorem 6.2. Here we assume that E� is an � � � � 	 � � 	�'G lossless conductor,
� � � �  � � 	 � � and that the following conditions hold:

� 	 � #  � � 	 � � �!� � � �
�
�  ��&('*) �  2' �

� �
� #  � ��� � � � � �� ���  � � 	 �  � 	 � � � &('*) �  2'��

Under these conditions we have that

� ������ � � ��� 0 � � 	 � � � � � 	 � � &('*) ���  2'G�	 � � 	 � �  � � � � � � � �  � &('*) ���  2'G 1
# � ��� 0 � � 	 � � �

� �  � � 	 � � 1
Since � � � �  � � 	 � � �

� � � �
� �  � � 	 � � we can conclude that �� � is a ���%� �

� �� � � 	 � �  -source.
The rest of the proof follows very similarly to the completion of the proof for Theorem 6.2.

�
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7 Putting it Together

In this section, we apply the zig-zag product for conductors to the conductors in Section 4 to obtain our
main results. In all cases, we will take

�
E � 	 C � � to be the permutation conductor obtained from Lemma 4.4

(i.e., the rotation map of a power of a constant-degree expander). By taking
�
E� 	 C � � to be an optimal buffer

conductor (as in Lemma 4.3) and E� to be an optimal lossless conductor (as in Lemma 4.2), we get the
following:

Theorem 7.1 For every � ,
� �

� , ' � � , there exists a ��� ����� 	�'G lossless conductor E �7� �= � � � � � � � � 
with

�  �E�,��&('*) � � �!�  ��& '*) ���  2'"/ , and

� � ����� ��� � � �  �  � &('*) ���  2'G � �,���  ,
Moreover, E can be computed in time 3+'5&(6 � � 	�&('*) ���  2'G/ given two appropriate conductors of size  �
3+'5&(6 �AF � 	��  �� ��
G , which can be found probabilistically in time 3+'5&(6 ��  or deterministically in time F���� � ��� �
	 .
Note that these parameters are optimal (matching Lemma 4.2) up to the constants hidden in the � -notation.
In graph-theoretic terms, this lemma gives bipartite graphs with � vertices on the left, � � �, �� vertices
on the right, of degree � �23+'5&(6 ��&('*)�� 	��  2'" with sets of size � � ?@�&'"�; "�B expanding by a factor
��� � '" � . The graphs can be computed efficiently provided

�
and �  2' are small (e.g. in the constant-degree

case).

Proof Theorem 7.1: Let 	 � � � � � �G��& '*) � � � �  � &('*) ���  2'G and � � � � ��	 � , where � will be chosen later
to be a sufficiently large constant. Let � � � �
� � � , and let

�
E � 	 C � � � � � �  � �  �  � � � �  ���  �  be the

�&'" ���	 	 �  permutation conductor of Corollary 4.4, so

 � �E�%� 	 � ��&('*) ���  2'"/ �
Let

�
E � 	 C � � � � � � �� �  �  � �  �  � � � �  be the � � � 	 	 � 	�'" ��5 buffer conductor of Lemma 4.3, so

 � � &('*) � � � F & '*) ���  2'" � �%���  �E�%��&('*)+� � ���  ��&('*)+���  2'" � &('*) ��
	 � �  � � F & '*) ���  2'" � �%��� 
� � � � � �  � �  � ��&('*)+���  2'" � F

Let � � � � � � � # � , and let E � � �  � �
� �  �M�  �  � � � �  be the � � � � 	 � � 	�'" ��5 lossless conductor of

Lemma 4.2, so

 � � &('*) �  � � � �  ��&('*)+���  2'" � �%���  �D�%��&('*)+� � �!�  ��&('*) ���  2'G ��&('*) ��
	 � � �  � �M&('*) ���  2'G � �,���  �

Let E � � �= � � � � � �  be the zig-zag product of these three conductors, so

 �  � �  � �D�%��&('*)+�
� �!�  ��&('*) ���  2'G ��& '*) ���	

� � � � � �
� � � �

�

By Theorem 6.2, E is a ��� � ����� 	�'G lossless conductor for

� � ����� � � � 	 � � �  � ��� � � �  �  � &('*) ���  2'G � �,��� �	
provided the following two conditions hold:
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� 	 � #  � � 	 � � �!� � � �
�
�  ��&('*) �  2' �

� �
� #  � ��� � � � � �  ���  � � 	 �  � 	 � � ��& '*) �  2'��

In the first condition, all the terms on the right-hand side are �,��&('*) � � �9�  �.&('*) �  2'��.&('*) �� , except
� � � � � �  �

�
. The left-hand side is 	 � � � � �5�A��&('*) � � �,� �� &('*)7���  2'"/ , so it is satisfied for a sufficiently large

constant � . In the second condition, all the terms on the right-hand side are �%��& '*) � � � �  � &('*) �  2' � &('*) �� ,
except  � � �,� 	 � � &('*) ���  2'G/ . The left-hand side is �

� � � � �
� �
� � 	 � � �

. Recalling that 	 � � �
, the

second condition also holds for a sufficiently large constant � .

In a similar fashion, we get an extracting conductor using Theorem 6.1, taking E� to be the optimal
extracting conductor of Lemma 4.1.

Theorem 7.2 For every � ,
� �

� , ' � � , there exists an �&'5	 	  extracting conductor E � � �= � � � � � � � � 
with

�  �E�,��&('*) � � �!�  ��& '*) ���  2'"/ , and

� 	%�  � F &('*)+���  2'" �M�%���  ,
Moreover, E can be computed in time 3+'5&(6 � � 	�&('*) ���  2'G/ given two appropriate conductors of size  �
3+'5&(6 �AF � 	��  �� ��
G , which can be found probabilistically in time 3+'5&(6 ��  or deterministically in time F ��� � ��� �
	 .

The above conductors are near-optimal in terms of parameters, and are efficiently constructible in the
case of low or constant degree case. To improve the computation time for general parameters, we can use
instead the explicit conductors of Lemma 4.13. This gives:

Theorem 7.3 For every � ,
� �

� , ' � � , there is an explicit ���
������	�'G lossless conductor E �+� �=��M� ���
� � � �  with

�  �E�,��&('*)��5� �  2'"/ , and

� � ����� ��� � � �  �  � &('*) ���  2'G � �,��� 
Moreover, E can be computed in time 3+'5&(6+� � 	�& '*) ���  2'"/ .
Theorem 7.4 For every � ,

� �
� , ' � � , there is an explicit �&'5	 	  extracting conductor E � � �= �M� � �

� � � �  with

�  �E�,��&('*)��5� �  2'"/ , and

� 	%�  � F &('*)+���  2'" �M�%���  ,
Moreover, E can be computed in time 3+'5&(6+� � 	�& '*) ���  2'"/ .

Without much additional work, we can also combine Theorems 7.2 and 7.1 in a couple of ways: First,
we can contruct buffer conductors

�
E 	 C � where E has the parameters of Theorem 7.2 and

�
E 	 C � has the

parameters of Theorem 7.1. Second, we can construct a single function E that is an extracting conductor
with the parameters of Theorem 7.2 and, for slightly lower min-entropies, is also a lossless conductor with
the parameters of Theorem 7.1. And, we can do both — have a pair

�
E 	 C � , where E is a lossless conductor

and
�
E 	 C � is an extracting conductor. Similar combinations can be done for Theorems 7.3 and 7.4. We omit

formal statements of all these combinations here.
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A Renyi Entropy

Another useful measure of entropy is Renyi’s (
� � ) entropy [Ren70]. Let � be a distribution over a set  .

Define the collision probability of � to be � '5& ���B ��� �� �! � � � � � 	 where � and � are independently
distributed according to � . The Renyi entropy of � is defined to be

����� � ���B ��� ��$&('*) ���  �� '5& ��� / �!&('*) � �� �	��
 � �! � �9� � � �� �

Thus, Renyi entropy is obtained by switching the order of the expectation and &('*)+���  �  in the definition of
standard Shannon entropy.

The relation between min-entropy and Renyi entropy is given by the following simple proposition:

Proposition A.1 Let � be any random variable over a set  then
� � �>�  � ����� � �>�J � F ��� �>�  .

Proof: The proof follows from the following inequalities:�
���"<����� �! � ��� 	 � � �

� � '5& �>�J � .
�/���

�! � � � 	 � � � ���"<�/��� �! � ��� 	 ���

The Renyi entropy of a distribution gives a relatively weak lower bound on its min-entropy. The bound
is much stronger if we consider an approximated version of min-entropy (based on statistical difference):

Lemma A.2 Let � be a random variable over a set  with ����� 3 �>�  � � , then for any '�� � , � is a
��� � & '*) �  2'5	�'G source.

Proof: Define �� ��� �� 0 	 �$ � �! � ��� 	 � #�F � %  2':1 . In order to prove that � is a ��� �,& '*) �  2'5	�'G source it
is enough to show that

�! � � �  � � � ' . To do so we observe that F � %���� '5& �>�  # �* � � �$ � � ���AF�� %5 2'" .
In case the Renyi entropy of a distribution is very close to its maximal value, we can obtain a better

bound than that implied by Lemma A.2:

Lemma A.3 Let � be a random variable over a set  of size N. For any ' # � and ����F�% � � , if����� �>�  � �  � � ' �  "� � F�'����  "��� �  �J�	

then � is a ��� 	�'G source.

Proof: For every 	 �  , define � � ��� �� �! � ��� 	 � . Define �� ��� �� 0 	 �$ � � � �D�  "� 1 . Note that � �� � K � .
Assume towards contradiction that � is not a ��� 	�'G source. This implies that � �/����� � � � �;�  "�  � ' . It
follows that:� '5& ���+ �

.
�/��� �

��

� �  � �
.
�/��� � � � � �  �J

�
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# �  � �
.
�/����� � � � � �  �J �

� �  � �
.
�/����� � � � � �  "�  � � .

���:� � ���  "� � �  �J � � F
.
���:� � � � � � �  "� -���  "��� �  �J

� �  � �
.
�/����� � � � � �  "�  � � .

���:� � ���  "� � �  �J � � F�' ���  "�C� �  � 

# �  � �
.
�/����� � � � � �  "�  � � F�' ���  "�C� �  � 

By Jensen’s inequality and the hypothesis we have that

.
���:� � � � � � �  "�  � # �

�  � �
�� .
�/����� � � � � �  "� ���

�

� ' �  "�0	

which concludes the proof.

B Lower Bounds and Constructions of Conductors

We begin by deriving lower bounds on conductors from those known for extractors.

Lemma B.1 If E � � �= � � � 4� � �  is an �&' 	 	� extracting conductor with with � �
� � 	 �!�%���  ,

� #  ��F and ' � �  GF . Then  # � �"< 0 	 	�&('*) � � � � � 	� 1 � F &('*) �  2' � �,���  .
Proof: By definition, E is also an � � � 	 	�'" -extractor. The proof follows by the lower bounds on extractors
of Nisan and Zuckerman [NZ96] and their improvement by Radhakrishnan and Ta-Shma [RT97].

Lemma B.2 If E �7� �= �,� �!4� � �  is a ��� ����� 	�'G loss-less conductor with ' � �  � , � ����� �  � �,���  K �
and � �� � � � � . Then  # ���"< 0 ��&('*) �/� �0� ������� / �� � � � ������� �/�	�& '*) �  2'G 1 � �,���  .
Proof: Let E � � � �  ���  �  4� �  �  � �DF5 be a ��� �������  	�'G -extractor with  � � & '*) � � � � ����� �
� � F &('*) �  2' � �%���  (such an extractor exists by the probabilistic method [NZ96, RT97]). Consider
the extractor E� � ��� �= �!� !�  �  4� � !�  � � F5 that is obtained by composing E and E� as follows:� � � � �=�	�� � �M� ��	�� � � �  � �	 E � � ��� 	 ��� ��	�� � / � E � � E ��� 	�� � �	�� �  . It is not hard to prove (as in Lemma 4.8)
that E � � is a ��� ����� 	1F�'" extractor. Therefore, by the lower bounds of [NZ96, RT97]) we have that �� �� #
&('*) � �0� � �����  � F & '*) ���  2'" � �%���  . This implies that  #�&('*) �/� � � � ����� / �� � � � ����� � �/ � �,���  .

Let � � and � � be any two � -bit strings such that for some  -bit strings � � and � � , we have � ��� � 	�� �  �
� ��� � 	�� �  (such strings exist since � �  � � � � . Let � be the uniform distribution over 0/� � 	�� � 1 . Then it
is easy to see that � �>�
	�� 6G is at least �  GF 6 � � far from any �  ���  -source. We can therefore conclude that
 # &('*) �  2' � � .

The next lemma describes the conductors obtained from expanders with bounded second eigenvalue.

Lemma B.3 Let � � F�3 , � �4F 6 , and let E � � �= ��� � � � �= be the neighbor function of a � -regular
expander graph on � vertices whose adjacency matrix has 2nd largest eigenvalue

��� � . Then, for any
� � � � � � , ' � � , and � -source � on � �= , E �>�
	�� 6  is a ��� ��	�'G -source if:

1. F &('*) ���  � 5# � � � ��� F & '*) ���  2'" and � � � � ; or
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2. F &('*) ���  � 5# � � � ����& '*) ���  2'" and � � � � � � .

Proof: Let ����F % , � � ��F %�� , � � E �>�0	�� 6" . Since the collision probability of a probability distribution
is the square of its � � -norm, and a random step on an expander shrinks the � � -norm of the non-uniform
component (the component perpendicular to the all one vector) of any probability distribution by a factor of� �

, we have: � '5& ���% � �
�
� � � � � '5& �>�J � �

� � � � � � � �� � �
� � �

� �
� �

For Part 1, we have:

� '5& ���  � �
�
�
� �
�

� ' �
� � �

' �
� � � F�'

� �
� � �

� � � ' �
� � � F�'

� �
� � �

�
� � �

By Lemma A.3, � is a ��� ��	�'" -source.
Similarly, for Part 2 we have:

� '5& ���  � �
�
�
� �
�

� '
� �

� ' � � '
� �

� ' �
� � � F�'

� �
� � �

�
� � 	

where the last inequality uses � � � � � � .

Proof Lemma 4.4: (sketch) We apply Lemma B.3 to an appropriate power of any explicit constant-degree
expander graph � on � ��� . Specifically, suppose � comes from any family with degree � �DF 6 and second
largest eigenvalue

� ���$K�� . Then when we take
�
’th power of � , both  and &('*) ���  �  grow linearly with�

. Taking
� �.�%� 	���& '*) ���  2'"/ , Lemma B.3 implies that every � -source for � � �
� 	 gets transformed to

a ����� 	 	�'" -source.

Remark B.4 Using Ramanujan graphs [LPS88, Mar88], where
� � �$F � � � � , the bound on

�
can be

improved to  � � � ����F &('*)+���  2'" � �%���  .
The following lemma specifies the conductors implied by families of hash functions.

Lemma B.5 Let � be a family of hash functions mapping � �= � � �  with collision probability6 at most
����� �G/ GF 8 such that � can be sampled using  random bits. Define E � � �= �E� � � � � � � by
E ���=	 �  ��� � 	 � ���+/ . Then, for any � �

� , � � � � �  , ' � � , and � -source � on � �= , E �>�0	�� 6" is a
��� ��	�'" -source if:

1. � � � ���� � F & '*) ���  2'" � � , � � � � �  , and � � ' �  GF ; or

2. � � � ���� � & '*) ���  2'" � � , � � � � �  � � , and � � ' �  GF ; or

3. � � � ���� , � � � � &('*) ���  2'G � F , � � � , and ' � �  GF .
Proof: Let ����F % , � � ��F %�� , � �EF 8 , ��� E �>�
	�� 6G . By the collision probability of � ,

� '5& ���  � �
� �

� � '5& �>�  � � � �
� � � �

� � � � � �
� � �

6This means that for every � ���� � �	��
��� , ������� � 
 � ��� � � 
 � ��������
��! #"$�&%('() .
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For Part 1, we have:

� '5& ���% � ' �
FG� � �

�
� � � ' �

FG� � �
�
� � � ' �

� � � F�' �
� �
� � �

�
� � � �

By Lemma A.3, � is a ��� ��	�'" -source.
Similarly, for Part 2, we have

� '5& ���% � '
FG� � �

�
� � � '

FG� �
� �
� � � ' �

� � � F�' �
� �
� � �

�
� � � 	

where the last inequality uses � � � � � � . Again, Lemma A.3 says that � is a ������	�'" -source.
For Part 3, we restrict wlog to � which are uniform over a set �� of size � (as all � -sources are a

convex combination of such � ). As observed in [TUZ01], to show that E �>�
	���6" is a ��� �  	�'G -source for
such � is equivalent to showing that � E ���� � � �/ � #D��� � 'G*���  � � � � � . Since � E ���� � � � �
#E�  �� '5& ���  ,
it suffices to show � '5& ���  � �� � � � 	�� � 
 . This we argue as follows:

� '5& ���  � �
� � � � � �

� �
� �
� � �

'
FG� �

� �
��� � '" � � �

Lemma 4.12 (restated) For any � , � and ' � � , there exists an explicit � � � 	 	�'5	 	  buffer conductor�
E 	 C � � � �= �;� � � � �  �;� �  with ;�I�,��&('*) � �D& '*) � � �  2'"/ , 	�� B�!F & '*) ���  2'" ���%���  , and� � � &('*)+���  2'" ���%���  .

Proof Lemma 4.12: Set ' � � 'G �� . Let � � � � ; we will set the value of � � at the end of the proof.
From Lemma 4.9, we have an explicit �&' ��	 	 �  extracting conductor E � � � �= ���  �  � � � �  with  � �
�%��& '*) � � & '*)��5� �  2' � / and 	 � �4� �%��&('*)�G� �  2' � / . Let � � � � � � 	 � . We can extend E � to a ��� � 	�' � 	 	 � 
buffer conductor

�
E ��	 C � � � � �= ���  �  � � � �1 � � � �  by using the trivial buffer with

�
�@� � �  � . Set� � � � &('*)+���  2' �  � � , � � � �  � � 	 � � F &('*)+���  2' �  �J� �E�%��& '*)�*� �  2' � / . Lemma 4.5 gives us a ��� � 	�' � 	 	 � 

buffer conductor
�
E� 	 C � � � � � �  � �  �  � � � �  �M� � �  with  � �4�%�/��&('*) � �  � � � � � � � � &('*) ���  2' � / �

�%��& '*) � �M&('*) �G� �  2'�� / , � � �  � � � � � , 	 � �  � � F &('*) ���  2'G ��� , and � � � � � � � � � � &('*)+���  2'" � F .
It can be verified that � � �  � � 	 � � � � �  � � � � , and � � �  � � 	 � � 	 � . So Lemma 4.10

applies, and we get a ������	 ��' � 	  � � 	 �  buffer conductor
�
E � C � � � �= � �  � �  �  � � � � � � �  � � � �  .

This does indeed have error ��' � � ' , seed length  �  � �  � � �%��&('*)�� ��& '*)��5� �  2' � / , entropy loss
�  � �  �  ���  � � 	 �  � F &('*) ���  2'��  � � , and buffer size

� � � � &('*) ���  2'��  � � . By inspecting the above
proof, it can be verified that the value of � � � �%��&('*) � �.&('*) � � �  2'�� / can be set independent of � �
(provided � � � � ), so we may indeed guarantee � � � � � � � as needed.

Lemma 4.13 (restated) For any � ����� �
� , � , and ' � � , there exists an explicit ��� ����� 	�' 	 	� buffer

conductor
�
E 	 C � � � �= � � � � � �  � � �  with  � �,��&('*) � �;&('*)	�*� �  2'G �!&('*)��*��� ������ 2'"/ , 	 � ,�

F &('*)+���  2'" �M�%���  , and � �
� � � ����� �  ��&('*) ���  2'G � �,���  .

Proof Lemma 4.13: We compose the conductor of Lemma 4.12 with itself via Lemma 4.5.
Let ' � � 'G �� . Taking Lemma 4.12 without the buffer, for any � � � � , we have an explicit �&' � 	 	 � 

extracting conductor E � � � �= � �  �  � � � �  with  � �E�%��& '*) � � &('*)�G� �  2'�� / , 	 �  � � F &('*) ���  2'��  � �%���  .
We can extend this to extend to a ��� ������	�' � 	 	 �  buffer conductor

�
E � 	 C � � � � �= �M�  � �� � � �  � � � �  by

using the trivial buffer with
�
� � � �  � .
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Let � � � � �����!�  � � � � . Now, by shifting all of the output except the seed into the buffer in
Lemma 4.12, we have a ��� � 	�' � 	 	 �  buffer conductor

�
E � 	 C � � �@� � �  �!�  �  � �  �  �!� � �  with  � �

�%��& '*) � � � &('*) �*��� �  2' � / �.�%��&('*)�� � &('*) �G��� �����  2' �  � �%��&('*)5& '*) � / , 	 � �  � � F &('*)+���  2' �  ���%���  , and� � � � � � &('*) ���  2' �  ���%���  , and it can be verified that the conditions of Lemma 4.10 are satisfied.
Composing these two buffer conductors via Lemma 4.10 gives a ��� ����� 	 ��' � 	  � � 	 �  buffer conductor�

E 	 C � �@� �= �!�  � �  �  � � � � �  �  �;� � �  with seed length  � �  � � �%��&('*)�� �D&('*)�*� �  2' �  �
&('*) � ��� �����  2' � / , entropy loss �  � �  �  �!�  � � 	 �  �4F &('*) ���  2' �  �;�%���  , and buffer size

� � � �������� �
 � � � �  � &('*) ���  2' �  �M�%���  � ������ �  ��� � � �  �  � &('*) ���  2'��  �M�%���  , as desired. Again the value of
 � can be set independently of � � , so we can ensure � � �� � � � .
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