
The Unicode® Standard
Version 13.0 – Core Specification

To learn about the latest version of the Unicode Standard, see http://www.unicode.org/versions/latest/.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.
The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.
The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied.
The recipient agrees to determine applicability of information provided.
© 2020 Unicode, Inc.
All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire
at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please
see http://www.unicode.org/copyright.html.
The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version
13.0.
 Includes index.
 ISBN 978-1-936213-26-9 (http://www.unicode.org/versions/Unicode13.0.0/)
 1. Unicode (Computer character set) I. Unicode Consortium.
 QA268.U545 2020

ISBN 978-1-936213-26-9
Published in Mountain View, CA
March 2020

71
Chapter 3

Conformance 3

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section defines the format for referencing the
Unicode Standard and Unicode properties. The second section consists of the confor-
mance clauses, followed by sections that define more precisely the technical terms used in
those clauses. The remaining sections contain the formal algorithms that are part of con-
formance and referenced by the conformance clause. Additional definitions and algo-
rithms that are part of this standard can be found in the Unicode Standard Annexes listed
at the end of Section 3.2, Conformance Requirements.

In this chapter, conformance clauses are identified with the letter C. Definitions are identi-
fied with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

For information on implementing best practices, see Chapter 5, Implementation Guide-
lines.

Conformance 72 3.1 Versions of the Unicode Standard
3.1 Versions of the Unicode Standard
For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire creates a new repertoire, which will be treated either as an update of the
existing character encoding or as a completely new character encoding.

For the Unicode Standard, by contrast, the repertoire is inherently open. Because Unicode
is a universal encoding, any abstract character that could ever be encoded is a potential
candidate to be encoded, regardless of whether the character is currently known.

Each new version of the Unicode Standard supersedes the previous one, but implementa-
tions—and, more significantly, data—are not updated instantly. In general, major and
minor version changes include new characters, which do not create particular problems
with old data. The Unicode Technical Committee will neither remove nor move charac-
ters. Characters may be deprecated, but this does not remove them from the standard or
from existing data. The code point for a deprecated character will never be reassigned to a
different character, but the use of a deprecated character is strongly discouraged. These
rules make the encoded characters of a new version backward-compatible with previous
versions.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
standard, recognizing that new characters may be assigned in those versions. Thus they
should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to the Unicode Character Database and a
new version is issued for the standard. Changes to the data files may alter program behav-
ior that depends on them. However, such changes to properties and to data files are never
made lightly. They are made only after careful deliberation by the Unicode Technical
Committee has determined that there is an error, inconsistency, or other serious problem
in the property assignments.

Stability
Each version of the Unicode Standard, once published, is absolutely stable and will never
change. Implementations or specifications that refer to a specific version of the Unicode
Standard can rely upon this stability. When implementations or specifications are
upgraded to a future version of the Unicode Standard, then changes to them may be neces-
sary. Note that even errata and corrigenda do not formally change the text of a published
version; see “Errata and Corrigenda” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions. These
include the names and code positions of characters, their decompositions, and several
other character properties for which stability is important to implementations. See also

Conformance 73 3.1 Versions of the Unicode Standard
“Stability of Properties” in Section 3.5, Properties. The formal statement of such stability
guarantees is contained in the policies on character encoding stability found on the Uni-
code website. See the subsection “Policies” in Appendix B.3, Other Unicode Online
Resources. See the discussion of backward compatibility in Section 2.5 of Unicode Standard
Annex #31, “Unicode Identifier and Pattern Syntax,” and the subsection “Interacting with
Downlevel Systems” in Section 5.3, Unknown and Missing Characters.

Version Numbering
Version numbers for the Unicode Standard consist of three fields, denoting the major ver-
sion, the minor version, and the update version, respectively. For example, “Unicode 5.2.0”
indicates major version 5 of the Unicode Standard, minor version 2 of Unicode 5, and
update version 0 of minor version Unicode 5.2.

To simplify implementations of Unicode version numbering, the version fields are limited
to values which can be stored in a single byte. The major version is a positive integer con-
strained to the range 1..255. The minor and update versions are non-negative integers con-
strained to the range 0..255.

Additional information on the current and past versions of the Unicode Standard can be
found on the Unicode website. See the subsection “Versions” in Appendix B.3, Other Uni-
code Online Resources. The online document contains the precise list of contributing files
from the Unicode Character Database and the Unicode Standard Annexes, which are for-
mally part of each version of the Unicode Standard.

Major and Minor Versions. Major and minor versions have significant additions to the
standard, including, but not limited to, additions to the repertoire of encoded characters.
Both are published as an updated core specification, together with associated updates to
the code charts, the Unicode Standard Annexes and the Unicode Character Database. Such
versions consolidate all errata and corrigenda and supersede any prior documentation for
major, minor, or update versions.

A major version typically is of more importance to implementations; however, even update
versions may be important to particular companies or other organizations. Major and
minor versions are often synchronization points with related standards, such as with ISO/
IEC 10646.

Prior to Version 5.2, minor versions of the standard were published as online amendments
expressed as textual changes to the previous version, rather than as fully consolidated new
editions of the core specification.

Update Version. An update version represents relatively small changes to the standard, typ-
ically updates to the data files of the Unicode Character Database. An update version never
involves any additions to the character repertoire. These versions are published as modifi-
cations to the data files, and, on occasion, include documentation of small updates for
selected errata or corrigenda.

Conformance 74 3.1 Versions of the Unicode Standard
Formally, each new version of the Unicode Standard supersedes all earlier versions. How-
ever, update versions generally do not obsolete the documentation of the immediately
prior version of the standard.

Scheduling of Versions. Prior to Version 7.0.0, major, minor, and update versions of the
Unicode Standard were published whenever the work on each new set of repertoire, prop-
erties, and documentation was finished. The emphasis was on ensuring synchronization of
the major releases with corresponding major publication milestones for ISO/IEC 10646,
but that practice resulted in an irregular publication schedule.

The Unicode Technical Committee changed its process as of Version 7.0.0 of the Unicode
Standard, to make the publication time predictable. Major releases of the standard are now
scheduled for annual publication. Further minor and update releases are not anticipated,
but might occur under exceptional circumstances. This predictable, regular publication
makes planning for new releases easier for most users of the standard. The detailed state-
ments of synchronization between versions of the Unicode Standard and ISO/IEC 10646
have become somewhat more complex as a result, but in practice this has not been a prob-
lem for implementers.

Errata and Corrigenda
From time to time it may be necessary to publish errata or corrigenda to the Unicode Stan-
dard. Such errata and corrigenda will be published on the Unicode website. See
Appendix B.3, Other Unicode Online Resources, for information on how to report errors in
the standard.

Errata. Errata correct errors in the text or other informative material, such as the represen-
tative glyphs in the code charts. See the subsection “Updates and Errata” in Appendix B.3,
Other Unicode Online Resources. Whenever a new major or minor version of the standard is
published, all errata up to that point are incorporated into the core specification, code
charts, or other components of the standard.

Corrigenda. Occasionally errors may be important enough that a corrigendum is issued
prior to the next version of the Unicode Standard. Such a corrigendum does not change the
contents of the previous version. Instead, it provides a mechanism for an implementation,
protocol, or other standard to cite the previous version of the Unicode Standard with the
corrigendum applied. If a citation does not specifically mention the corrigendum, the cor-
rigendum does not apply. For more information on citing corrigenda, see “Versions” in
Appendix B.3, Other Unicode Online Resources.

References to the Unicode Standard
The documents associated with the major, minor, and update versions are called the major
reference, minor reference, and update reference, respectively. For example, consider Uni-
code Version 3.1.1. The major reference for that version is The Unicode Standard, Version
3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard Annex #27, “The Uni-
code Standard, Version 3.1.” The update reference is Unicode Version 3.1.1. The exact list

Conformance 75 3.1 Versions of the Unicode Standard
of contributory files, Unicode Standard Annexes, and Unicode Character Database files
can be found at Enumerated Version 3.1.1.

The reference for this version, Version 13.0.0, of the Unicode Standard, is

The Unicode Consortium. The Unicode Standard, Version 13.0.0,
defined by: The Unicode Standard, Version 13.0 (Mountain View, CA:
The Unicode Consortium, 2020. ISBN 978-1-936213-26-9)

References to an update (or minor version prior to Version 5.2.0) include a reference to
both the major version and the documents modifying it. For the standard citation format
for other versions of the Unicode Standard, see “Versions” in Appendix B.3, Other Unicode
Online Resources.

Precision in Version Citation
Because Unicode has an open repertoire with relatively frequent updates, it is important
not to over-specify the version number. Wherever the precise behavior of all Unicode char-
acters needs to be cited, the full three-field version number should be used, as in the first
example below. However, trailing zeros are often omitted, as in the second example. In
such a case, writing 3.1 is in all respects equivalent to writing 3.1.0.

1. The Unicode Standard, Version 3.1.1

2. The Unicode Standard, Version 3.1

3. The Unicode Standard, Version 3.0 or later

4. The Unicode Standard

Where some basic level of content is all that is important, phrasing such as in the third
example can be used. Where the important information is simply the overall architecture
and semantics of the Unicode Standard, the version can be omitted entirely, as in example 4.

References to Unicode Character Properties
Properties and property values have defined names and abbreviations, such as

Property: General_Category (gc)

Property Value: Uppercase_Letter (Lu)

To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category prop-
erty, as specified in Version 13.0.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is provided
for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit the
underscores in these aliases or to replace them by spaces.

Conformance 76 3.1 Versions of the Unicode Standard
When referencing a Unicode character property, it is customary to prepend the word “Uni-
code” to the name of the property, unless it is clear from context that the Unicode Standard
is the source of the specification.

References to Unicode Algorithms
A reference to a Unicode algorithm must specify the name of the algorithm or its abbrevia-
tion, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 13.0.0 of
the Unicode Standard.

See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”
(http://www.unicode.org/reports/tr9/tr9-42.html)

Where algorithms allow tailoring, the reference must state whether any such tailorings
were applied or are applicable. For algorithms contained in a Unicode Standard Annex, the
document itself and its location on the Unicode website may be cited as the location of the
specification.

When referencing a Unicode algorithm it is customary to prepend the word “Unicode” to
the name of the algorithm, unless it is clear from the context that the Unicode Standard is
the source of the specification.

Omitting a version number when referencing a Unicode algorithm may be appropriate
when such a reference is meant as a generic reference to the overall algorithm. Such a
generic reference may also be employed in the sense of latest available version of the algo-
rithm. However, for specific and detailed conformance claims for Unicode algorithms,
generic references are generally not sufficient, and a full version number must accompany
the reference.

Conformance 77 3.2 Conformance Requirements
3.2 Conformance Requirements
This section presents the clauses specifying the formal conformance requirements for pro-
cesses implementing Version 13.0 of the Unicode Standard.

In addition to this core specification, the Unicode Standard, Version 13.0.0, includes a
number of Unicode Standard Annexes (UAXes) and the Unicode Character Database. At
the end of this section there is a list of those annexes that are considered an integral part of
the Unicode Standard, Version 13.0.0, and therefore covered by these conformance
requirements.

The Unicode Character Database contains an extensive specification of normative and
informative character properties completing the formal definition of the Unicode Stan-
dard. See Chapter 4, Character Properties, for more information.

Not all conformance requirements are relevant to all implementations at all times because
implementations may not support the particular characters or operations for which a given
conformance requirement may be relevant. See Section 2.14, Conforming to the Unicode
Standard, for more information.

In this section, conformance clauses are identified with the letter C.

Code Points Unassigned to Abstract Characters
C1 A process shall not interpret a high-surrogate code point or a low-surrogate code point

as an abstract character.

• The high-surrogate and low-surrogate code points are designated for surrogate
code units in the UTF-16 character encoding form. They are unassigned to any
abstract character.

C2 A process shall not interpret a noncharacter code point as an abstract character.

• The noncharacter code points may be used internally, such as for sentinel val-
ues or delimiters, but should not be exchanged publicly.

C3 A process shall not interpret an unassigned code point as an abstract character.

• This clause does not preclude the assignment of certain generic semantics to
unassigned code points (for example, rendering with a glyph to indicate the
position within a character block) that allow for graceful behavior in the pres-
ence of code points that are outside a supported subset.

• Unassigned code points may have default property values. (See D26.)

• Code points whose use has not yet been designated may be assigned to abstract
characters in future versions of the standard. Because of this fact, due care in
the handling of generic semantics for such code points is likely to provide bet-
ter robustness for implementations that may encounter data based on future
versions of the standard.

Conformance 78 3.2 Conformance Requirements
Interpretation
Interpretation of characters is the key conformance requirement for the Unicode Standard,
as it is for any coded character set standard. In legacy character set standards, the single
conformance requirement is generally stated in terms of the interpretation of bit patterns
used as characters. Conforming to a particular standard requires interpreting bit patterns
used as characters according to the list of character names and the glyphs shown in the
associated code table that form the bulk of that standard.

Interpretation of characters is a more complex issue for the Unicode Standard. It includes
the core issue of interpreting code points used as characters according to the names and
representative glyphs shown in the code charts, of course. However, the Unicode Standard
also specifies character properties, behavior, and interactions between characters. Such
information about characters is considered an integral part of the “character semantics
established by this standard.”

Information about the properties, behavior, and interactions between Unicode characters
is provided in the Unicode Character Database and in the Unicode Standard Annexes.
Additional information can be found throughout the other chapters of this core specifica-
tion for the Unicode Standard. However, because of the need to keep extended discussions
of scripts, sets of symbols, and other characters readable, material in other chapters is not
always labeled as to its normative or informative status. In general, supplementary seman-
tic information about a character is considered normative when it contributes directly to
the identification of the character or its behavior. Additional information provided about
the history of scripts, the languages which use particular characters, and so forth, is merely
informative. Thus, for example, the rules about Devanagari rendering specified in
Section 12.1, Devanagari, or the rules about Arabic character shaping specified in
Section 9.2, Arabic, are normative: they spell out important details about how those charac-
ters behave in conjunction with each other that is necessary for proper and complete inter-
pretation of the respective Unicode characters covered in each section.

C4 A process shall interpret a coded character sequence according to the character seman-
tics established by this standard, if that process does interpret that coded character
sequence.

• This restriction does not preclude internal transformations that are never visi-
ble external to the process.

C5 A process shall not assume that it is required to interpret any particular coded charac-
ter sequence.

• Processes that interpret only a subset of Unicode characters are allowed; there
is no blanket requirement to interpret all Unicode characters.

• Any means for specifying a subset of characters that a process can interpret is
outside the scope of this standard.

• The semantics of a private-use code point is outside the scope of this standard.

Conformance 79 3.2 Conformance Requirements
• Although these clauses are not intended to preclude enumerations or specifica-
tions of the characters that a process or system is able to interpret, they do sep-
arate supported subset enumerations from the question of conformance. In
actuality, any system may occasionally receive an unfamiliar character code
that it is unable to interpret.

C6 A process shall not assume that the interpretations of two canonical-equivalent char-
acter sequences are distinct.

• The implications of this conformance clause are twofold. First, a process is
never required to give different interpretations to two different, but canonical-
equivalent character sequences. Second, no process can assume that another
process will make a distinction between two different, but canonical-equivalent
character sequences.

• Ideally, an implementation would always interpret two canonical-equivalent
character sequences identically. There are practical circumstances under which
implementations may reasonably distinguish them.

• Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of
this behavior include graceful fallback processing by processes unable to sup-
port correct positioning of nonspacing marks; “Show Hidden Text” modes that
reveal memory representation structure; and the choice of ignoring collating
behavior of combining character sequences that are not part of the repertoire
of a specified language (see Section 5.12, Strategies for Handling Nonspacing
Marks).

Modification
C7 When a process purports not to modify the interpretation of a valid coded character

sequence, it shall make no change to that coded character sequence other than the pos-
sible replacement of character sequences by their canonical-equivalent sequences.

• Replacement of a character sequence by a compatibility-equivalent sequence
does modify the interpretation of the text.

• Replacement or deletion of a character sequence that the process cannot or
does not interpret does modify the interpretation of the text.

• Changing the bit or byte ordering of a character sequence when transforming it
between different machine architectures does not modify the interpretation of
the text.

• Changing a valid coded character sequence from one Unicode character
encoding form to another does not modify the interpretation of the text.

Conformance 80 3.2 Conformance Requirements
• Changing the byte serialization of a code unit sequence from one Unicode
character encoding scheme to another does not modify the interpretation of
the text.

• If a noncharacter that does not have a specific internal use is unexpectedly
encountered in processing, an implementation may signal an error or replace
the noncharacter with U+FFFD replacement character. If the implementa-
tion chooses to replace, delete or ignore a noncharacter, such an action consti-
tutes a modification in the interpretation of the text. In general, a noncharacter
should be treated as an unassigned code point. For example, an API that
returned a character property value for a noncharacter would return the same
value as the default value for an unassigned code point.

• Note that security problems can result if noncharacter code points are removed
from text received from external sources. For more information, see
Section 23.7, Noncharacters, and Unicode Technical Report #36, “Unicode
Security Considerations.”

• All processes and higher-level protocols are required to abide by conformance
clause C7 at a minimum. However, higher-level protocols may define addi-
tional equivalences that do not constitute modifications under that protocol.
For example, a higher-level protocol may allow a sequence of spaces to be
replaced by a single space.

• There are important security issues associated with the correct interpretation
and display of text. For more information, see Unicode Technical Report #36,
“Unicode Security Considerations.”

Character Encoding Forms
C8 When a process interprets a code unit sequence which purports to be in a Unicode

character encoding form, it shall interpret that code unit sequence according to the
corresponding code point sequence.

• The specification of the code unit sequences for UTF-8 is given in D92.

• The specification of the code unit sequences for UTF-16 is given in D91.

• The specification of the code unit sequences for UTF-32 is given in D90.

C9 When a process generates a code unit sequence which purports to be in a Unicode
character encoding form, it shall not emit ill-formed code unit sequences.

• The definition of each Unicode character encoding form specifies the ill-
formed code unit sequences in the character encoding form. For example, the
definition of UTF-8 (D92) specifies that code unit sequences such as <C0 AF>
are ill-formed.

Conformance 81 3.2 Conformance Requirements
C10 When a process interprets a code unit sequence which purports to be in a Unicode
character encoding form, it shall treat ill-formed code unit sequences as an error con-
dition and shall not interpret such sequences as characters.

• For example, in UTF-8 every code unit of the form 110xxxx2 must be followed
by a code unit of the form 10xxxxxx2. A sequence such as 110xxxxx2 0xxxxxxx2 is
ill-formed and must never be generated. When faced with this ill-formed code
unit sequence while transforming or interpreting text, a conformant process
must treat the first code unit 110xxxxx2 as an illegally terminated code unit
sequence—for example, by signaling an error or representing the code unit
with a marker such as U+FFFD replacement character.

• Silently ignoring ill-formed sequences is strongly discouraged because joining
text from before and after the ill-formed sequence can cause the resulting text
to take a new meaning. This result would be especially dangerous in the context
of textual formats that carry embedded program code, such as JavaScript.

• Conformant processes cannot interpret ill-formed code unit sequences. How-
ever, the conformance clauses do not prevent processes from operating on
code unit sequences that do not purport to be in a Unicode character encoding
form. For example, for performance reasons a low-level string operation may
simply operate directly on code units, without interpreting them as characters.
See, especially, the discussion under D89.

• Utility programs are not prevented from operating on “mangled” text. For
example, a UTF-8 file could have had CRLF sequences introduced at every 80
bytes by a bad mailer program. This could result in some UTF-8 byte
sequences being interrupted by CRLFs, producing illegal byte sequences. This
mangled text is no longer UTF-8. It is permissible for a conformant program to
repair such text, recognizing that the mangled text was originally well-formed
UTF-8 byte sequences. However, such repair of mangled data is a special case,
and it must not be used in circumstances where it would cause security prob-
lems. There are important security issues associated with encoding conversion,
especially with the conversion of malformed text. For more information, see
Unicode Technical Report #36, “Unicode Security Considerations.”

Character Encoding Schemes
C11 When a process interprets a byte sequence which purports to be in a Unicode character

encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that
character encoding scheme.

• Machine architectures differ in ordering in terms of whether the most signifi-
cant byte or the least significant byte comes first. These sequences are known as
“big-endian” and “little-endian” orders, respectively.

Conformance 82 3.2 Conformance Requirements
• For example, when using UTF-16LE, pairs of bytes are interpreted as UTF-16
code units using the little-endian byte order convention, and any initial <FF
FE> sequence is interpreted as U+FEFF zero width no-break space (part of
the text), rather than as a byte order mark (not part of the text). (See D97.)

Bidirectional Text
C12 A process that displays text containing supported right-to-left characters or embedding

codes shall display all visible representations of characters (excluding format charac-
ters) in the same order as if the Bidirectional Algorithm had been applied to the text,
unless tailored by a higher-level protocol as permitted by the specification.

• The Bidirectional Algorithm is specified in Unicode Standard Annex #9, “Uni-
code Bidirectional Algorithm.”

Normalization Forms
C13 A process that produces Unicode text that purports to be in a Normalization Form

shall do so in accordance with the specifications in Section 3.11, Normalization Forms.

C14 A process that tests Unicode text to determine whether it is in a Normalization Form
shall do so in accordance with the specifications in Section 3.11, Normalization Forms.

C15 A process that purports to transform text into a Normalization Form must be able to
produce the results of the conformance test specified in Unicode Standard Annex #15,
“Unicode Normalization Forms.”

• This means that when a process uses the input specified in the conformance
test, its output must match the expected output of the test.

Normative References
C16 Normative references to the Unicode Standard itself, to property aliases, to property

value aliases, or to Unicode algorithms shall follow the formats specified in Section 3.1,
Versions of the Unicode Standard.

C17 Higher-level protocols shall not make normative references to provisional properties.

• Higher-level protocols may make normative references to informative proper-
ties.

Unicode Algorithms
C18 If a process purports to implement a Unicode algorithm, it shall conform to the specifi-

cation of that algorithm in the standard, including any tailoring by a higher-level pro-
tocol as permitted by the specification.

• The term Unicode algorithm is defined at D17.

Conformance 83 3.2 Conformance Requirements
• An implementation claiming conformance to a Unicode algorithm need only
guarantee that it produces the same results as those specified in the logical
description of the process; it is not required to follow the actual described pro-
cedure in detail. This allows room for alternative strategies and optimizations
in implementation.

C19 The specification of an algorithm may prohibit or limit tailoring by a higher-level pro-
tocol. If a process that purports to implement a Unicode algorithm applies a tailoring,
that fact must be disclosed.

• For example, the algorithms for normalization and canonical ordering are not
tailorable. The Bidirectional Algorithm allows some tailoring by higher-level
protocols. The Unicode Default Case algorithms may be tailored without lim-
itation.

Default Casing Algorithms
C20 An implementation that purports to support Default Case Conversion, Default Case

Detection, or Default Caseless Matching shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Algorithms.

• A conformant implementation may perform casing operations that are differ-
ent from the default algorithms, perhaps tailored to a particular orthography,
so long as the fact that a tailoring is applied is disclosed.

Unicode Standard Annexes
The following standard annexes are approved and considered part of Version 13.0 of the
Unicode Standard. These annexes may contain either normative or informative material,
or both. Any reference to Version 13.0 of the standard automatically includes these stan-
dard annexes.

• UAX #9: Unicode Bidirectional Algorithm, Version 13.0.0

• UAX #11: East Asian Width, Version 13.0.0

• UAX #14: Unicode Line Breaking Algorithm, Version 13.0.0

• UAX #15: Unicode Normalization Forms, Version 13.0.0

• UAX #24: Unicode Script Property, Version 13.0.0

• UAX #29: Unicode Text Segmentation, Version 13.0.0

• UAX #31: Unicode Identifier and Pattern Syntax, Version 13.0.0

• UAX #34: Unicode Named Character Sequences, Version 13.0.0

• UAX #38: Unicode Han Database (Unihan), Version 13.0.0

• UAX #41: Common References for Unicode Standard Annexes, Version 13.0.0

Conformance 84 3.2 Conformance Requirements
• UAX #42: Unicode Character Database in XML, Version 13.0.0

• UAX #44: Unicode Character Database, Version 13.0.0

• UAX #45: U-Source Ideographs, Version 13.0.0

• UAX #50: Unicode Vertical Text Layout, Version 13.0.0

Conformance to the Unicode Standard requires conformance to the specifications con-
tained in these annexes, as detailed in the conformance clauses listed earlier in this section.

Conformance 85 3.3 Semantics
3.3 Semantics

Definitions
This and the following sections more precisely define the terms that are used in the confor-
mance clauses.

Character Identity and Semantics
D1 Normative behavior: The normative behaviors of the Unicode Standard consist of

the following list or any other behaviors specified in the conformance clauses:

• Character combination

• Canonical decomposition

• Compatibility decomposition

• Canonical ordering behavior

• Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm
(see Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”)

• Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behav-
ior

• Variation selection, as specified in Section 23.4, Variation Selectors

• Normalization, as specified in Section 3.11, Normalization Forms

• Default casing, as specified in Section 3.13, Default Case Algorithms

D2 Character identity: The identity of a character is established by its character name
and representative glyph in the code charts.

• A character may have a broader range of use than the most literal interpretation
of its name might indicate; the coded representation, name, and representative
glyph need to be assessed in context when establishing the identity of a charac-
ter. For example, U+002E full stop can represent a sentence period, an abbre-
viation period, a decimal number separator in English, a thousands number
separator in German, and so on. The character name itself is unique, but may
be misleading. See “Character Names” in Section 24.1, Character Names List.

• Consistency with the representative glyph does not require that the images be
identical or even graphically similar; rather, it means that both images are gen-
erally recognized to be representations of the same character. Representing the
character U+0061 latin small letter a by the glyph “X” would violate its
character identity.

D3 Character semantics: The semantics of a character are determined by its identity,
normative properties, and behavior.

Conformance 86 3.3 Semantics
• Some normative behavior is default behavior; this behavior can be overridden
by higher-level protocols. However, in the absence of such protocols, the
behavior must be observed so as to follow the character semantics.

• The character combination properties and the canonical ordering behavior
cannot be overridden by higher-level protocols. The purpose of this constraint
is to guarantee that the order of combining marks in text and the results of nor-
malization are predictable.

D4 Character name: A unique string used to identify each abstract character encoded in
the standard.

• The character names in the Unicode Standard match those of the English edi-
tion of ISO/IEC 10646.

• Character names are immutable and cannot be overridden; they are stable
identifiers. For more information, see Section 4.8, Name.

• The name of a Unicode character is also formally a character property in the
Unicode Character Database. Its long property alias is “Name” and its short
property alias is “na”. Its value is the unique string label associated with the
encoded character.

• The detailed specification of the Unicode character names, including rules for
derivation of some ranges of characters, is given in Section 4.8, Name. That sec-
tion also describes the relationship between the normative value of the Name
property and the contents of the corresponding data field in UnicodeData.txt
in the Unicode Character Database.

D5 Character name alias: An additional unique string identifier, other than the charac-
ter name, associated with an encoded character in the standard.

• Character name aliases are assigned when there is a serious clerical defect with
a character name, such that the character name itself may be misleading
regarding the identity of the character. A character name alias constitutes an
alternate identifier for the character.

• Character name aliases are also assigned to provide string identifiers for con-
trol codes and to recognize widely used alternative names and abbreviations for
control codes, format characters and other special-use characters.

• Character name aliases are unique within the common namespace shared by
character names, character name aliases, and named character sequences.

• More than one character name alias may be assigned to a given Unicode char-
acter. For example, the control code U+000D is given a character name alias for
its ISO 6429 control function as carriage return, but is also given a character
name alias for its widely used abbreviation “CR”.

• Character name aliases are a formal, normative part of the standard and should
be distinguished from the informative, editorial aliases provided in the code

Conformance 87 3.3 Semantics
charts. See Section 24.1, Character Names List, for the notational conventions
used to distinguish the two.

D6 Namespace: A set of names together with name matching rules, so that all names are
distinct under the matching rules.

• Within a given namespace all names must be unique, although the same name
may be used with a different meaning in a different namespace.

• Character names, character name aliases, and named character sequences
share a single namespace in the Unicode Standard.

Conformance 88 3.4 Characters and Encoding
3.4 Characters and Encoding
D7 Abstract character: A unit of information used for the organization, control, or rep-

resentation of textual data.

• When representing data, the nature of that data is generally symbolic as
opposed to some other kind of data (for example, aural or visual). Examples of
such symbolic data include letters, ideographs, digits, punctuation, technical
symbols, and dingbats.

• An abstract character has no concrete form and should not be confused with a
glyph.

• An abstract character does not necessarily correspond to what a user thinks of
as a “character” and should not be confused with a grapheme.

• The abstract characters encoded by the Unicode Standard are known as Uni-
code abstract characters.

• Abstract characters not directly encoded by the Unicode Standard can often be
represented by the use of combining character sequences.

D8 Abstract character sequence: An ordered sequence of one or more abstract charac-
ters.

D9 Unicode codespace: A range of integers from 0 to 10FFFF16.

• This particular range is defined for the codespace in the Unicode Standard.
Other character encoding standards may use other codespaces.

D10 Code point: Any value in the Unicode codespace.

• A code point is also known as a code position.

• See D77 for the definition of code unit.

D10a Code point type: Any of the seven fundamental classes of code points in the stan-
dard: Graphic, Format, Control, Private-Use, Surrogate, Noncharacter, Reserved.

• See Table 2-3 for a summary of the meaning and use of each class.

• For Noncharacter, see also D14 Noncharacter.

• For Reserved, see also D15 Reserved code point.

• For Private-Use, see also D49 Private-use code point.

• For Surrogate, see also D71 High-surrogate code point and D73 Low-surrogate
code point.

D10b Block: A named range of code points used to organize the allocation of characters.

• The exact list of blocks defined for each version of the Unicode Standard is
specified by the data file Blocks.txt in the Unicode Character Database.

Conformance 89 3.4 Characters and Encoding
• The range for each defined block is specified by Field 0 in Blocks.txt; for exam-
ple, “0000..007F”.

• The ranges for blocks are non-overlapping. In other words, no code point can
be contained in the range for one block and also in the range for a second dis-
tinct block.

• The range for each block is defined as a contiguous sequence. In other words, a
block cannot consist of two (or more) discontiguous sequences of code points.

• Each range for a defined block starts with a value for which code point MOD
16 = 0 and terminates with a larger value for which code point MOD 16 = 15.
This specification results in block ranges which always include full code point
columns for code chart display. A block never starts or terminates in mid-col-
umn.

• All assigned characters are contained within ranges for defined blocks.

• Blocks may contain reserved code points, but no block contains only reserved
code points. The majority of reserved code points are outside the ranges of
defined blocks.

• A few designated code points are not contained within the ranges for defined
blocks. This applies to the noncharacter code points at the last two code points
of supplementary planes 1 through 14.

• The name for each defined block is specified by Field 1 in Blocks.txt; for exam-
ple, “Basic Latin”.

• The names for defined blocks constitute a unique namespace.

• The uniqueness rule for the block namespace is LM3, as defined in Unicode
Standard Annex #44, “Unicode Character Database.” In other words, casing,
whitespace, hyphens, and underscores are ignored when matching strings for
block names. The string “BASIC LATIN” or “Basic_Latin” would be consid-
ered as matching the name for the block named “Basic Latin”.

• There is also a normative Block property. See Table 3-2. The Block property is a
catalog property whose value is a string that identifies a block.

• Property value aliases for the Block property are defined in PropertyVal-
ueAliases.txt in the Unicode Character Database. The long alias defined for the
Block property is always a loose match for the name of the block defined in
Blocks.txt. Additional short aliases and other aliases are provided for conve-
nience of use in regular expression syntax.

• The default value for the Block property is “No_Block”. This default applies to
any code point which is not contained in the range of a defined block.

For a general discussion of blocks and their relation to allocation in the Unicode Standard,
see “Allocation Areas and Blocks” in Section 2.8, Unicode Allocation. For a general discus-

Conformance 90 3.4 Characters and Encoding
sion of the use of blocks in the presentation of the Unicode code charts, see Chapter 24,
About the Code Charts.

D11 Encoded character: An association (or mapping) between an abstract character and
a code point.

• An encoded character is also referred to as a coded character.

• While an encoded character is formally defined in terms of the mapping
between an abstract character and a code point, informally it can be thought of
as an abstract character taken together with its assigned code point.

• Occasionally, for compatibility with other standards, a single abstract character
may correspond to more than one code point—for example, “Å” corresponds
both to U+00C5 Å latin capital letter a with ring above and to U+212B
Å angstrom sign.

• A single abstract character may also be represented by a sequence of code
points—for example, latin capital letter g with acute may be represented by the
sequence <U+0047 latin capital letter g, U+0301 combining acute

accent>, rather than being mapped to a single code point.

D12 Coded character sequence: An ordered sequence of one or more code points.

• A coded character sequence is also known as a coded character representation.

• Normally a coded character sequence consists of a sequence of encoded char-
acters, but it may also include noncharacters or reserved code points.

• Internally, a process may choose to make use of noncharacter code points in its
coded character sequences. However, such noncharacter code points may not
be interpreted as abstract characters (see conformance clause C2). Their
removal by a conformant process constitutes modification of interpretation of
the coded character sequence (see conformance clause C7).

• Reserved code points are included in coded character sequences, so that the
conformance requirements regarding interpretation and modification are
properly defined when a Unicode-conformant implementation encounters
coded character sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term charac-
ter alone designates an encoded character. Similarly, the term character sequence alone
designates a coded character sequence.

D13 Deprecated character: A coded character whose use is strongly discouraged.

• Deprecated characters are retained in the standard indefinitely, but should not
be used. They are retained in the standard so that previously conforming data
stay conformant in future versions of the standard.

• Deprecated characters typically consist of characters with significant architec-
tural problems, or ones which cause implementation problems. Some examples

Conformance 91 3.4 Characters and Encoding
of characters deprecated on these grounds include U+E0001 language tag

(see Section 23.9, Tag Characters) and the alternate format characters (see
Section 23.3, Deprecated Format Characters).

• Deprecated characters are explicitly indicated in the Unicode code charts. They
are also given an explicit property value of Deprecated = True in the Unicode
Character Database.

• Deprecated characters should not be confused with obsolete characters, which
are historical. Obsolete characters do not occur in modern text, but they are not
deprecated; their use is not discouraged.

D14 Noncharacter: A code point that is permanently reserved for internal use. Nonchar-
acters consist of the values U+nFFFE and U+nFFFF (where n is from 0 to 1016) and
the values U+FDD0..U+FDEF.

• For more information, see Section 23.7, Noncharacters.

• These code points are permanently reserved as noncharacters.

D15 Reserved code point: Any code point of the Unicode Standard that is reserved for
future assignment. Also known as an unassigned code point.

• Surrogate code points and noncharacters are considered assigned code points,
but not assigned characters.

• For a summary classification of reserved and other types of code points, see
Table 2-3.

In general, a conforming process may indicate the presence of a code point whose use has
not been designated (for example, by showing a missing glyph in rendering or by signaling
an appropriate error in a streaming protocol), even though it is forbidden by the standard
from interpreting that code point as an abstract character.

D16 Higher-level protocol: Any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard.

• Such an agreement need not be formally announced in data; it may be implicit
in the context.

• The specification of some Unicode algorithms may limit the scope of what a
conformant higher-level protocol may do.

D17 Unicode algorithm: The logical description of a process used to achieve a specified
result involving Unicode characters.

• This definition, as used in the Unicode Standard and other publications of the
Unicode Consortium, is intentionally broad so as to allow precise logical
description of required results, without constraining implementations to fol-
low the precise steps of that logical description.

Conformance 92 3.4 Characters and Encoding
D18 Named Unicode algorithm: A Unicode algorithm that is specified in the Unicode
Standard or in other standards published by the Unicode Consortium and that is
given an explicit name for ease of reference.

• Named Unicode algorithms are cited in titlecase in the Unicode Standard.

Table 3-1 lists the named Unicode algorithms and indicates the locations of their specifica-
tions. Details regarding conformance to these algorithms and any restrictions they place on
the scope of allowable tailoring by higher-level protocols can be found in the specifications.
In some cases, a named Unicode algorithm is provided for information only. When exter-
nally referenced, a named Unicode algorithm may be prefixed with the qualifier “Unicode”
to make the connection of the algorithm to the Unicode Standard and other Unicode spec-
ifications clear. Thus, for example, the Bidirectional Algorithm is generally referred to by
its full name, “Unicode Bidirectional Algorithm.” As much as is practical, the titles of Uni-
code Standard Annexes which define Unicode algorithms consist of the name of the Uni-
code algorithm they specify. In a few cases, named Unicode algorithms are also widely
known by their acronyms, and those acronyms are also listed in Table 3-1.

Table 3-1. Named Unicode Algorithms

Name Description
Canonical Ordering Section 3.11
Canonical Composition Section 3.11
Normalization Section 3.11
Hangul Syllable Composition Section 3.12
Hangul Syllable Decomposition Section 3.12
Hangul Syllable Name Generation Section 3.12
Default Case Conversion Section 3.13
Default Case Detection Section 3.13
Default Caseless Matching Section 3.13
Bidirectional Algorithm (UBA) UAX #9
Line Breaking Algorithm UAX #14
Character Segmentation UAX #29
Word Segmentation UAX #29
Sentence Segmentation UAX #29
Hangul Syllable Boundary Determination UAX #29
Standard Compression Scheme for Unicode (SCSU) UTS #6
Unicode Collation Algorithm (UCA) UTS #10

Conformance 93 3.5 Properties
3.5 Properties
The Unicode Standard specifies many different types of character properties. This section
provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Character
Database. See Section 4.1, Unicode Character Database, for an overview of those data files.
Chapter 4, Character Properties, contains more detailed descriptions of some particular,
important character properties. Additional properties that are specific to particular charac-
ters (such as the definition and use of the right-to-left override character or zero width
space) are discussed in the relevant sections of this standard.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of other properties (such as directionality) is applicable
to a character sequence as a whole, rather than to the individual characters that compose
the sequence.

Types of Properties
D19 Property: A named attribute of an entity in the Unicode Standard, associated with a

defined set of values.

• The lists of code point and encoded character properties for the Unicode Stan-
dard are documented in Unicode Standard Annex #44, “Unicode Character
Database,” and in Unicode Standard Annex #38, “Unicode Han Database (Uni-
han).”

• The file PropertyAliases.txt in the Unicode Character Database provides a
machine-readable list of the non-Unihan properties and their names.

D20 Code point property: A property of code points.

• Code point properties refer to attributes of code points per se, based on archi-
tectural considerations of this standard, irrespective of any particular encoded
character.

• Thus the Surrogate property and the Noncharacter property are code point
properties.

D21 Abstract character property: A property of abstract characters.

• Abstract character properties refer to attributes of abstract characters per se,
based on their independent existence as elements of writing systems or other
notational systems, irrespective of their encoding in the Unicode Standard.

• Thus the Alphabetic property, the Punctuation property, the Hex_Digit prop-
erty, the Numeric_Value property, and so on are properties of abstract charac-
ters and are associated with those characters whether encoded in the Unicode
Standard or in any other character encoding—or even prior to their being
encoded in any character encoding standard.

Conformance 94 3.5 Properties
D22 Encoded character property: A property of encoded characters in the Unicode Stan-
dard.

• For each encoded character property there is a mapping from every code point
to some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of char-
acter property APIs based on the Unicode Character Database. Typically, an API will take
a property and a code point as input, and will return a value for that property as output,
interpreting it as the “character property” for the “character” encoded at that code point.
However, to be useful, such APIs must return meaningful values for unassigned code
points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly equiv-
alent to a code point property. For example, the Pattern_Syntax property simply defines a
range of code points that are reserved for pattern syntax. (See Unicode Standard Annex
#31, “Unicode Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract character
property, but extends the domain of the property to include all code points, including
unassigned code points. For Boolean properties, such as the Hex_Digit property, typically
an encoded character property will be true for the encoded characters with that abstract
character property and will be false for all other code points, including unassigned code
points, noncharacters, private-use characters, and encoded characters for which the
abstract character property is inapplicable or irrelevant.

However, in many instances, an encoded character property is semantically complex and
may telescope together values associated with a number of abstract character properties
and/or code point properties. The General_Category property is an example—it contains
values associated with several abstract character properties (such as Letter, Punctuation,
and Symbol) as well as code point properties (such as \p{gc=Cs} for the Surrogate code
point property).

In the text of this standard the terms “Unicode character property,” “character property,”
and “property” without qualifier generally refer to an encoded character property, unless
otherwise indicated.

A list of the encoded character properties formally considered to be a part of the Unicode
Standard can be found in PropertyAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

Property Values
D23 Property value: One of the set of values associated with an encoded character prop-

erty.

• For example, the East_Asian_Width [EAW] property has the possible values
“Narrow”, “Neutral”, “Wide”, “Ambiguous”, and “Unassigned”.

Conformance 95 3.5 Properties
A list of the values associated with encoded character properties in the Unicode Standard
can be found in PropertyValueAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

D24 Explicit property value: A value for an encoded character property that is explicitly
associated with a code point in one of the data files of the Unicode Character Data-
base.

D25 Implicit property value: A value for an encoded character property that is given by a
generic rule or by an “otherwise” clause in one of the data files of the Unicode Char-
acter Database.

• Implicit property values are used to avoid having to explicitly list values for
more than 1 million code points (most of them unassigned) for every property.

Default Property Values
To work properly in implementations, unassigned code points must be given default prop-
erty values as if they were characters, because various algorithms require property values to
be assigned to every code point before they can function at all.

Default property values are not uniform across all unassigned code points, because certain
ranges of code points need different values for particular properties to maximize compati-
bility with expected future assignments. This means that some encoded character proper-
ties have multiple default values. For example, the Bidi_Class property defines a range of
unassigned code points as having the “R” value, another range of unassigned code points as
having the “AL” value, and the otherwise case as having the “L” value. For information on
the default values for each encoded character property, see its description in the Unicode
Character Database.

Default property values for unassigned code points are normative. They should not be
changed by implementations to other values.

Default property values are also provided for private-use characters. Because the interpre-
tation of private-use characters is subject to private agreement between the parties which
exchange them, most default property values for those characters are overridable by
higher-level protocols, to match the agreed-upon semantics for the characters. There are
important exceptions for a few properties and Unicode algorithms. See Section 23.5, Pri-
vate-Use Characters.

D26 Default property value: The value (or in some cases small set of values) of a property
associated with unassigned code points or with encoded characters for which the
property is irrelevant.

• For example, for most Boolean properties, “false” is the default property value.
In such cases, the default property value used for unassigned code points may
be the same value that is used for many assigned characters as well.

Conformance 96 3.5 Properties
• Some properties, particularly enumerated properties, specify a particular,
unique value as their default value. For example, “XX” is the default property
value for the Line_Break property.

• A default property value is typically defined implicitly, to avoid having to repeat
long lists of unassigned code points.

• In the case of some properties with arbitrary string values, the default property
value is an implied null value. For example, the fact that there is no Unicode
character name for unassigned code points is equivalent to saying that the
default property value for the Name property for an unassigned code point is a
null string.

Classification of Properties by Their Values
D27 Enumerated property: A property with a small set of named values.

• As characters are added to the Unicode Standard, the set of values may need to
be extended in the future, but enumerated properties have a relatively fixed set
of possible values.

D28 Closed enumeration: An enumerated property for which the set of values is closed
and will not be extended for future versions of the Unicode Standard.

• The General_Category and Bidi_Class properties are the only closed enumera-
tions, except for the Boolean properties.

D29 Boolean property: A closed enumerated property whose set of values is limited to
“true” and “false”.

• The presence or absence of the property is the essential information.

• Boolean properties are also commonly referred to as binary properties.

• In the UCD, the “true” and “false” values for a Boolean property have multiple
aliases. For convenience, they may be referred to with the abbreviations “T”
and “F” or as “yes” and “no” (abbreviated “Y” and “N”).

D30 Numeric property: A numeric property is a property whose value is a number that
can take on any integer or real value.

• An example is the Numeric_Value property. There is no implied limit to the
number of possible distinct values for the property, except the limitations on
representing integers or real numbers in computers.

D31 String-valued property: A property whose value is a string.

• The Canonical_Decomposition property is a string-valued property.

D32 Catalog property: A property that is an enumerated property, typically unrelated to
an algorithm, that may be extended in each successive version of the Unicode Stan-
dard.

Conformance 97 3.5 Properties
• Examples are the Age, Block, and Script properties. Additional new values for
the set of enumerated values for these properties may be added each time the
standard is revised. A new value for Age is added for each new Unicode version,
a new value for Block is added for each new block added to the standard, and a
new value for Script is added for each new script added to the standard.

Most properties have a single value associated with each code point. However, some prop-
erties may instead associate a set of multiple different values with each code point. See Sec-
tion 5.7.6, Properties Whose Values Are Sets of Values, in Unicode Standard Annex #44,
“Unicode Character Database.”

Property Status
Each Unicode character property has one of several different statuses: normative, informa-
tive, contributory, or provisional. Each of these statuses is formally defined below, with
some explanation and examples. In addition, normative properties can be subclassified,
based on whether or not they can be overridden by conformant higher-level protocols.

The full list of currently defined Unicode character properties is provided in Unicode Stan-
dard Annex #44, “Unicode Character Database” and in Unicode Standard Annex #38,
“Unicode Han Database (Unihan).” The tables of properties in those documents specify
the status of each property explicitly. The data file PropertyAliases.txt provides a machine-
readable listing of the character properties, except for those associated with the Unicode
Han Database. The long alias for each property in PropertyAliases.txt also serves as the for-
mal name of that property. In case of any discrepancy between the listing in Proper-
tyAliases.txt and the listing in Unicode Standard Annex #44 or any other text of the
Unicode Standard, the listing in PropertyAliases.txt should be taken as definitive. The tag
for each Unihan-related character property documented in Unicode Standard Annex #38
serves as the formal name of that property.

D33 Normative property: A Unicode character property used in the specification of the
standard.

Specification that a character property is normative means that implementations which
claim conformance to a particular version of the Unicode Standard and which make use of
that particular property must follow the specifications of the standard for that property for
the implementation to be conformant. For example, the Bidi_Class property is required for
conformance whenever rendering text that requires bidirectional layout, such as Arabic or
Hebrew.

Whenever a normative process depends on a property in a specified way, that property is
designated as normative.

The fact that a given Unicode character property is normative does not mean that the val-
ues of the property will never change for particular characters. Corrections and extensions
to the standard in the future may require minor changes to normative values, even though
the Unicode Technical Committee strives to minimize such changes. See also “Stability of
Properties” later in this section.

Conformance 98 3.5 Properties
Some of the normative Unicode algorithms depend critically on particular property values
for their behavior. Normalization, for example, defines an aspect of textual interoperability
that many applications rely on to be absolutely stable. As a result, some of the normative
properties disallow any kind of overriding by higher-level protocols. Thus the decomposi-
tion of Unicode characters is both normative and not overridable; no higher-level protocol
may override these values, because to do so would result in non-interoperable results for
the normalization of Unicode text. Other normative properties, such as case mapping, are
overridable by higher-level protocols, because their intent is to provide a common basis for
behavior. Nevertheless, they may require tailoring for particular local cultural conventions
or particular implementations.

D34 Overridable property: A normative property whose values may be overridden by
conformant higher-level protocols.

• For example, the Canonical_Decomposition property is not overridable. The
Uppercase property can be overridden.

Some important normative character properties of the Unicode Standard are listed in
Table 3-2, with an indication of which sections in the standard provide a general descrip-
tion of the properties and their use. Other normative properties are documented in the
Unicode Character Database. In all cases, the Unicode Character Database provides the
definitive list of character properties and the exact list of property value assignments for
each version of the standard.

Table 3-2. Normative Character Properties

Property Description
Bidi_Class (directionality) UAX #9 and Section 4.4
Bidi_Mirrored UAX #9 and Section 4.7
Bidi_Paired_Bracket UAX #9
Bidi_Paired_Bracket_Type UAX #9
Block Section 24.1
Canonical_Combining_Class Section 3.11 and Section 4.3
Case-related properties Section 3.13, Section 4.2, and UAX #44
Composition_Exclusion Section 3.11
Decomposition_Mapping Section 3.7 and Section 3.11
Default_Ignorable_Code_Point Section 5.21
Deprecated Section 3.1
East_Asian_Width Section 18.4 and UAX #11
General_Category Section 4.5
Hangul_Syllable_Type Section 3.12 and UAX #29
Joining_Type and Joining_Group Section 9.2
Line_Break Section 23.1, Section 23.2, and UAX #14
Name Section 4.8

Conformance 99 3.5 Properties
D35 Informative property: A Unicode character property whose values are provided for
information only.

A conformant implementation of the Unicode Standard is free to use or change informa-
tive property values as it may require, while remaining conformant to the standard. An
implementer always has the option of establishing a protocol to convey the fact that infor-
mative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informative
property is explicitly specified in the Unicode Character Database, its use is strongly rec-
ommended for implementations to encourage comparable behavior between implementa-
tions. Note that it is possible for an informative property in one version of the Unicode
Standard to become a normative property in a subsequent version of the standard if its use
starts to acquire conformance implications in some part of the standard.

Table 3-3 provides a partial list of the more important informative character properties.
For a complete listing, see the Unicode Character Database.

D35a Contributory property: A simple property defined merely to make the statement of a
rule defining a derived property more compact or general.

Contributory properties typically consist of short lists of exceptional characters which are
used as part of the definition of a more generic normative or informative property. In most
cases, such properties are given names starting with “Other”, as Other_Alphabetic or Oth-
er_Default_Ignorable_Code_Point.

Contributory properties are not themselves subject to stability guarantees, but they are
sometimes specified in order to make it easier to state the definition of a derived property
which itself is subject to a stability guarantee, such as the derived, normative identifier-

Noncharacter_Code_Point Section 23.7
Numeric_Value Section 4.6
White_Space UAX #44

Table 3-3. Informative Character Properties

Property Description
Dash Section 6.2 and Table 6-3
Letter-related properties Section 4.10
Mathematical Section 22.5
Script UAX #24
Space Section 6.2 and Table 6-2
Unicode_1_Name Section 4.9

Table 3-2. Normative Character Properties (Continued)

Property Description

Conformance 100 3.5 Properties
related properties, XID_Start and XID_Continue. The complete list of contributory prop-
erties is documented in Unicode Standard Annex #44, “Unicode Character Database.”

D36 Provisional property: A Unicode character property whose values are unapproved
and tentative, and which may be incomplete or otherwise not in a usable state.

• Provisional properties may be removed from future versions of the standard,
without prior notice.

Some of the information provided about characters in the Unicode Character Database
constitutes provisional data. This data may capture partial or preliminary information. It
may contain errors or omissions, or otherwise not be ready for systematic use; however, it
is included in the data files for distribution partly to encourage review and improvement of
the information. For example, a number of the tags in the Unihan Database file (Uni-
han.zip) provide provisional property values of various sorts about Han characters.

The data files of the Unicode Character Database may also contain various annotations
and comments about characters, and those annotations and comments should be consid-
ered provisional. Implementations should not attempt to parse annotations and comments
out of the data files and treat them as informative character properties per se.

Section 4.12, Characters with Unusual Properties, provides additional lists of Unicode char-
acters with unusual behavior, including many format controls discussed in detail elsewhere
in the standard. Although in many instances those characters and their behavior have nor-
mative implications, the particular subclassification provided in Table 4-10 does not
directly correspond to any formal definition of Unicode character properties. Therefore
that subclassification itself should also be considered provisional and potentially subject to
change.

Context Dependence
D37 Context-dependent property: A property that applies to a code point in the context of

a longer code point sequence.

• For example, the lowercase mapping of a Greek sigma depends on the context
of the surrounding characters.

D38 Context-independent property: A property that is not context dependent; it applies to
a code point in isolation.

Stability of Properties
D39 Stable transformation: A transformation T on a property P is stable with respect to

an algorithm A if the result of the algorithm on the transformed property A(T(P)) is
the same as the original result A(P) for all code points.

D40 Stable property: A property is stable with respect to a particular algorithm or process
as long as possible changes in the assignment of property values are restricted in

Conformance 101 3.5 Properties
such a manner that the result of the algorithm on the property continues to be the
same as the original result for all previously assigned code points.

• As new characters are assigned to previously unassigned code points, the
replacement of any default values for these code points with actual property
values must maintain stability.

D41 Fixed property: A property whose values (other than a default value), once associ-
ated with a specific code point, are fixed and will not be changed, except to correct
obvious or clerical errors.

• For a fixed property, any default values can be replaced without restriction by
actual property values as new characters are assigned to previously unassigned
code points. Examples of fixed properties include Age and Hangul_Syllable_-
Type.

• Designating a property as fixed does not imply stability or immutability (see
“Stability” in Section 3.1, Versions of the Unicode Standard). While the age of a
character, for example, is established by the version of the Unicode Standard to
which it was added, errors in the published listing of the property value could
be corrected. For some other properties, even the correction of such errors is
prohibited by explicit guarantees of property stability.

D42 Immutable property: A fixed property that is also subject to a stability guarantee pre-
venting any change in the published listing of property values other than assign-
ment of new values to formerly unassigned code points.

• An immutable property is trivially stable with respect to all algorithms.

• An example of an immutable property is the Unicode character name itself.
Because character names are values of an immutable property, misspellings
and incorrect names will never be corrected clerically. Any errata will be noted
in a comment in the character names list and, where needed, an informative
character name alias will be provided.

• When an encoded character property representing a code point property is
immutable, none of its values can ever change. This follows from the fact that
the code points themselves do not change, and the status of the property is
unaffected by whether a particular abstract character is encoded at a code point
later. An example of such a property is the Pattern_Syntax property; all values
of that property are unchangeable for all code points, forever.

• In the more typical case of an immutable property, the values for existing
encoded characters cannot change, but when a new character is encoded, the
formerly unassigned code point changes from having a default value for the
property to having one of its nondefault values. Once that nondefault value is
published, it can no longer be changed.

D43 Stabilized property: A property that is neither extended to new characters nor main-
tained in any other manner, but that is retained in the Unicode Character Database.

Conformance 102 3.5 Properties
• A stabilized property is also a fixed property.

D44 Deprecated property: A property whose use by implementations is discouraged.

• One of the reasons a property may be deprecated is because a different combi-
nation of properties better expresses the intended semantics.

• Where sufficiently widespread legacy support exists for the deprecated prop-
erty, not all implementations may be able to discontinue the use of the depre-
cated property. In such a case, a deprecated property may be extended to new
characters so as to maintain it in a usable and consistent state.

Informative or normative properties in the standard will not be removed even when they
are supplanted by other properties or are no longer useful. However, they may be stabilized
and/or deprecated.

The complete list of stability policies which affect character properties, their values, and
their aliases, is available online. See the subsection “Policies” in Appendix B.3, Other Uni-
code Online Resources.

Simple and Derived Properties
D45 Simple property: A Unicode character property whose values are specified directly in

the Unicode Character Database (or elsewhere in the standard) and whose values
cannot be derived from other simple properties.

D46 Derived property: A Unicode character property whose values are algorithmically
derived from some combination of simple properties.

The Unicode Character Database lists a number of derived properties explicitly. Even
though these values can be derived, they are provided as lists because the derivation may
not be trivial and because explicit lists are easier to understand, reference, and implement.
Good examples of derived properties include the ID_Start and ID_Continue properties,
which can be used to specify a formal identifier syntax for Unicode characters. The details
of how derived properties are computed can be found in the documentation for the Uni-
code Character Database.

Property Aliases
To enable normative references to Unicode character properties, formal aliases for proper-
ties and for property values are defined as part of the Unicode Character Database.

D47 Property alias: A unique identifier for a particular Unicode character property.

• The identifiers used for property aliases contain only ASCII alphanumeric
characters or the underscore character.

• Short and long forms for each property alias are defined. The short forms are
typically just two or three characters long to facilitate their use as attributes for
tags in markup languages. For example, “General_Category” is the long form

Conformance 103 3.5 Properties
and “gc” is the short form of the property alias for the General Category prop-
erty. The long form serves as the formal name for the character property.

• Property aliases are defined in the file PropertyAliases.txt lists all of the non-
Unihan properties that are part of each version of the standard. The Unihan
properties are listed in Unicode Standard Annex #38, “Unicode Han Database
(Unihan).”

• Property aliases of normative properties are themselves normative.

D48 Property value alias: A unique identifier for a particular enumerated value for a par-
ticular Unicode character property.

• The identifiers used for property value aliases contain only ASCII alphanu-
meric characters or the underscore character, or have the special value “n/a”.

• Short and long forms for property value aliases are defined. For example, “Cur-
rency_Symbol” is the long form and “Sc” is the short form of the property value
alias for the currency symbol value of the General Category property.

• Property value aliases are defined in the file PropertyValueAliases.txt in the
Unicode Character Database.

• Property value aliases are unique identifiers only in the context of the particular
property with which they are associated. The same identifier string might be
associated with an entirely different value for a different property. The combi-
nation of a property alias and a property value alias is, however, guaranteed to
be unique.

• Property value aliases referring to values of normative properties are them-
selves normative.

The property aliases and property value aliases can be used, for example, in XML formats
of property data, for regular-expression property tests, and in other programmatic textual
descriptions of Unicode property data. Thus “gc = Lu” is a formal way of specifying that the
General Category of a character (using the property alias “gc”) has the value of being an
uppercase letter (using the property value alias “Lu”).

Private Use
D49 Private-use code point: Code points in the ranges U+E000..U+F8FF, U+F0000..

U+FFFFD, and U+100000..U+10FFFD.

• Private-use code points are considered to be assigned characters, but the
abstract characters associated with them have no interpretation specified by
this standard. They can be given any interpretation by conformant processes.

• Private-use code points are given default property values, but these default val-
ues are overridable by higher-level protocols that give those private-use code
points a specific interpretation. See Section 23.5, Private-Use Characters.

Conformance 104 3.6 Combination
3.6 Combination

Combining Character Sequences
D50 Graphic character: A character with the General Category of Letter (L), Combining

Mark (M), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Graphic characters specifically exclude the line and paragraph separators (Zl,
Zp), as well as the characters with the General Category of Other (Cn, Cs, Cc,
Cf).

• The interpretation of private-use characters (Co) as graphic characters or not is
determined by the implementation.

• For more information, see Chapter 2, General Structure, especially Section 2.4,
Code Points and Characters, and Table 2-3.

D51 Base character: Any graphic character except for those with the General Category of
Combining Mark (M).

• Most Unicode characters are base characters. In terms of General Category val-
ues, a base character is any code point that has one of the following categories:
Letter (L), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

• Base characters do not include control characters or format controls.

• Base characters are independent graphic characters, but this does not preclude
the presentation of base characters from adopting different contextual forms or
participating in ligatures.

• The interpretation of private-use characters (Co) as base characters or not is
determined by the implementation. However, the default interpretation of pri-
vate-use characters should be as base characters, in the absence of other infor-
mation.

D51a Extended base: Any base character, or any standard Korean syllable block.

• This term is defined to take into account the fact that sequences of Korean con-
joining jamo characters behave as if they were a single Hangul syllable charac-
ter, so that the entire sequence of jamos constitutes a base.

• For the definition of standard Korean syllable block, see D134 in Section 3.12,
Conjoining Jamo Behavior.

D52 Combining character: A character with the General Category of Combining Mark
(M).

• Combining characters consist of all characters with the General Category val-
ues of Spacing Combining Mark (Mc), Nonspacing Mark (Mn), and Enclosing
Mark (Me).

Conformance 105 3.6 Combination
• All characters with non-zero canonical combining class are combining charac-
ters, but the reverse is not the case: there are combining characters with a zero
canonical combining class.

• The interpretation of private-use characters (Co) as combining characters or
not is determined by the implementation.

• These characters are not normally used in isolation unless they are being
described. They include such characters as accents, diacritics, Hebrew points,
Arabic vowel signs, and Indic matras.

• The graphic positioning of a combining character depends on the last preced-
ing base character, unless they are separated by a character that is neither a
combining character nor either zero width joiner or zero width non-

joiner. The combining character is said to apply to that base character.

• There may be no such base character, such as when a combining character is at
the start of text or follows a control or format character—for example, a car-
riage return, tab, or right-left mark. In such cases, the combining characters
are called isolated combining characters.

• With isolated combining characters or when a process is unable to perform
graphical combination, a process may present a combining character without
graphical combination; that is, it may present it as if it were a base character.

• The representative images of combining characters are depicted with a dotted
circle in the code charts. When presented in graphical combination with a pre-
ceding base character, that base character is intended to appear in the position
occupied by the dotted circle.

D53 Nonspacing mark: A combining character with the General Category of Nonspacing
Mark (Mn) or Enclosing Mark (Me).

• The position of a nonspacing mark in presentation depends on its base charac-
ter. It generally does not consume space along the visual baseline in and of
itself.

• Such characters may be large enough to affect the placement of their base char-
acter relative to preceding and succeeding base characters. For example, a cir-
cumflex applied to an “i” may affect spacing (“î”), as might the character
U+20DD combining enclosing circle.

D54 Enclosing mark: A nonspacing mark with the General Category of Enclosing Mark
(Me).

• Enclosing marks are a subclass of nonspacing marks that surround a base char-
acter, rather than merely being placed over, under, or through it.

Conformance 106 3.6 Combination
D55 Spacing mark: A combining character that is not a nonspacing mark.

• Examples include U+093F devanagari vowel sign i. In general, the behavior
of spacing marks does not differ greatly from that of base characters.

• Spacing marks such as U+0BCA tamil vowel sign o may be rendered on both
sides of a base character, but are not enclosing marks.

D56 Combining character sequence: A maximal character sequence consisting of either a
base character followed by a sequence of one or more characters where each is a
combining character, zero width joiner, or zero width non-joiner; or a
sequence of one or more characters where each is a combining character, zero

width joiner, or zero width non-joiner.

• When identifying a combining character sequence in Unicode text, the defini-
tion of the combining character sequence is applied maximally. For example, in
the sequence <c, dot-below, caron, acute, a>, the entire sequence <c, dot-
below, caron, acute> is identified as the combining character sequence, rather
than the alternative of identifying <c, dot-below> as a combining character
sequence followed by a separate (defective) combining character sequence
<caron, acute>.

D56a Extended combining character sequence: A maximal character sequence consisting
of either an extended base followed by a sequence of one or more characters where
each is a combining character, zero width joiner, or zero width non-joiner ; or
a sequence of one or more characters where each is a combining character, zero

width joiner, or zero width non-joiner.

• Combining character sequence is commonly abbreviated as CCS, and
extended combining character sequence is commonly abbreviated as ECCS.

D57 Defective combining character sequence: A combining character sequence that does
not start with a base character.

• Defective combining character sequences occur when a sequence of combining
characters appears at the start of a string or follows a control or format charac-
ter. Such sequences are defective from the point of view of handling of combin-
ing marks, but are not ill-formed. (See D84.)

Grapheme Clusters
D58 Grapheme base: A character with the property Grapheme_Base, or any standard

Korean syllable block.

• Characters with the property Grapheme_Base include all base characters (with
the exception of U+FF9E..U+FF9F) plus most spacing marks.

• The concept of a grapheme base is introduced to simplify discussion of the
graphical application of nonspacing marks to other elements of text. A graph-
eme base may consist of a spacing (combining) mark, which distinguishes it

Conformance 107 3.6 Combination
from a base character per se. A grapheme base may also itself consist of a
sequence of characters, in the case of the standard Korean syllable block.

• For the definition of standard Korean syllable block, see D134 in Section 3.12,
Conjoining Jamo Behavior.

D59 Grapheme extender: A character with the property Grapheme_Extend.

• Grapheme extender characters consist of all nonspacing marks, zero width

joiner, zero width non-joiner, U+FF9E halfwidth katakana voiced

sound mark, U+FF9F halfwidth katakana semi-voiced sound mark, and
a small number of spacing marks.

• A grapheme extender can be conceived of primarily as the kind of nonspacing
graphical mark that is applied above or below another spacing character.

• zero width joiner and zero width non-joiner are formally defined to be
grapheme extenders so that their presence does not break up a sequence of
other grapheme extenders.

• The small number of spacing marks that have the property Grapheme_Extend
are all the second parts of a two-part combining mark.

• The set of characters with the Grapheme_Extend property and the set of char-
acters with the Grapheme_Base property are disjoint, by definition.

• The Grapheme_Extend property is used in the derivation of the set of charac-
ters with the value Grapheme_Cluster_Break = Extend, but is not identical to
it. See Section 3, “Grapheme Cluster Boundaries” in UAX #29 for details.

D60 Grapheme cluster: The text between grapheme cluster boundaries as specified by
Unicode Standard Annex #29, “Unicode Text Segmentation.”

• This definition of “grapheme cluster” is generic. The specification of grapheme
cluster boundary segmentation in UAX #29 includes two alternatives, for
“extended grapheme clusters” and for “legacy grapheme clusters.” Further-
more, the segmentation algorithm in UAX #29 is tailorable.

• The grapheme cluster represents a horizontally segmentable unit of text, con-
sisting of some grapheme base (which may consist of a Korean syllable)
together with any number of nonspacing marks applied to it.

• A grapheme cluster is similar, but not identical to a combining character
sequence. A combining character sequence starts with a base character and
extends across any subsequent sequence of combining marks, nonspacing or
spacing. A combining character sequence is most directly relevant to processing
issues related to normalization, comparison, and searching.

• A grapheme cluster typically starts with a grapheme base and then extends
across any subsequent sequence of nonspacing marks. A grapheme cluster is
most directly relevant to text rendering and processes such as cursor placement

Conformance 108 3.6 Combination
and text selection in editing, but may also be relevant to comparison and
searching.

• For many processes, a grapheme cluster behaves as if it were a single character
with the same properties as its grapheme base. Effectively, nonspacing marks
apply graphically to the base, but do not change its properties. For example, <x,
macron> behaves in line breaking or bidirectional layout as if it were the char-
acter x.

D61 Extended grapheme cluster: The text between extended grapheme cluster boundaries
as specified by Unicode Standard Annex #29, “Unicode Text Segmentation.”

• Extended grapheme clusters are defined in a parallel manner to legacy graph-
eme clusters, but also include sequences of spacing marks.

• Grapheme clusters and extended grapheme clusters may not have any particu-
lar linguistic significance, but are used to break up a string of text into units for
processing.

• Grapheme clusters and extended grapheme clusters may be adjusted for partic-
ular processing requirements, by tailoring the rules for grapheme cluster seg-
mentation specified in Unicode Standard Annex #29, “Unicode Text
Segmentation.”

Application of Combining Marks
A number of principles in the Unicode Standard relate to the application of combining
marks. These principles are listed in this section, with an indication of which are consid-
ered to be normative and which are considered to be guidelines.

In particular, guidelines for rendering of combining marks in conjunction with other char-
acters should be considered as appropriate for defining default rendering behavior, in the
absence of more specific information about rendering. It is often the case that combining
marks in complex scripts or even particular, general-use nonspacing marks will have ren-
dering requirements that depart significantly from the general guidelines. Rendering pro-
cesses should, as appropriate, make use of available information about specific typographic
practices and conventions so as to produce best rendering of text.

To help in the clarification of the principles regarding the application of combining marks,
a distinction is made between dependence and graphical application.

D61a Dependence: A combining mark is said to depend on its associated base character.

• The associated base character is the base character in the combining character
sequence that a combining mark is part of.

• A combining mark in a defective combining character sequence has no associ-
ated base character and thus cannot be said to depend on any particular base
character. This is one of the reasons why fallback processing is required for
defective combining character sequences.

Conformance 109 3.6 Combination
• Dependence concerns all combining marks, including spacing marks and com-
bining marks that have no visible display.

D61b Graphical application: A nonspacing mark is said to apply to its associated graph-
eme base.

• The associated grapheme base is the grapheme base in the grapheme cluster
that a nonspacing mark is part of.

• A nonspacing mark in a defective combining character sequence is not part of a
grapheme cluster and is subject to the same kinds of fallback processing as for
any defective combining character sequence.

• Graphic application concerns visual rendering issues and thus is an issue for
nonspacing marks that have visible glyphs. Those glyphs interact, in rendering,
with their grapheme base.

Throughout the text of the standard, whenever the situation is clear, discussion of combin-
ing marks often simply talks about combining marks “applying” to their base. In the proto-
typical case of a nonspacing accent mark applying to a single base character letter, this
simplification is not problematical, because the nonspacing mark both depends (notion-
ally) on its base character and simultaneously applies (graphically) to its grapheme base,
affecting its display. The finer distinctions are needed when dealing with the edge cases,
such as combining marks that have no display glyph, graphical application of nonspacing
marks to Korean syllables, and the behavior of spacing combining marks.

The distinction made here between notional dependence and graphical application does
not preclude spacing marks or even sequences of base characters from having effects on
neighboring characters in rendering. Thus spacing forms of dependent vowels (matras) in
Indic scripts may trigger particular kinds of conjunct formation or may be repositioned in
ways that influence the rendering of other characters. (See Chapter 12, South and Central
Asia-I, for many examples.) Similarly, sequences of base characters may form ligatures in
rendering. (See “Cursive Connection and Ligatures” in Section 23.2, Layout Controls.)

The following listing specifies the principles regarding application of combining marks.
Many of these principles are illustrated in Section 2.11, Combining Characters, and
Section 7.9, Combining Marks.

P1 [Normative] Combining character order: Combining characters follow the base
character on which they depend.

• This principle follows from the definition of a combining character sequence.

• Thus the character sequence <U+0061 “a” latin small letter a, U+0308 “!”
combining diaeresis, U+0075 “u” latin small letter u> is unambiguously
interpreted (and displayed) as “äu”, not “aü”. See Figure 2-18.

P2 [Guideline] Inside-out application. Nonspacing marks with the same combining
class are generally positioned graphically outward from the grapheme base to
which they apply.

Conformance 110 3.6 Combination
• The most numerous and important instances of this principle involve nonspac-
ing marks applied either directly above or below a grapheme base. See
Figure 2-21.

• In a sequence of two nonspacing marks above a grapheme base, the first nons-
pacing mark is placed directly above the grapheme base, and the second is then
placed above the first nonspacing mark.

• In a sequence of two nonspacing marks below a grapheme base, the first nons-
pacing mark is placed directly below the grapheme base, and the second is then
placed below the first nonspacing mark.

• This rendering behavior for nonspacing marks can be generalized to sequences
of any length, although practical considerations usually limit such sequences to
no more than two or three marks above and/or below a grapheme base.

• The principle of inside-out application is also referred to as default stacking
behavior for nonspacing marks.

P3 [Guideline] Side-by-side application. Notwithstanding the principle of inside-out
application, some specific nonspacing marks may override the default stacking
behavior and are positioned side-by-side over (or under) a grapheme base, rather
than stacking vertically.

• Such side-by-side positioning may reflect language-specific orthographic rules,
such as for Vietnamese diacritics and tone marks or for polytonic Greek
breathing and accent marks. See Table 2-6.

• Side-by-side positioning may also reflect certain writing conventions, such as
for titlo letters in the Old Church Slavonic manuscript tradition.

• When positioned side-by-side, the visual rendering order of a sequence of non-
spacing marks reflects the dominant order of the script with which they are
used. Thus, in Greek, the first nonspacing mark in such a sequence will be posi-
tioned to the left side above a grapheme base, and the second to the right side
above the grapheme base. In Hebrew, the opposite positioning is used for side-
by-side placement.

• The combining parentheses diacritical marks U+1ABB..U+1ABD are also posi-
tioned in a side-by-side manner, surrounding other diacritics, as described in
the subsection “Combining Diacritical Marks Extended: U+1AB0–U+1AFF” in
Section 7.9, Combining Marks.

P4 [Guideline] Traditional typographical behavior will sometimes override the
default placement or rendering of nonspacing marks.

• Because of typographical conflict with the descender of a base character, a
combining comma below placed on a lowercase “g” is traditionally rendered as
if it were an inverted comma above. See Figure 7-1.

Conformance 111 3.6 Combination
• Because of typographical conflict with the ascender of a base character, a com-
bining há`ek (caron) is traditionally rendered as an apostrophe when placed,
for example, on a lowercase “d”. See Figure 7-1.

• The relative placement of vowel marks in Arabic cannot be predicted by default
stacking behavior alone, but depends on traditional rules of Arabic typography.
See Figure 9-5.

P5 [Normative] Nondistinct order. Nonspacing marks with different, non-zero com-
bining classes may occur in different orders without affecting either the visual dis-
play of a combining character sequence or the interpretation of that sequence.

• For example, if one nonspacing mark occurs above a grapheme base and
another nonspacing mark occurs below it, they will have distinct combining
classes. The order in which they occur in the combining character sequence
does not matter for the display or interpretation of the resulting grapheme
cluster.

• The introduction of the combining class for characters and its use in canonical
ordering in the standard is to precisely define canonical equivalence and
thereby clarify exactly which such alternate sequences must be considered as
identical for display and interpretation. See Figure 2-24.

• In cases of nondistinct order, the order of combining marks has no linguistic
significance. The order does not reflect how “closely bound” they are to the
base. After canonical reordering, the order may no longer reflect the typed-in
sequence. Rendering systems should be prepared to deal with common typed-in
sequences and with canonically reordered sequences. See Table 5-3.

• Inserting a combining grapheme joiner between two combining marks with
nondistinct order prevents their canonical reordering. For more information,
see “Combining Grapheme Joiner” in Section 23.2, Layout Controls.

P6 [Guideline] Enclosing marks surround their grapheme base and any intervening
nonspacing marks.

• This implies that enclosing marks successively surround previous enclosing
marks. See Figure 3-1.

• Dynamic application of enclosing marks—particularly sequences of enclosing
marks—is beyond the capability of most fonts and simple rendering processes.
It is not unexpected to find fallback rendering in cases such as that illustrated
in Figure 3-1.

Figure 3-1. Enclosing Marks

a ¨ ä$ �$ $
0061 20DE 0308 20DD

+ + +

Conformance 112 3.6 Combination
P7 [Guideline] Double diacritic nonspacing marks, such as U+0360 combining dou-

ble tilde, apply to their grapheme base, but are intended to be rendered with
glyphs that encompass a following grapheme base as well.

• Because such double diacritic display spans combinations of elements that
would otherwise be considered grapheme clusters, the support of double dia-
critics in rendering may involve special handling for cursor placement and text
selection. See Figure 7-9 for an example.

P8 [Guideline] When double diacritic nonspacing marks interact with normal nons-
pacing marks in a grapheme cluster, they “float” to the outermost layer of the
stack of rendered marks (either above or below).

• This behavior can be conceived of as a kind of looser binding of such double
diacritics to their bases. In effect, all other nonspacing marks are applied first,
and then the double diacritic will span the resulting stacks. See Figure 7-10 for
an example.

• Double diacritic nonspacing marks are also given a very high combining class,
so that in canonical order they appear at or near the end of any combining
character sequence. Figure 7-11 shows an example of the use of CGJ to block
this reordering.

• The interaction of enclosing marks and double diacritics is not well defined
graphically. Many fonts and rendering processes may not be able to handle
combinations of these marks. It is not recommended to use combinations of
these together in the same grapheme cluster.

P9 [Guideline] When a nonspacing mark above (a combining mark with ccc = 230) is
applied to the letters i and j or any other character with the Soft_Dotted property,
the inherent dot on the base character is suppressed in display.

• See Figure 7-2 for an example.

• For languages such as Lithuanian, in which both a dot and an accent must be
displayed, use U+0307 combining dot above. For guidelines in handling this
situation in case mapping, see Section 5.18, Case Mappings.

Combining Marks and Korean Syllables. When a grapheme cluster comprises a Korean
syllable, a combining mark applies to that entire syllable. For example, in the following
sequence the grave is applied to the entire Korean syllable, not just to the last jamo:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+0300 & grave →
(

If the combining mark in question is an enclosing combining mark, then it would enclose
the entire Korean syllable, rather than the last jamo in it:

U+1100 ! choseong kiyeok + U+1161 " jungseong a + U+20DD % enclos-
ing circle →)

Conformance 113 3.6 Combination
This treatment of the application of combining marks with respect to Korean syllables fol-
lows from the implications of canonical equivalence. It should be noted, however, that
older implementations may have supported the application of an enclosing combining
mark to an entire Indic consonant conjunct or to a sequence of grapheme clusters linked
together by combining grapheme joiners. Such an approach has a number of technical
problems and leads to interoperability defects, so it is strongly recommended that imple-
mentations do not follow it.

For more information on the recommended use of the combining grapheme joiner, see the
subsection “Combining Grapheme Joiner” in Section 23.2, Layout Controls. For more dis-
cussion regarding the application of combining marks in general, see Section 7.9, Combin-
ing Marks.

Conformance 114 3.7 Decomposition
3.7 Decomposition
D62 Decomposition mapping: A mapping from a character to a sequence of one or more

characters that is a canonical or compatibility equivalent, and that is listed in the
character names list or described in Section 3.12, Conjoining Jamo Behavior.

• Each character has at most one decomposition mapping. The mappings in
Section 3.12, Conjoining Jamo Behavior, are canonical mappings. The mappings
in the character names list are identified as either canonical or compatibility
mappings (see Section 24.1, Character Names List).

D63 Decomposable character: A character that is equivalent to a sequence of one or more
other characters, according to the decomposition mappings found in the Unicode
Character Database, and those described in Section 3.12, Conjoining Jamo Behavior.

• A decomposable character is also referred to as a precomposed character or
composite character.

• The decomposition mappings from the Unicode Character Database are also
given in Section 24.1, Character Names List.

D64 Decomposition: A sequence of one or more characters that is equivalent to a decom-
posable character. A full decomposition of a character sequence results from decom-
posing each of the characters in the sequence until no characters can be further
decomposed.

Compatibility Decomposition
D65 Compatibility decomposition: The decomposition of a character or character

sequence that results from recursively applying both the compatibility mappings
and the canonical mappings found in the Unicode Character Database, and those
described in Section 3.12, Conjoining Jamo Behavior, until no characters can be fur-
ther decomposed, and then reordering nonspacing marks according to Section 3.11,
Normalization Forms.

• The decomposition mappings from the Unicode Character Database are also
given in Section 24.1, Character Names List.

• Some compatibility decompositions remove formatting information.

D66 Compatibility decomposable character: A character whose compatibility decomposi-
tion is not identical to its canonical decomposition. It may also be known as a com-
patibility precomposed character or a compatibility composite character.

• For example, U+00B5 micro sign has no canonical decomposition mapping,
so its canonical decomposition is the same as the character itself. It has a com-
patibility decomposition to U+03BC greek small letter mu. Because micro

sign has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

Conformance 115 3.7 Decomposition
• For example, U+03D3 greek upsilon with acute and hook symbol canon-
ically decomposes to the sequence <U+03D2 greek upsilon with hook sym-

bol, U+0301 combining acute accent>. That sequence has a compatibility
decomposition of <U+03A5 greek capital letter upsilon, U+0301 com-

bining acute accent>. Because greek upsilon with acute and hook sym-

bol has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

• This term should not be confused with the term “compatibility character,”
which is discussed in Section 2.3, Compatibility Characters.

• Many compatibility decomposable characters are included in the Unicode
Standard solely to represent distinctions in other base standards. They support
transmission and processing of legacy data. Their use is discouraged other than
for legacy data or other special circumstances.

• Some widely used and indispensable characters, such as NBSP, are compatibil-
ity decomposable characters for historical reasons. Their use is not discour-
aged.

• A large number of compatibility decomposable characters are used in phonetic
and mathematical notation, where their use is not discouraged.

• For historical reasons, some characters that might have been given a compati-
bility decomposition were not, in fact, decomposed. The Normalization Stabil-
ity Policy prohibits adding decompositions for such cases in the future, so that
normalization forms will stay stable. See the subsection “Policies” in
Section B.3, Other Unicode Online Resources.

• Replacing a compatibility decomposable character by its compatibility decom-
position may lose round-trip convertibility with a base standard.

D67 Compatibility equivalent: Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.

Canonical Decomposition
D68 Canonical decomposition: The decomposition of a character or character sequence

that results from recursively applying the canonical mappings found in the Unicode
Character Database and those described in Section 3.12, Conjoining Jamo Behavior,
until no characters can be further decomposed, and then reordering nonspacing
marks according to Section 3.11, Normalization Forms.

• The decomposition mappings from the Unicode Character Database are also
printed in Section 24.1, Character Names List.

• A canonical decomposition does not remove formatting information.

Conformance 116 3.7 Decomposition
D69 Canonical decomposable character: A character that is not identical to its canonical
decomposition. It may also be known as a canonical precomposed character or a
canonical composite character.

• For example, U+00E0 latin small letter a with grave is a canonical
decomposable character because its canonical decomposition is to the
sequence <U+0061 latin small letter a, U+0300 combining grave

accent>. U+212A kelvin sign is a canonical decomposable character because
its canonical decomposition is to U+004B latin capital letter k.

D70 Canonical equivalent: Two character sequences are said to be canonical equivalents
if their full canonical decompositions are identical.

• For example, the sequences <o, combining-diaeresis> and <ö> are canonical
equivalents. Canonical equivalence is a Unicode property. It should not be con-
fused with language-specific collation or matching, which may add other
equivalencies. For example, in Swedish, ö is treated as a completely different
letter from o and is collated after z. In German, ö is weakly equivalent to oe and
is collated with oe. In English, ö is just an o with a diacritic that indicates that it
is pronounced separately from the previous letter (as in coöperate) and is col-
lated with o.

• By definition, all canonical-equivalent sequences are also compatibility-equiva-
lent sequences.

For information on the use of decomposition in normalization, see Section 3.11, Normal-
ization Forms.

Conformance 117 3.8 Surrogates
3.8 Surrogates
D71 High-surrogate code point: A Unicode code point in the range U+D800 to U+DBFF.

D72 High-surrogate code unit: A 16-bit code unit in the range D80016 to DBFF16, used in
UTF-16 as the leading code unit of a surrogate pair.

D73 Low-surrogate code point: A Unicode code point in the range U+DC00 to U+DFFF.

D74 Low-surrogate code unit: A 16-bit code unit in the range DC0016 to DFFF16, used in
UTF-16 as the trailing code unit of a surrogate pair.

• High-surrogate and low-surrogate code points are designated only for that use.

• High-surrogate and low-surrogate code units are used only in the context of the
UTF-16 character encoding form.

D75 Surrogate pair: A representation for a single abstract character that consists of a
sequence of two 16-bit code units, where the first value of the pair is a high-surro-
gate code unit and the second value is a low-surrogate code unit.

• Surrogate pairs are used only in UTF-16. (See Section 3.9, Unicode Encoding
Forms.)

• Isolated surrogate code units have no interpretation on their own. Certain
other isolated code units in other encoding forms also have no interpretation
on their own. For example, the isolated byte 8016 has no interpretation in UTF-
8; it can be used only as part of a multibyte sequence. (See Table 3-7.)

• Sometimes high-surrogate code units are referred to as leading surrogates. Low-
surrogate code units are then referred to as trailing surrogates. This is analo-
gous to usage in UTF-8, which has leading bytes and trailing bytes.

• For more information, see Section 23.6, Surrogates Area, and Section 5.4, Han-
dling Surrogate Pairs in UTF-16.

Conformance 118 3.9 Unicode Encoding Forms
3.9 Unicode Encoding Forms
The Unicode Standard supports three character encoding forms: UTF-32, UTF-16, and
UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF and
U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is specified
for each encoding form. This section presents the formal definition of each of these encod-
ing forms.

D76 Unicode scalar value: Any Unicode code point except high-surrogate and low-surro-
gate code points.

• As a result of this definition, the set of Unicode scalar values consists of the
ranges 0 to D7FF16 and E00016 to 10FFFF16, inclusive.

D77 Code unit: The minimal bit combination that can represent a unit of encoded text
for processing or interchange.

• Code units are particular units of computer storage. Other character encoding
standards typically use code units defined as 8-bit units—that is, octets. The
Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit
code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32
encoding form.

• A code unit is also referred to as a code value in the information industry.

• In the Unicode Standard, specific values of some code units cannot be used to
represent an encoded character in isolation. This restriction applies to isolated
surrogate code units in UTF-16 and to the bytes 80–FF in UTF-8. Similar
restrictions apply for the implementations of other character encoding stan-
dards; for example, the bytes 81–9F, E0–FC in SJIS (Shift-JIS) cannot represent
an encoded character by themselves.

• For information on use of wchar_t or other programming language types to
represent Unicode code units, see “ANSI/ISO C wchar_t” in Section 5.2, Pro-
gramming Languages and Data Types.

D78 Code unit sequence: An ordered sequence of one or more code units.

• When the code unit is an 8-bit unit, a code unit sequence may also be referred
to as a byte sequence.

• A code unit sequence may consist of a single code unit.

• In the context of programming languages, the value of a string data type basi-
cally consists of a code unit sequence. Informally, a code unit sequence is itself
just referred to as a string, and a byte sequence is referred to as a byte string. Care
must be taken in making this terminological equivalence, however, because the
formally defined concept of a string may have additional requirements or com-
plications in programming languages. For example, a string is defined as a
pointer to char in the C language and is conventionally terminated with a

Conformance 119 3.9 Unicode Encoding Forms
NULL character. In object-oriented languages, a string is a complex object,
with associated methods, and its value may or may not consist of merely a code
unit sequence.

• Depending on the structure of a character encoding standard, it may be neces-
sary to use a code unit sequence (of more than one unit) to represent a single
encoded character. For example, the code unit in SJIS is a byte: encoded char-
acters such as “a” can be represented with a single byte in SJIS, whereas ideo-
graphs require a sequence of two code units. The Unicode Standard also makes
use of code unit sequences whose length is greater than one code unit.

D79 A Unicode encoding form assigns each Unicode scalar value to a unique code unit
sequence.

• For historical reasons, the Unicode encoding forms are also referred to as Uni-
code (or UCS) transformation formats (UTF). That term is actually ambiguous
between its usage for encoding forms and encoding schemes.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is one-to-one. This property guarantees
that a reverse mapping can always be derived. Given the mapping of any Uni-
code scalar value to a particular code unit sequence for a given encoding form,
one can derive the original Unicode scalar value unambiguously from that code
unit sequence.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is not onto. In other words, for any
given encoding form, there exist code unit sequences that have no associated
Unicode scalar value.

• To ensure that the mapping for a Unicode encoding form is one-to-one, all
Unicode scalar values, including those corresponding to noncharacter code
points and unassigned code points, must be mapped to unique code unit
sequences. Note that this requirement does not extend to high-surrogate and
low-surrogate code points, which are excluded by definition from the set of
Unicode scalar values.

D80 Unicode string: A code unit sequence containing code units of a particular Unicode
encoding form.

• In the rawest form, Unicode strings may be implemented simply as arrays of
the appropriate integral data type, consisting of a sequence of code units lined
up one immediately after the other.

• A single Unicode string must contain only code units from a single Unicode
encoding form. It is not permissible to mix forms within a string.

D81 Unicode 8-bit string: A Unicode string containing only UTF-8 code units.

D82 Unicode 16-bit string: A Unicode string containing only UTF-16 code units.

Conformance 120 3.9 Unicode Encoding Forms
D83 Unicode 32-bit string: A Unicode string containing only UTF-32 code units.

D84 Ill-formed: A Unicode code unit sequence that purports to be in a Unicode encoding
form is called ill-formed if and only if it does not follow the specification of that Uni-
code encoding form.

• Any code unit sequence that would correspond to a code point outside the
defined range of Unicode scalar values would, for example, be ill-formed.

• UTF-8 has some strong constraints on the possible byte ranges for leading and
trailing bytes. A violation of those constraints would produce a code unit
sequence that could not be mapped to a Unicode scalar value, resulting in an
ill-formed code unit sequence.

D84a Ill-formed code unit subsequence: A non-empty subsequence of a Unicode code unit
sequence X which does not contain any code units which also belong to any mini-
mal well-formed subsequence of X.

• In other words, an ill-formed code unit subsequence cannot overlap with a
minimal well-formed subsequence.

D85 Well-formed: A Unicode code unit sequence that purports to be in a Unicode encod-
ing form is called well-formed if and only if it does follow the specification of that
Unicode encoding form.

D85a Minimal well-formed code unit subsequence: A well-formed Unicode code unit
sequence that maps to a single Unicode scalar value.

• For UTF-8, see the specification in D92 and Table 3-7.

• For UTF-16, see the specification in D91.

• For UTF-32, see the specification in D90.

A well-formed Unicode code unit sequence can be partitioned into one or more minimal
well-formed code unit sequences for the given Unicode encoding form. Any Unicode code
unit sequence can be partitioned into subsequences that are either well-formed or ill-
formed. The sequence as a whole is well-formed if and only if it contains no ill-formed sub-
sequence. The sequence as a whole is ill-formed if and only if it contains at least one ill-
formed subsequence.

D86 Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit sequence
of UTF-8 code units.

• The UTF-8 code unit sequence <41 C3 B1 42> is well-formed, because it can be
partitioned into subsequences, all of which match the specification for UTF-8
in Table 3-7. It consists of the following minimal well-formed code unit subse-
quences: <41>, <C3 B1>, and <42>.

• The UTF-8 code unit sequence <41 C2 C3 B1 42> is ill-formed, because it con-
tains one ill-formed subsequence. There is no subsequence for the C2 byte
which matches the specification for UTF-8 in Table 3-7. The code unit

Conformance 121 3.9 Unicode Encoding Forms
sequence is partitioned into one minimal well-formed code unit subsequence,
<41>, followed by one ill-formed code unit subsequence, <C2>, followed by
two minimal well-formed code unit subsequences, <C3 B1> and <42>.

• In isolation, the UTF-8 code unit sequence <C2 C3> would be ill-formed, but
in the context of the UTF-8 code unit sequence <41 C2 C3 B1 42>, <C2 C3>
does not constitute an ill-formed code unit subsequence, because the C3 byte is
actually the first byte of the minimal well-formed UTF-8 code unit subse-
quence <C3 B1>. Ill-formed code unit subsequences do not overlap with mini-
mal well-formed code unit subsequences.

D87 Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit sequence
of UTF-16 code units.

D88 Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit sequence
of UTF-32 code units.

D89 In a Unicode encoding form: A Unicode string is said to be in a particular Unicode
encoding form if and only if it consists of a well-formed Unicode code unit sequence
of that Unicode encoding form.

• A Unicode string consisting of a well-formed UTF-8 code unit sequence is said
to be in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a
UTF-8 string for short.

• A Unicode string consisting of a well-formed UTF-16 code unit sequence is
said to be in UTF-16. Such a Unicode string is referred to as a valid UTF-16
string, or a UTF-16 string for short.

• A Unicode string consisting of a well-formed UTF-32 code unit sequence is
said to be in UTF-32. Such a Unicode string is referred to as a valid UTF-32
string, or a UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all conditions.
This is equivalent to saying that a particular Unicode string need not be in a Unicode
encoding form.

• For example, it is perfectly reasonable to talk about an operation that takes the
two Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which
contains an ill-formed UTF-16 code unit sequence, and concatenates them to
form another Unicode string <004D D800 DF02 004D>, which contains a well-
formed UTF-16 code unit sequence. The first two Unicode strings are not in
UTF-16, but the resultant Unicode string is.

• As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit
string, but does not consist of a well-formed UTF-8 code unit sequence. That
code unit sequence could not result from the specification of the UTF-8 encod-
ing form and is thus ill-formed. (The same code unit sequence could, of course,
be well-formed in the context of some other character encoding standard using
8-bit code units, such as ISO/IEC 8859-1, or vendor code pages.)

Conformance 122 3.9 Unicode Encoding Forms
If a Unicode string purports to be in a Unicode encoding form, then it must not contain any
ill-formed code unit subsequence.

If a process which verifies that a Unicode string is in a Unicode encoding form encounters
an ill-formed code unit subsequence in that string, then it must not identify that string as
being in that Unicode encoding form.

A process which interprets a Unicode string must not interpret any ill-formed code unit
subsequences in the string as characters. (See conformance clause C10.) Furthermore, such
a process must not treat any adjacent well-formed code unit sequences as being part of
those ill-formed code unit sequences.

Table 3-4 gives examples that summarize the three Unicode encoding forms.

UTF-32
D90 UTF-32 encoding form: The Unicode encoding form that assigns each Unicode sca-

lar value to a single unsigned 32-bit code unit with the same numeric value as the
Unicode scalar value.

• In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <0000004D 00000430 00004E8C 00010302>.

• Because surrogate code points are not included in the set of Unicode scalar val-
ues, UTF-32 code units in the range 0000D80016..0000DFFF16 are ill-formed.

• Any UTF-32 code unit greater than 0010FFFF16 is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form defined in
ISO/IEC 10646, see Appendix C.2, Encoding Forms in ISO/IEC 10646.

Table 3-4. Examples of Unicode Encoding Forms

Code Point Encoding Form Code Unit Sequence
U+004D UTF-32 0000004D

UTF-16 004D
UTF-8 4D

U+0430 UTF-32 00000430
UTF-16 0430
UTF-8 D0 B0

U+4E8C UTF-32 00004E8C
UTF-16 4E8C
UTF-8 E4 BA 8C

U+10302 UTF-32 00010302
UTF-16 D800 DF02
UTF-8 F0 90 8C 82

Conformance 123 3.9 Unicode Encoding Forms
UTF-16
D91 UTF-16 encoding form: The Unicode encoding form that assigns each Unicode sca-

lar value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a single unsigned
16-bit code unit with the same numeric value as the Unicode scalar value, and that
assigns each Unicode scalar value in the range U+10000..U+10FFFF to a surrogate
pair, according to Table 3-5.

• In UTF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to
U+10302.

• Because surrogate code points are not Unicode scalar values, isolated UTF-16
code units in the range D80016..DFFF16 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for Uni-
code scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs. Calcula-
tion of the surrogate pair values involves subtraction of 1000016, to account for the starting
offset to the scalar value. ISO/IEC 10646 specifies an equivalent UTF-16 encoding form.
For details, see Appendix C.3, UTF-8 and UTF-16.

Note: wwww = uuuuu - 1

UTF-8
D92 UTF-8 encoding form: The Unicode encoding form that assigns each Unicode scalar

value to an unsigned byte sequence of one to four bytes in length, as specified in
Table 3-6 and Table 3-7.

• In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <4D D0 B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D,
<D0 B0> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and
<F0 90 8C 82> corresponds to U+10302.

• Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is
ill-formed.

• Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”
byte sequences in UTF-8 were those where BMP characters could be repre-
sented in more than one way. These sequences are ill-formed, because they are
not allowed by Table 3-7.

Table 3-5. UTF-16 Bit Distribution

Scalar Value UTF-16
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
000uuuuuxxxxxxxxxxxxxxxx 110110wwwwxxxxxx 110111xxxxxxxxxx

Conformance 124 3.9 Unicode Encoding Forms
• Because surrogate code points are not Unicode scalar values, any UTF-8 byte
sequence that would otherwise map to code points U+D800..U+DFFF is ill-
formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of
Unicode scalar values corresponding to one-, two-, three-, and four-byte sequences. For a
discussion of the difference in the formulation of UTF-8 in ISO/IEC 10646, see
Appendix C.3, UTF-8 and UTF-16.

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte val-
ues such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-formed in that
position. Any byte value outside of the ranges listed is ill-formed. For example:

• The byte sequence <C0 AF> is ill-formed, because C0 is not well-formed in the
“First Byte” column.

• The byte sequence <E0 9F 80> is ill-formed, because in the row where E0 is
well-formed as a first byte, 9F is not well-formed as a second byte.

• The byte sequence <F4 80 83 92> is well-formed, because every byte in that
sequence matches a byte range in a row of the table (the last row).

In Table 3-7, cases where a trailing byte range is not 80..BF are shown in bold italic to draw
attention to them. These exceptions to the general pattern occur only in the second byte of
a sequence.

Table 3-6. UTF-8 Bit Distribution

Scalar Value First Byte Second Byte Third Byte Fourth Byte
00000000 0xxxxxxx 0xxxxxxx
00000yyy yyxxxxxx 110yyyyy 10xxxxxx
zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF
U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Conformance 125 3.9 Unicode Encoding Forms
As a consequence of the well-formedness conditions specified in Table 3-7, the following
byte values are disallowed in UTF-8: C0–C1, F5–FF.

Encoding Form Conversion
D93 Encoding form conversion: A conversion defined directly between the code unit

sequences of one Unicode encoding form and the code unit sequences of another
Unicode encoding form.

• In implementations of the Unicode Standard, a typical API will logically convert
the input code unit sequence into Unicode scalar values (code points) and then
convert those Unicode scalar values into the output code unit sequence. Proper
analysis of the encoding forms makes it possible to convert the code units
directly, thereby obtaining the same results but with a more efficient process.

• A conformant encoding form conversion will treat any ill-formed code unit
sequence as an error condition. (See conformance clause C10.) This guarantees
that it will neither interpret nor emit an ill-formed code unit sequence. Any
implementation of encoding form conversion must take this requirement into
account, because an encoding form conversion implicitly involves a verifica-
tion that the Unicode strings being converted do, in fact, contain well-formed
code unit sequences.

Constraints on Conversion Processes
The requirement not to interpret any ill-formed code unit subsequences in a string as char-
acters (see conformance clause C10) has important consequences for conversion pro-
cesses. Such processes may, for example, interpret UTF-8 code unit sequences as Unicode
character sequences. If the converter encounters an ill-formed UTF-8 code unit sequence
which starts with a valid first byte, but which does not continue with valid successor bytes
(see Table 3-7), it must not consume the successor bytes as part of the ill-formed subse-
quence whenever those successor bytes themselves constitute part of a well-formed UTF-8
code unit subsequence.

If an implementation of a UTF-8 conversion process stops at the first error encountered,
without reporting the end of any ill-formed UTF-8 code unit subsequence, then the
requirement makes little practical difference. However, the requirement does introduce a
significant constraint if the UTF-8 converter continues past the point of a detected error,
perhaps by substituting one or more U+FFFD replacement characters for the uninterpre-
table, ill-formed UTF-8 code unit subsequence. For example, with the input UTF-8 code
unit sequence <C2 41 42>, such a UTF-8 conversion process must not return <U+FFFD>
or <U+FFFD, U+0042>, because either of those outputs would be the result of misinter-
preting a well-formed subsequence as being part of the ill-formed subsequence. The
expected return value for such a process would instead be <U+FFFD, U+0041, U+0042>.

Conformance 126 3.9 Unicode Encoding Forms
For a UTF-8 conversion process to consume valid successor bytes is not only non-confor-
mant, but also leaves the converter open to security exploits. See Unicode Technical Report
#36, “Unicode Security Considerations.”

Although a UTF-8 conversion process is required to never consume well-formed subse-
quences as part of its error handling for ill-formed subsequences, such a process is not oth-
erwise constrained in how it deals with any ill-formed subsequence itself. An ill-formed
subsequence consisting of more than one code unit could be treated as a single error or as
multiple errors.

For example, in processing the UTF-8 code unit sequence <F0 80 80 41>, the only formal
requirement mandated by Unicode conformance for a converter is that the <41> be pro-
cessed and correctly interpreted as <U+0041>. The converter could return <U+FFFD,
U+0041>, handling <F0 80 80> as a single error, or <U+FFFD, U+FFFD, U+FFFD,
U+0041>, handling each byte of <F0 80 80> as a separate error, or could take other
approaches to signalling <F0 80 80> as an ill-formed code unit subsequence.

U+FFFD Substitution of Maximal Subparts
An increasing number of implementations are adopting the handling of ill-formed subse-
quences as specified in the W3C standard for encoding to achieve consistent U+FFFD
replacements. See:

http://www.w3.org/TR/encoding/

The Unicode Standard does not require this practice for conformance. The following text
describes this practice and gives detailed examples.

D93a Unconvertible offset: An offset in a code unit sequence for which no code unit subse-
quence starting at that offset is well-formed.

D93b Maximal subpart of an ill-formed subsequence: The longest code unit subsequence
starting at an unconvertible offset that is either:

 a. the initial subsequence of a well-formed code unit sequence, or

 b. a subsequence of length one.

The term maximal subpart of an ill-formed subsequence can be abbreviated to maximal
subpart when it is clear in context that the subsequence in question is ill-formed.

This practice can be stated simply as:

Whenever an unconvertible offset is reached during conversion of a
code unit sequence:

1. The maximal subpart at that offset is replaced by a single U+FFFD.

2. The conversion proceeds at the offset immediately after the maximal
subpart.

http://www,w3.org/TR/encoding/

Conformance 127 3.9 Unicode Encoding Forms
This definition can be trivially applied to the UTF-32 or UTF-16 encoding forms, but is
primarily of interest when converting UTF-8 strings.

This practice replaces almost every byte of an ill-formed UTF-8 sequence with one
U+FFFD. For example, every byte of a “non-shortest form” sequence (see Definition D92),
or of a truncated version thereof, is replaced, as shown in Table 3-8. (The interpretation of
“non-shortest form” sequences has been forbidden since the publication of Corrigendum
#1.)

Also, every byte of a sequence that would correspond to a surrogate code point, or of a
truncated version thereof, is replaced with one U+FFFD, as shown in Table 3-9. (The inter-
pretation of such byte sequences has been forbidden since Unicode 3.2.)

Finally, every byte of a sequence that would correspond to a code point beyond U+10FFFF,
and any other byte that does not contribute to a valid sequence, is also replaced with one
U+FFFD, as shown in Table 3-10.

Only when a sequence of two or three bytes is a truncated version of a sequence which is
otherwise well-formed to that point, is more than one byte replaced with a single U+FFFD,
as shown in Table 3-11.

For a discussion of the generalization of this approach for conversion of other character
sets to Unicode, see Section 5.22, U+FFFD Substitution in Conversion.

Table 3-8. U+FFFD for Non-Shortest Form Sequences

Bytes C0 AF E0 80 BF F0 81 82 41

Output FFFD FFFD FFFD FFFD FFFD FFFD FFFD FFFD 0041

Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates

Bytes ED A0 80 ED BF BF ED AF 41

Output FFFD FFFD FFFD FFFD FFFD FFFD FFFD FFFD 0041

Table 3-10. U+FFFD for Other Ill-Formed Sequences

Bytes F4 91 92 93 FF 41 80 BF 42

Output FFFD FFFD FFFD FFFD FFFD 0041 FFFD FFFD 0042

Table 3-11. U+FFFD for Truncated Sequences

Bytes E1 80 E2 F0 91 92 F1 BF 41

Output FFFD FFFD FFFD FFFD 0041

Conformance 128 3.10 Unicode Encoding Schemes
3.10 Unicode Encoding Schemes
D94 Unicode encoding scheme: A specified byte serialization for a Unicode encoding

form, including the specification of the handling of a byte order mark (BOM), if
allowed.

• For historical reasons, the Unicode encoding schemes are also referred to as
Unicode (or UCS) transformation formats (UTF). That term is, however,
ambiguous between its usage for encoding forms and encoding schemes.

The Unicode Standard supports seven encoding schemes. This section presents the formal
definition of each of these encoding schemes.

D95 UTF-8 encoding scheme: The Unicode encoding scheme that serializes a UTF-8
code unit sequence in exactly the same order as the code unit sequence itself.

• In the UTF-8 encoding scheme, the UTF-8 code unit sequence <4D D0 B0 E4
BA 8C F0 90 8C 82> is serialized as <4D D0 B0 E4 BA 8C F0 90 8C 82>.

• Because the UTF-8 encoding form already deals in ordered byte sequences, the
UTF-8 encoding scheme is trivial. The byte ordering is already obvious and
completely defined by the UTF-8 code unit sequence itself. The UTF-8 encod-
ing scheme is defined merely for completeness of the Unicode character encod-
ing model.

• While there is obviously no need for a byte order signature when using UTF-8,
there are occasions when processes convert UTF-16 or UTF-32 data contain-
ing a byte order mark into UTF-8. When represented in UTF-8, the byte order
mark turns into the byte sequence <EF BB BF>. Its usage at the beginning of a
UTF-8 data stream is neither required nor recommended by the Unicode Stan-
dard, but its presence does not affect conformance to the UTF-8 encoding
scheme. Identification of the <EF BB BF> byte sequence at the beginning of a
data stream can, however, be taken as a near-certain indication that the data
stream is using the UTF-8 encoding scheme.

D96 UTF-16BE encoding scheme: The Unicode encoding scheme that serializes a UTF-
16 code unit sequence as a byte sequence in big-endian format.

• In UTF-16BE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <00 4D 04 30 4E 8C D8 00 DF 02>.

• In UTF-16BE, an initial byte sequence <FE FF> is interpreted as U+FEFF zero

width no-break space.

D97 UTF-16LE encoding scheme: The Unicode encoding scheme that serializes a UTF-
16 code unit sequence as a byte sequence in little-endian format.

• In UTF-16LE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <4D 00 30 04 8C 4E 00 D8 02 DF>.

Conformance 129 3.10 Unicode Encoding Schemes
• In UTF-16LE, an initial byte sequence <FF FE> is interpreted as U+FEFF zero

width no-break space.

D98 UTF-16 encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-16 encoding scheme, the UTF-16 code unit sequence <004D 0430
4E8C D800 DF02> is serialized as <FE FF 00 4D 04 30 4E 8C D8 00 DF 02> or
<FF FE 4D 00 30 04 8C 4E 00 D8 02 DF> or <00 4D 04 30 4E 8C D8 00 DF
02>.

• In the UTF-16 encoding scheme, an initial byte sequence corresponding to
U+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <FE FF> indicates big-endian
order, and an initial byte sequence <FF FE> indicates little-endian order. The
BOM is not considered part of the content of the text.

• The UTF-16 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-16 encoding scheme is big-endian.

Table 3-12 gives examples that summarize the three Unicode encoding schemes for the
UTF-16 encoding form.

Table 3-12. Summary of UTF-16BE, UTF-16LE, and UTF-16

Code Unit Sequence Encoding Scheme Byte Sequence(s)
004D UTF-16BE 00 4D

UTF-16LE 4D 00
UTF-16 FE FF 00 4D

FF FE 4D 00
00 4D

0430 UTF-16BE 04 30
UTF-16LE 30 04
UTF-16 FE FF 04 30

FF FE 30 04
04 30

4E8C UTF-16BE 4E 8C
UTF-16LE 8C 4E
UTF-16 FE FF 4E 8C

FF FE 8C 4E
4E 8C

D800 DF02 UTF-16BE D8 00 DF 02
UTF-16LE 00 D8 02 DF
UTF-16 FE FF D8 00 DF 02

FF FE 00 D8 02 DF
D8 00 DF 02

Conformance 130 3.10 Unicode Encoding Schemes
D99 UTF-32BE encoding scheme: The Unicode encoding scheme that serializes a UTF-
32 code unit sequence as a byte sequence in big-endian format.

• In UTF-32BE, the UTF-32 code unit sequence <0000004D 00000430
00004E8C 00010302> is serialized as <00 00 00 4D 00 00 04 30 00 00 4E 8C 00
01 03 02>.

• In UTF-32BE, an initial byte sequence <00 00 FE FF> is interpreted as
U+FEFF zero width no-break space.

D100 UTF-32LE encoding scheme: The Unicode encoding scheme that serializes a UTF-
32 code unit sequence as a byte sequence in little-endian format.

• In UTF-32LE, the UTF-32 code unit sequence <0000004D 00000430
00004E8C 00010302> is serialized as <4D 00 00 00 30 04 00 00 8C 4E 00 00 02
03 01 00>.

• In UTF-32LE, an initial byte sequence <FF FE 00 00> is interpreted as
U+FEFF zero width no-break space.

D101 UTF-32 encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in either big-endian or little-endian format.

• In the UTF-32 encoding scheme, the UTF-32 code unit sequence <0000004D
00000430 00004E8C 00010302> is serialized as <00 00 FE FF 00 00 00 4D 00 00
04 30 00 00 4E 8C 00 01 03 02> or <FF FE 00 00 4D 00 00 00 30 04 00 00 8C 4E
00 00 02 03 01 00> or <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

• In the UTF-32 encoding scheme, an initial byte sequence corresponding to
U+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <00 00 FE FF> indicates big-
endian order, and an initial byte sequence <FF FE 00 00> indicates little-
endian order. The BOM is not considered part of the content of the text.

• The UTF-32 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-32 encoding scheme is big-endian.

Table 3-13 gives examples that summarize the three Unicode encoding schemes for the
UTF-32 encoding form.

Table 3-13. Summary of UTF-32BE, UTF-32LE, and UTF-32

Code Unit Sequence Encoding Scheme Byte Sequence(s)
0000004D UTF-32BE 00 00 00 4D

UTF-32LE 4D 00 00 00
UTF-32 00 00 FE FF 00 00 00 4D

FF FE 00 00 4D 00 00 00
00 00 00 4D

Conformance 131 3.10 Unicode Encoding Schemes
The terms UTF-8, UTF-16, and UTF-32, when used unqualified, are ambiguous between
their sense as Unicode encoding forms or Unicode encoding schemes. For UTF-8, this
ambiguity is usually innocuous, because the UTF-8 encoding scheme is trivially derived
from the byte sequences defined for the UTF-8 encoding form. However, for UTF-16 and
UTF-32, the ambiguity is more problematical. As encoding forms, UTF-16 and UTF-32
refer to code units in memory; there is no associated byte orientation, and a BOM is never
used. As encoding schemes, UTF-16 and UTF-32 refer to serialized bytes, as for streaming
data or in files; they may have either byte orientation, and a BOM may be present.

When the usage of the short terms “UTF-16” or “UTF-32” might be misinterpreted, and
where a distinction between their use as referring to Unicode encoding forms or to Uni-
code encoding schemes is important, the full terms, as defined in this chapter of the Uni-
code Standard, should be used. For example, use UTF-16 encoding form or UTF-16
encoding scheme. These terms may also be abbreviated to UTF-16 CEF or UTF-16 CES,
respectively.

When converting between different encoding schemes, extreme care must be taken in han-
dling any initial byte order marks. For example, if one converted a UTF-16 byte serializa-
tion with an initial byte order mark to a UTF-8 byte serialization, thereby converting the
byte order mark to <EF BB BF> in the UTF-8 form, the <EF BB BF> would now be ambig-
uous as to its status as a byte order mark (from its source) or as an initial zero width no-
break space. If the UTF-8 byte serialization were then converted to UTF-16BE and the ini-
tial <EF BB BF> were converted to <FE FF>, the interpretation of the U+FEFF character
would have been modified by the conversion. This would be nonconformant behavior
according to conformance clause C7, because the change between byte serializations
would have resulted in modification of the interpretation of the text. This is one reason
why the use of the initial byte sequence <EF BB BF> as a signature on UTF-8 byte
sequences is not recommended by the Unicode Standard.

00000430 UTF-32BE 00 00 04 30
UTF-32LE 30 04 00 00
UTF-32 00 00 FE FF 00 00 04 30

FF FE 00 00 30 04 00 00
00 00 04 30

00004E8C UTF-32BE 00 00 4E 8C
UTF-32LE 8C 4E 00 00
UTF-32 00 00 FE FF 00 00 4E 8C

FF FE 00 00 8C 4E 00 00
00 00 4E 8C

00010302 UTF-32BE 00 01 03 02
UTF-32LE 02 03 01 00
UTF-32 00 00 FE FF 00 01 03 02

FF FE 00 00 02 03 01 00
00 01 03 02

Table 3-13. Summary of UTF-32BE, UTF-32LE, and UTF-32 (Continued)

Conformance 132 3.11 Normalization Forms
3.11 Normalization Forms
The concepts of canonical equivalent (D70) or compatibility equivalent (D67) characters
in the Unicode Standard make it necessary to have a full, formal definition of equivalence
for Unicode strings. String equivalence is determined by a process called normalization,
whereby strings are converted into forms which are compared directly for identity.

This section provides the formal definitions of the four Unicode Normalization Forms. It
defines the Canonical Ordering Algorithm and the Canonical Composition Algorithm
which are used to convert Unicode strings to one of the Unicode Normalization Forms for
comparison. It also formally defines Unicode Combining Classes—values assigned to all
Unicode characters and used by the Canonical Ordering Algorithm.

Note: In versions of the Unicode Standard up to Version 5.1.0, the Unicode Normalization
Forms and the Canonical Composition Algorithm were defined in Unicode Standard
Annex #15, “Unicode Normalization Forms.” Those definitions have now been consoli-
dated in this chapter, for clarity of exposition of the normative definitions and algorithms
involved in Unicode normalization. However, because implementation of Unicode nor-
malization is quite complex, implementers are still advised to fully consult Unicode Stan-
dard Annex #15, “Unicode Normalization Forms,” which contains more detailed
explanations, examples, and implementation strategies.

Unicode normalization should be carefully distinguished from Unicode collation. Both
processes involve comparison of Unicode strings. However, the point of Unicode normal-
ization is to make a determination of canonical (or compatibility) equivalence or non-
equivalence of strings—it does not provide any rank-ordering information about those
strings. Unicode collation, on the other hand, is designed to provide orderable weights or
“keys” for strings; those keys can then be used to sort strings into ordered lists. Unicode
normalization is not tailorable; normalization equivalence relationships between strings
are exact and unchangeable. Unicode collation, on the other hand, is designed to be tailor-
able to allow many kinds of localized and other specialized orderings of strings. For more
information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

D102 [Moved to Section 3.6, Combination and renumbered as D61a.]

D103 [Moved to Section 3.6, Combination and renumbered as D61b.]

Normalization Stability
A very important attribute of the Unicode Normalization Forms is that they must remain
stable between versions of the Unicode Standard. A Unicode string normalized to a partic-
ular Unicode Normalization Form in one version of the standard is guaranteed to remain
in that Normalization Form for implementations of future versions of the standard. In
order to ensure this stability, there are strong constraints on changes of any character
properties that are involved in the specification of normalization—in particular, the com-
bining class and the decomposition of characters. The details of those constraints are
spelled out in the Normalization Stability Policy. See the subsection “Policies” in

Conformance 133 3.11 Normalization Forms
Appendix B.3, Other Unicode Online Resources. The requirement for stability of normaliza-
tion also constrains what kinds of characters can be encoded in future versions of the stan-
dard. For an extended discussion of this topic, see Section 3, Versioning and Stability, in
Unicode Standard Annex #15, “Unicode Normalization Forms.”

Combining Classes
Each character in the Unicode Standard has a combining class associated with it. The com-
bining class is a numerical value used by the Canonical Ordering Algorithm to determine
which sequences of combining marks are to be considered canonically equivalent and
which are not. Canonical equivalence is the criterion used to determine whether two char-
acter sequences are considered identical for interpretation.

D104 Combining class: A numeric value in the range 0..254 given to each Unicode code
point, formally defined as the property Canonical_Combining_Class.

• The combining class for each encoded character in the standard is specified in
the file UnicodeData.txt in the Unicode Character Database. Any code point
not listed in that data file defaults to \p{Canonical_Combining_Class=0} (or
\p{ccc=0} for short).

• An extracted listing of combining classes, sorted by numeric value, is provided
in the file DerivedCombiningClass.txt in the Unicode Character Database.

• Only combining marks have a combining class other than zero. Almost all
combining marks with a class other than zero are also nonspacing marks, with
a few exceptions. Also, not all nonspacing marks have a non-zero combining
class. Thus, while the correlation between ^\p{ccc=0] and \p{gc=Mn} is close,
it is not exact, and implementations should not depend on the two concepts
being identical.

D105 Fixed position class: A subset of the range of numeric values for combining classes—
specifically, any value in the range 10..199.

• Fixed position classes are assigned to a small number of Hebrew, Arabic, Syr-
iac, Telugu, Thai, Lao, and Tibetan combining marks whose positions were
conceived of as occurring in a fixed position with respect to their grapheme
base, regardless of any other combining mark that might also apply to the
grapheme base.

• Not all Arabic vowel points or Indic matras are given fixed position classes. The
existence of fixed position classes in the standard is an historical artifact of an
earlier stage in its development, prior to the formal standardization of the Uni-
code Normalization Forms.

D106 Typographic interaction: Graphical application of one nonspacing mark in a posi-
tion relative to a grapheme base that is already occupied by another nonspacing
mark, so that some rendering adjustment must be done (such as default stacking or
side-by-side placement) to avoid illegible overprinting or crashing of glyphs.

Conformance 134 3.11 Normalization Forms
The assignment of combining class values for Unicode characters was originally done with
the goal in mind of defining distinct numeric values for each group of nonspacing marks
that would typographically interact. Thus all generic nonspacing marks placed above the
base character are given the same value, \p{ccc=230}, while all generic nonspacing marks
placed below are given the value \p{ccc=220}. Nonspacing marks that tend to sit on one
“shoulder” or another of a grapheme base, or that may actually be attached to the graph-
eme base itself when applied, have their own combining classes.

The design of canonical ordering generally assures that:

• When two combining characters C1 and C2 do typographically interact, the
sequence C1+ C2 is not canonically equivalent to C2+ C1.

• When two combining characters C1 and C2 do not typographically interact,
the sequence C1+ C2 is canonically equivalent to C2+ C1.

This is roughly correct for the normal cases of detached, generic nonspacing marks placed
above and below base letters. However, the ramifications of complex rendering for many
scripts ensure that there are always some edge cases involving typographic interaction
between combining marks of distinct combining classes. This has turned out to be particu-
larly true for some of the fixed position classes for Hebrew and Arabic, for which a distinct
combining class is no guarantee that there will be no typographic interaction for rendering.

Because of these considerations, particular combining class values should be taken only as
a guideline regarding issues of typographic interaction of combining marks.

The only normative use of combining class values is as input to the Canonical Ordering
Algorithm, where they are used to normatively distinguish between sequences of combin-
ing marks that are canonically equivalent and those that are not.

Specification of Unicode Normalization Forms
The specification of Unicode Normalization Forms applies to all Unicode coded character
sequences (D12). For clarity of exposition in the definitions and rules specified here, the
terms “character” and “character sequence” are used, but coded character sequences refer
also to sequences containing noncharacters or reserved code points. Unicode Normaliza-
tion Forms are specified for all Unicode code points, and not just for ordinary, assigned
graphic characters.

Starters
D107 Starter: Any code point (assigned or not) with combining class of zero (ccc = 0).

• Note that ccc = 0 is the default value for the Canonical_Combining_Class
property, so that all reserved code points are Starters by definition. Noncharac-
ters are also Starters by definition. All control characters, format characters,
and private-use characters are also Starters.

Conformance 135 3.11 Normalization Forms
• Private agreements cannot override the value of the Canonical_Combining_Class
property for private-use characters.

Among the graphic characters, all those with General_Category values other than gc = M
are Starters. Some combining marks have ccc = 0 and thus are also Starters. Combining
marks with ccc other than 0 are not Starters. Table 3-14 summarizes the relationship
between types of combining marks and their status as Starters.

The term Starter refers, in concept, to the starting character of a combining character
sequence (D56), because all combining character sequences except defective combining
character sequences (D57) commence with a ccc = 0 character—in other words, they start
with a Starter. However, because the specification of Unicode Normalization Forms must
apply to all possible coded character sequences, and not just to typical combining character
sequences, the behavior of a code point for Unicode Normalization Forms is specified
entirely in terms of its status as a Starter or a non-starter, together with its Decomposi-
tion_Mapping value.

Canonical Ordering Algorithm
D108 Reorderable pair: Two adjacent characters A and B in a coded character sequence

<A, B> are a Reorderable Pair if and only if ccc(A) > ccc(B) > 0.

D109 Canonical Ordering Algorithm: In a decomposed character sequence D, exchange
the positions of the characters in each Reorderable Pair until the sequence contains
no more Reorderable Pairs.

• In effect, the Canonical Ordering Algorithm is a local bubble sort that guaran-
tees that a Canonical Decomposition or a Compatibility Decomposition will
contain no subsequences in which a combining mark is followed directly by
another combining mark that has a lower, non-zero combining class.

• Canonical ordering is defined in terms of application of the Canonical Order-
ing Algorithm to an entire decomposed sequence. For example, canonical
decomposition of the sequence <U+1E0B latin small letter d with dot

above, U+0323 combining dot below> would result in the sequence
<U+0064 latin small letter d, U+0307 combining dot above, U+0323
combining dot below>, a sequence which is not yet in canonical order. Most
decompositions for Unicode strings are already in canonical order.

Table 3-14. Combining Marks and Starter Status
Description gc ccc Starter
Nonspacing Mn 0 Yes

> 0 No
Spacing Mc 0 Yes

> 0 No
Enclosing Me 0 Yes

Conformance 136 3.11 Normalization Forms
Table 3-15 gives some examples of sequences of characters, showing which of them consti-
tute a Reorderable Pair and the reasons for that determination. Except for the base charac-
ter “a”, the other characters in the example table are combining marks; character names are
abbreviated in the Sequence column to make the examples clearer.

Canonical Composition Algorithm
D110 Singleton decomposition: A canonical decomposition mapping from a character to a

different single character.

• The default value for the Decomposition_Mapping property for a code point
(including any private-use character, any noncharacter, and any unassigned
code point) is the code point itself. This default value does not count as a sin-
gleton decomposition, because it does not map a character to a different char-
acter. Private agreements cannot override the decomposition mapping for
private-use characters

• Example: U+2126 ohm sign has a singleton decomposition to U+03A9 greek

capital letter omega.

• A character with a singleton decomposition is often referred to simply as a sin-
gleton for short.

D110aExpanding canonical decomposition: A canonical decomposition mapping from a
character to a sequence of more than one character.

D110bStarter decomposition: An expanding canonical decomposition for which both the
character being mapped and the first character of the resulting sequence are Start-
ers.

• Definitions D110a and D110b are introduced to simplify the following defini-
tion of non-starter decomposition and make it more precise.

D111 Non-starter decomposition: An expanding canonical decomposition which is not a
starter decomposition.

• Example: U+0344 combining greek dialytika tonos has an expanding
canonical decomposition to the sequence <U+0308 combining diaeresis,
U+0301 combining acute accent>. U+0344 is a non-starter, and the first

Table 3-15. Reorderable Pairs

Sequence Combining
Classes Reorderable? Reason

<a, acute> 0, 230 No ccc(A) = 0
<acute, a> 230, 0 No ccc(B) = 0
<diaeresis, acute> 230, 230 No ccc(A) = ccc(B)
<cedilla, acute> 202, 230 No ccc(A) < ccc(B)
<acute, cedilla> 230, 202 Yes ccc(A) > ccc(B)

Conformance 137 3.11 Normalization Forms
character in its decomposition is a non-starter. Therefore, on two counts,
U+0344 has a non-starter decomposition.

• Example: U+0F73 tibetan vowel sign ii has an expanding canonical decom-
position to the sequence <U+0F71 tibetan vowel sign aa, U+0F72 tibetan

vowel sign i>. The first character in that sequence is a non-starter. Therefore
U+0F73 has a non-starter decomposition, even though U+0F73 is a Starter.

• As of the current version of the standard, there are no instances of the third
possible situation: a non-starter character with an expanding canonical decom-
position to a sequence whose first character is a Starter.

D112 Composition exclusion: A Canonical Decomposable Character (D69) which has the
property value Composition_Exclusion = True.

• The list of Composition Exclusions is provided in CompositionExclusions.txt
in the Unicode Character Database.

D113 Full composition exclusion: A Canonical Decomposable Character which has the
property value Full_Composition_Exclusion = True.

• Full composition exclusions consist of the entire list of composition exclusions
plus all characters with singleton decompositions or with non-starter decom-
positions.

• For convenience in implementation of Unicode normalization, the derived
property Full_Composition_Exclusion is computed, and all characters with the
property value Full_Composition_Exclusion = True are listed in DerivedNor-
malizationProps.txt in the Unicode Character Database.

D114 Primary composite: A Canonical Decomposable Character (D69) which is not a Full
Composition Exclusion.

• For any given version of the Unicode Standard, the list of primary composites
can be computed by extracting all canonical decomposable characters from
UnicodeData.txt in the Unicode Character Database, adding the list of precom-
posed Hangul syllables (D132), and subtracting the list of Full Composition
Exclusions.

D115 Blocked: Let A and C be two characters in a coded character sequence <A, ... C>. C is
blocked from A if and only if ccc(A) = 0 and there exists some character B between A
and C in the coded character sequence, i.e., <A, ... B, ... C>, and either ccc(B) = 0 or
ccc(B) >= ccc(C).

• Because the Canonical Composition Algorithm operates on a string which is
already in canonical order, testing whether a character is blocked requires
looking only at the immediately preceding character in the string.

D116 Non-blocked pair: A pair of characters <A, ... C> in a coded character sequence, in
which C is not blocked from A.

Conformance 138 3.11 Normalization Forms
• It is important for proper implementation of the Canonical Composition Algo-
rithm to be aware that a Non-blocked Pair need not be contiguous.

D117 Canonical Composition Algorithm: Starting from the second character in the coded
character sequence (of a Canonical Decomposition or Compatibility Decomposi-
tion) and proceeding sequentially to the final character, perform the following
steps:

R1 Seek back (left) in the coded character sequence from the character C to find the
last Starter L preceding C in the character sequence.

R2 If there is such an L, and C is not blocked from L, and there exists a Primary Com-
posite P which is canonically equivalent to the sequence <L, C>, then replace L by
P in the sequence and delete C from the sequence.

• When the algorithm completes, all Non-blocked Pairs canonically equivalent
to a Primary Composite will have been systematically replaced by those Pri-
mary Composites.

• The replacement of the Starter L in R2 requires continuing to check the suc-
ceeding characters until the character at that position is no longer part of any
Non-blocked Pair that can be replaced by a Primary Composite. For example,
consider the following hypothetical coded character sequence: <U+007A z,
U+0335 short stroke overlay, U+0327 cedilla, U+0324 diaeresis below, U+0301
acute>. None of the first three combining marks forms a Primary Composite
with the letter z. However, the fourth combining mark in the sequence, acute,
does form a Primary Composite with z, and it is not Blocked from the z. There-
fore, R2 mandates the replacement of the sequence <U+007A z, ... U+0301
acute> with <U+017A z-acute, ...>, even though there are three other combin-
ing marks intervening in the sequence.

• The character C in R1 is not necessarily a non-starter. It is necessary to check
all characters in the sequence, because there are sequences <L, C> where both
L and C are Starters, yet there is a Primary Composite P which is canonically
equivalent to that sequence. For example, Indic two-part vowels often have
canonical decompositions into sequences of two spacing vowel signs, each of
which has Canonical_Combining_Class = 0 and which is thus a Starter by defi-
nition. Nevertheless, such a decomposed sequence has an equivalent Primary
Composite.

Definition of Normalization Forms
The Unicode Standard specifies four normalization forms. Informally, two of these forms
are defined by maximal decomposition of equivalent sequences, and two of these forms are
defined by maximal composition of equivalent sequences. Each is then differentiated based
on whether it employs a Canonical Decomposition or a Compatibility Decomposition.

Conformance 139 3.11 Normalization Forms
D118 Normalization Form D (NFD): The Canonical Decomposition of a coded character
sequence.

D119 Normalization Form KD (NFKD): The Compatibility Decomposition of a coded
character sequence.

D120 Normalization Form C (NFC): The Canonical Composition of the Canonical
Decomposition of a coded character sequence.

D121 Normalization Form KC (NFKC): The Canonical Composition of the Compatibility
Decomposition of a coded character sequence.

Logically, to get the NFD or NFKD (maximally decomposed) normalization form for a
Unicode string, one first computes the full decomposition of that string and then applies
the Canonical Ordering Algorithm to it.

Logically, to get the NFC or NFKC (maximally composed) normalization form for a Uni-
code string, one first computes the NFD or NFKD normalization form for that string, and
then applies the Canonical Composition Algorithm to it.

Conformance 140 3.12 Conjoining Jamo Behavior
3.12 Conjoining Jamo Behavior
The Unicode Standard contains both a large set of precomposed modern Hangul syllables
and a set of conjoining Hangul jamo, which can be used to encode archaic Korean syllable
blocks as well as modern Korean syllable blocks. This section describes how to

• Determine the canonical decomposition of precomposed Hangul syllables.

• Compose jamo characters into precomposed Hangul syllables.

• Algorithmically determine the names of precomposed Hangul syllables.

For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in
Section 18.6, Hangul. Hangul syllables are a special case of grapheme clusters. For the algo-
rithm to determine syllable boundaries in a sequence of conjoining jamo characters, see
Section 8, “Hangul Syllable Boundary Determination” in Unicode Standard Annex #29,
“Unicode Text Segmentation.”

Definitions
The following definitions use the Hangul_Syllable_Type property, which is defined in the
UCD file HangulSyllableType.txt.

D122 Leading consonant: A character with the Hangul_Syllable_Type property value
Leading_Jamo. Abbreviated as L.

• When not occurring in clusters, the term leading consonant is equivalent to syl-
lable-initial character.

D123 Choseong: A sequence of one or more leading consonants.

• In Modern Korean, a choseong consists of a single jamo. In Old Korean, a
sequence of more than one leading consonant may occur.

• Equivalent to syllable-initial cluster.

D124 Choseong filler: U+115F hangul choseong filler. Abbreviated as Lf.

• A choseong filler stands in for a missing choseong to make a well-formed
Korean syllable.

D125 Vowel: A character with the Hangul_Syllable_Type property value Vowel_Jamo.
Abbreviated as V.

• When not occurring in clusters, the term vowel is equivalent to syllable-peak
character.

D126 Jungseong: A sequence of one or more vowels.

• In Modern Korean, a jungseong consists of a single jamo. In Old Korean, a
sequence of more than one vowel may occur.

• Equivalent to syllable-peak cluster.

Conformance 141 3.12 Conjoining Jamo Behavior
D127 Jungseong filler: U+1160 hangul jungseong filler. Abbreviated as Vf.

• A jungseong filler stands in for a missing jungseong to make a well-formed
Korean syllable.

D128 Trailing consonant: A character with the Hangul_Syllable_Type property value
Trailing_Jamo. Abbreviated as T.

• When not occurring in clusters, the term trailing consonant is equivalent to syl-
lable-final character.

D129 Jongseong: A sequence of one or more trailing consonants.

• In Modern Korean, a jongseong consists of a single jamo. In Old Korean, a
sequence of more than one trailing consonant may occur.

• Equivalent to syllable-final cluster.

D130 LV_Syllable: A character with Hangul_Syllable_Type property value LV_Syllable.
Abbreviated as LV.

• An LV_Syllable has a canonical decomposition to a sequence of the form <L, V>.

D131 LVT_Syllable: A character with Hangul_Syllable_Type property value LVT_Sylla-
ble. Abbreviated as LVT.

• An LVT_Syllable has a canonical decomposition to a sequence of the form <LV, T>.

D132 Precomposed Hangul syllable: A character that is either an LV_Syllable or an
LVT_Syllable.

D133 Syllable block: A sequence of Korean characters that should be grouped into a single
square cell for display.

• This is different from a precomposed Hangul syllable and is meant to include
sequences needed for the representation of Old Korean syllables.

• A syllable block may contain a precomposed Hangul syllable plus other charac-
ters.

D134 Standard Korean syllable block: A sequence of one or more L followed by a sequence
of one or more V and a sequence of zero or more T, or any other sequence that is
canonically equivalent.

• All precomposed Hangul syllables, which have the form LV or LVT, are standard
Korean syllable blocks.

• Alternatively, a standard Korean syllable block may be expressed as a sequence
of a choseong and a jungseong, optionally followed by a jongseong.

• A choseong filler may substitute for a missing leading consonant, and a
jungseong filler may substitute for a missing vowel.

Conformance 142 3.12 Conjoining Jamo Behavior
• This definition is used in Unicode Standard Annex #29, “Unicode Text Seg-
mentation,” as part of the algorithm for determining syllable boundaries in a
sequence of conjoining jamo characters.

Hangul Syllable Decomposition
The following algorithm specifies how to take a precomposed Hangul syllable s and arith-
metically derive its full canonical decomposition d. This normative mapping for precom-
posed Hangul syllables is referenced by D68, Canonical decomposition, in Section 3.7,
Decomposition.

This algorithm, as well as the other Hangul-related algorithms defined in the following
text, is first specified in pseudo-code. Then each is exemplified, showing its application to a
particular Hangul character or sequence. The Hangul characters used in those examples
are shown in Table 3-16. Finally, each algorithm is then further exemplified with an imple-
mentation as a Java method at the end of this section.

Common Constants. Define the following constants:
SBase = AC0016
LBase = 110016
VBase = 116116
TBase = 11A716
LCount = 19
VCount = 21
TCount = 28
NCount = 588 (VCount * TCount)
SCount = 11172 (LCount * NCount)

TBase is set to one less than the beginning of the range of trailing consonants, which starts
at U+11A8. TCount is set to one more than the number of trailing consonants relevant to
the decomposition algorithm: (11C216 - 11A816 + 1) + 1. NCount is thus the number of
precomposed Hangul syllables starting with the same leading consonant, counting both
the LV_Syllables and the LVT_Syllables for each possible trailing consonant. SCount is the
total number of precomposed Hangul syllables.

Syllable Index. First compute the index of the precomposed Hangul syllable s:
SIndex = s - SBase

Table 3-16. Hangul Characters Used in Examples

Code Point Glyph Character Name Jamo Short Name

U+D4DB L hangul syllable pwilh

U+1111 hangul choseong phieuph P

U+1171 hangul jungseong wi WI

U+11B6 hangul jongseong rieul-hieuh LH

Conformance 143 3.12 Conjoining Jamo Behavior
Arithmetic Decomposition Mapping. If the precomposed Hangul syllable s with the index
SIndex (defined above) has the Hangul_Syllable_Type value LV, then it has a canonical
decomposition mapping into a sequence of an L jamo and a V jamo, <LPart, VPart>:

LIndex = SIndex div NCount
VIndex = (SIndex mod NCount) div TCount
LPart = LBase + LIndex
VPart = VBase + VIndex

If the precomposed Hangul syllable s with the index SIndex (defined above) has the Han-
gul_Syllable_Type value LVT, then it has a canonical decomposition mapping into a
sequence of an LV_Syllable and a T jamo, <LVPart, TPart>:

LVIndex = (SIndex div TCount) * TCount
TIndex = SIndex mod TCount
LVPart = SBase + LVIndex
TPart = TBase + TIndex

In this specification, the “div” operator refers to integer division (rounded down). The
“mod” operator refers to the modulo operation, equivalent to the integer remainder for
positive numbers.

The canonical decomposition mappings calculated this way are equivalent to the values of
the Unicode character property Decomposition_Mapping (dm), for each precomposed
Hangul syllable.

Full Canonical Decomposition. The full canonical decomposition for a Unicode character
is defined as the recursive application of canonical decomposition mappings. The canoni-
cal decomposition mapping of an LVT_Syllable contains an LVPart which itself is a pre-
composed Hangul syllable and thus must be further decomposed. However, it is simplest
to unwind the recursion and directly calculate the resulting <LPart, VPart, TPart>
sequence instead. For full canonical decomposition of a precomposed Hangul syllable,
compute the indices and components as follows:

LIndex = SIndex div NCount
VIndex = (SIndex mod NCount) div TCount
TIndex = SIndex mod TCount
LPart = LBase + LIndex
VPart = VBase + VIndex
TPart = TBase + TIndex if TIndex > 0

If TIndex = 0, then there is no trailing consonant, so map the precomposed Hangul syllable
s to its full decomposition d = <LPart, VPart>. Otherwise, there is a trailing consonant, so
map s to its full decomposition d = <LPart, VPart, TPart>.

Example. For the precomposed Hangul syllable U+D4DB, compute the indices and com-
ponents:

SIndex = 10459
LIndex = 17
VIndex = 16

Conformance 144 3.12 Conjoining Jamo Behavior
TIndex = 15
LPart = LBase + 17 = 111116
VPart = VBase + 16 = 117116
TPart = TBase + 15 = 11B616

Then map the precomposed syllable to the calculated sequence of components, which con-
stitute its full canonical decomposition:

U+D4DB → <U+1111, U+1171, U+11B6>
Note that the canonical decomposition mapping for U+D4DB would be <U+D4CC,
U+11B6>, but in computing the full canonical decomposition, that sequence would only
be an intermediate step.

Hangul Syllable Composition
The following algorithm specifies how to take a canonically decomposed sequence of Han-
gul jamo characters d and arithmetically derive its mapping to an equivalent precomposed
Hangul syllable s. This normative mapping can be used to calculate the Primary Composite
for a sequence of Hangul jamo characters, as specified in D117, Canonical Composition
Algorithm, in Section 3.11, Normalization Forms. Strictly speaking, this algorithm is simply
the inverse of the full canonical decomposition mappings specified by the Hangul Syllable
Decomposition Algorithm. However, it is useful to have a summary specification of that
inverse mapping as a separate algorithm, for convenience in implementation.

Note that the presence of any non-jamo starter or any combining character between two of
the jamos in the sequence d would constitute a blocking context, and would prevent
canonical composition. See D115, Blocked, in Section 3.11, Normalization Forms.

Arithmetic Primary Composite Mapping. Given a Hangul jamo sequence <LPart, VPart>,
where the LPart is in the range U+1100..U+1112, and where the VPart is in the range
U+1161..U+1175, compute the indices and syllable mapping:

LIndex = LPart - LBase
VIndex = VPart - VBase
LVIndex = LIndex * NCount + VIndex * TCount
s = SBase + LVIndex

Given a Hangul jamo sequence <LPart, VPart, TPart>, where the LPart is in the range
U+1100..U+1112, where the VPart is in the range U+1161..U+1175, and where the TPart is
in the range U+11A8..U+11C2, compute the indices and syllable mapping:

LIndex = LPart - LBase
VIndex = VPart - VBase
TIndex = TPart - TBase
LVIndex = LIndex * NCount + VIndex * TCount
s = SBase + LVIndex + TIndex

The mappings just specified deal with canonically decomposed sequences of Hangul jamo
characters. However, for completeness, the following mapping is also defined to deal with

Conformance 145 3.12 Conjoining Jamo Behavior
cases in which Hangul data is not canonically decomposed. Given a sequence <LVPart,
TPart>, where the LVPart is a precomposed Hangul syllable of Hangul_Syllable_Type LV,
and where the TPart is in the range U+11A8..U+11C2, compute the index and syllable
mapping:

TIndex = TPart - TBase
s = LVPart + TIndex

Example. For the canonically decomposed Hangul jamo sequence <U+1111, U+1171,
U+11B6>, compute the indices and syllable mapping:

LIndex = 17
VIndex = 16
TIndex = 15
LVIndex = 17 * 588 + 16 * 28 = 9996 + 448 = 10444
s = AC0016 + 10444 + 15 = D4DB16

Then map the Hangul jamo sequence to this precomposed Hangul syllable as its Primary
Composite:

<U+1111, U+1171, U+11B6> → U+D4DB

Hangul Syllable Name Generation
The Unicode character names for precomposed Hangul syllables are derived algorithmi-
cally from the Jamo_Short_Name property values for each of the Hangul jamo characters
in the full canonical decomposition of that syllable. That derivation is specified here.

Full Canonical Decomposition. First construct the full canonical decomposition d for the
precomposed Hangul syllable s, as specified by the Hangul Syllable Decomposition Algo-
rithm:

s → d = <LPart, VPart, (TPart)>
Jamo Short Name Mapping. For each part of the full canonical decomposition d, look up
the Jamo_Short_Name property value, as specified in Jamo.txt in the Unicode Character
Database. If there is no TPart in the full canonical decomposition, then the third value is
set to be a null string:

JSNL = Jamo_Short_Name(LPart)
JSNV = Jamo_Short_Name(VPart)
JSNT = Jamo_Short_Name(TPart) if TPart exists, else ""

Name Concatenation. The Unicode character name for s is then constructed by starting
with the constant string “HANGUL SYLLABLE” and then concatenating each of the three
Jamo short name values, in order:

Name = "HANGUL SYLLABLE " + JSNL + JSNV + JSNT
Example. For the precomposed Hangul syllable U+D4DB, construct the full canonical
decomposition:

U+D4DB → <U+1111, U+1171, U+11B6>

Conformance 146 3.12 Conjoining Jamo Behavior
Look up the Jamo_Short_Name values for each of the Hangul jamo in the canonical
decomposition:

JSNL = Jamo_Short_Name(U+1111) = "P"
JSNV = Jamo_Short_Name(U+1171) = "WI"
JSNT = Jamo_Short_Name(U+11B6) = "LH"

Concatenate the pieces:
Name = "HANGUL SYLLABLE " + "P" + "WI" + "LH"

= "HANGUL SYLLABLE PWILH"

Sample Code for Hangul Algorithms
This section provides sample Java code illustrating the three Hangul-related algorithms.

Common Constants. This code snippet defines the common constants used in the meth-
ods that follow.
static final int
 SBase = 0xAC00,
 LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7,
 LCount = 19, VCount = 21, TCount = 28,
 NCount = VCount * TCount, // 588
 SCount = LCount * NCount; // 11172
Hangul Decomposition. The Hangul Decomposition Algorithm as specified above directly
decomposes precomposed Hangul syllable characters into a sequence of either two or three
Hangul jamo characters. The sample method here does precisely that:
public static String decomposeHangul(char s) {
 int SIndex = s - SBase;
 if (SIndex < 0 || SIndex >= SCount) {
 return String.valueOf(s);
 }
 StringBuffer result = new StringBuffer();
 int L = LBase + SIndex / NCount;
 int V = VBase + (SIndex % NCount) / TCount;
 int T = TBase + SIndex % TCount;
 result.append((char)L);
 result.append((char)V);
 if (T != TBase) result.append((char)T);
 return result.toString();
 }
The Hangul Decomposition Algorithm could also be expressed equivalently as a recursion
of binary decompositions, as is the case for other non-Hangul characters. All LVT syllables
would decompose into an LV syllable plus a T jamo. The LV syllables themselves would in
turn decompose into an L jamo plus a V jamo. This approach can be used to produce
somewhat more compact code than what is illustrated in this sample method.

Conformance 147 3.12 Conjoining Jamo Behavior
Hangul Composition. An important feature of Hangul composition is that whenever the
source string is not in Normalization Form D or Normalization Form KD, one must not
detect only character sequences of the form <L, V> and <L, V, T>. It is also necessary to
catch the sequences of the form <LV, T>. To guarantee uniqueness, such sequences must
also be composed. This extra processing is illustrated in step 2 of the sample method
defined here.
public static String composeHangul(String source) {
 int len = source.length();
 if (len == 0) return "";
 StringBuffer result = new StringBuffer();
 char last = source.charAt(0); // copy first char
 result.append(last);

 for (int i = 1; i < len; ++i) {
 char ch = source.charAt(i);

 // 1. check to see if two current characters are L and V
 int LIndex = last - LBase;
 if (0 <= LIndex && LIndex < LCount) {
 int VIndex = ch - VBase;
 if (0 <= VIndex && VIndex < VCount) {

 // make syllable of form LV

last = (char)(SBase + (LIndex * VCount + VIndex)
* TCount);

result.setCharAt(result.length()-1, last); // reset last
continue; // discard ch

 }
 }

 // 2. check to see if two current characters are LV and T
 int SIndex = last - SBase;
 if (0 <= SIndex && SIndex < SCount

&& (SIndex % TCount) == 0) {
 int TIndex = ch - TBase;
 if (0 < TIndex && TIndex < TCount) {

 // make syllable of form LVT

 last += TIndex;
 result.setCharAt(result.length()-1, last); // reset last
 continue; // discard ch
 }
 }
 // if neither case was true, just add the character
 last = ch;

Conformance 148 3.12 Conjoining Jamo Behavior
 result.append(ch);
 }
 return result.toString();
 }
Hangul Character Name Generation. Hangul decomposition is also used when generat-
ing the names for precomposed Hangul syllables. This is apparent in the following sample
method for constructing a Hangul syllable name. The content of the three tables used in
this method can be derived from the data file Jamo.txt in the Unicode Character Database.
public static String getHangulName(char s) {
 int SIndex = s - SBase;
 if (0 > SIndex || SIndex >= SCount) {
 throw new IllegalArgumentException("Not a Hangul Syllable: "

+ s);
 }
 int LIndex = SIndex / NCount;
 int VIndex = (SIndex % NCount) / TCount;
 int TIndex = SIndex % TCount;
 return "HANGUL SYLLABLE " + JAMO_L_TABLE[LIndex]
 + JAMO_V_TABLE[VIndex] + JAMO_T_TABLE[TIndex];
 }

 static private String[] JAMO_L_TABLE = {
 "G", "GG", "N", "D", "DD", "R", "M", "B", "BB",
 "S", "SS", "", "J", "JJ", "C", "K", "T", "P", "H"
 };

 static private String[] JAMO_V_TABLE = {
 "A", "AE", "YA", "YAE", "EO", "E", "YEO", "YE", "O",
 "WA", "WAE", "OE", "YO", "U", "WEO", "WE", "WI",
 "YU", "EU", "YI", "I"
 };

 static private String[] JAMO_T_TABLE = {
 "", "G", "GG", "GS", "N", "NJ", "NH", "D", "L", "LG", "LM",
 "LB", "LS", "LT", "LP", "LH", "M", "B", "BS",
 "S", "SS", "NG", "J", "C", "K", "T", "P", "H"
 };
Additional Transformations for Hangul Jamo. Additional transformations can be per-
formed on sequences of Hangul jamo for various purposes. For example, to regularize
sequences of Hangul jamo into standard Korean syllable blocks, the choseong or jungseong
fillers can be inserted, as described in Unicode Standard Annex #29, “Unicode Text Seg-
mentation.”

For keyboard input, additional compositions may be performed. For example, a sequence
of trailing consonants kf + sf may be combined into a single, complex jamo ksf. In addition,
some Hangul input methods do not require a distinction on input between initial and final
consonants, and may instead change between them on the basis of context. For example, in

Conformance 149 3.12 Conjoining Jamo Behavior
the keyboard sequence mi + em + ni + si + am, the consonant ni would be reinterpreted as
nf, because there is no possible syllable nsa. This results in the two syllables men and sa.

Conformance 150 3.13 Default Case Algorithms
3.13 Default Case Algorithms
This section specifies the default algorithms for case conversion, case detection, and case-
less matching. For information about the data sources for case mapping, see Section 4.2,
Case. For a general discussion of case mapping operations, see Section 5.18, Case Mappings.

All of these specifications are logical specifications. Particular implementations can opti-
mize the processes as long as they provide the same results.

Tailoring. The default casing operations are intended for use in the absence of tailoring for
particular languages and environments. Where a particular environment requires tailoring
of casing operations to produce correct results, use of such tailoring does not violate con-
formance to the standard.

Data that assist the implementation of certain tailorings are published in SpecialCasing.txt
in the Unicode Character Database. Most notably, these include:

• Casing rules for the Turkish dotted capital I and dotless small i.

• Casing rules for the retention of dots over i for Lithuanian letters with addi-
tional accents.

Examples of case tailorings which are not covered by data in SpecialCasing.txt include:

• Titlecasing of IJ at the start of words in Dutch

• Removal of accents when uppercasing letters in Greek

• Titlecasing of second or subsequent letters in words in orthographies that
include caseless letters such as apostrophes

• Uppercasing of U+00DF “ß” latin small letter sharp s to U+1E9E latin

capital letter sharp s

The preferred mechanism for defining tailored casing operations is the Unicode Common
Locale Data Repository (CLDR), where tailorings such as these can be specified on a per-
language basis, as needed.

Tailorings of case operations may or may not be desired, depending on the nature of the
implementation in question. For more about complications in case mapping, see the dis-
cussion in Section 5.18, Case Mappings.

Definitions
The full case mappings for Unicode characters are obtained by using the mappings from
SpecialCasing.txt plus the mappings from UnicodeData.txt, excluding any of the latter
mappings that would conflict. Any character that does not have a mapping in these files is
considered to map to itself. The full case mappings of a character C are referred to as Low-
ercase_Mapping(C), Titlecase_Mapping(C), and Uppercase_Mapping(C). The full case
folding of a character C is referred to as Case_Folding(C).

Conformance 151 3.13 Default Case Algorithms
Detection of case and case mapping requires more than just the General_Category values
(Lu, Lt, Ll). The following definitions are used:

D135 A character C is defined to be cased if and only if C has the Lowercase or Uppercase
property or has a General_Category value of Titlecase_Letter.

• The Uppercase and Lowercase property values are specified in the data file
DerivedCoreProperties.txt in the Unicode Character Database. The derived
property Cased is also listed in DerivedCoreProperties.txt.

D136 A character C is defined to be case-ignorable if C has the value MidLetter (ML),
MidNumLet (MB), or Single_Quote (SQ) for the Word_Break property or its Gen-
eral_Category is one of Nonspacing_Mark (Mn), Enclosing_Mark (Me), Format
(Cf), Modifier_Letter (Lm), or Modifier_Symbol (Sk).

• The Word_Break property is defined in the data file WordBreakProperty.txt in
the Unicode Character Database.

• The derived property Case_Ignorable is listed in the data file DerivedCore-
Properties.txt in the Unicode Character Database.

• The Case_Ignorable property is defined for use in the context specifications of
Table 3-17. It is a narrow-use property, and is not intended for use in other
contexts. The more broadly applicable string casing function, isCased(X), is
defined in D143.

D137 Case-ignorable sequence: A sequence of zero or more case-ignorable characters.

D138 A character C is in a particular casing context for context-dependent matching if and
only if it matches the corresponding specification in Table 3-17.

Table 3-17. Context Specification for Casing

Context Description Regular Expressions
Final_Sigma C is preceded by a sequence consisting

of a cased letter and then zero or
more case-ignorable characters, and
C is not followed by a sequence con-
sisting of zero or more case-ignorable
characters and then a cased letter.

Before C \p{cased} (\p{case-ignorable})*
After C ! ((\p{case-ignorable})*

\p{cased})

After_Soft-
_Dotted

There is a Soft_Dotted character
before C, with no intervening charac-
ter of combining class 0 or 230
(Above).

Before C [\p{Soft_Dotted}]
([^\p{ccc=230} \p{ccc=0}])*

Conformance 152 3.13 Default Case Algorithms
In Table 3-17, a description of each context is followed by the equivalent regular expres-
sion(s) describing the context before C, the context after C, or both. The regular expres-
sions use the syntax of Unicode Technical Standard #18, “Unicode Regular Expressions,”
with one addition: “!” means that the expression does not match. All of the regular expres-
sions are case-sensitive.

The regular-expression operator * in Table 3-17 is “possessive,” consuming as many char-
acters as possible, with no backup. This is significant in the case of Final_Sigma, because
the sets of case-ignorable and cased characters are not disjoint: for example, they both con-
tain U+0345 ypogegrammeni. Thus, the Before condition is not satisfied if C is preceded
by only U+0345, but would be satisfied by the sequence <capital-alpha, ypogegrammeni>.
Similarly, the After condition is satisfied if C is only followed by ypogegrammeni, but would
not satisfied by the sequence <ypogegrammeni, capital-alpha>.

Default Case Conversion
The following rules specify the default case conversion operations for Unicode strings.
These rules use the full case conversion operations, Uppercase_Mapping(C), Lowercase_-
Mapping(C), and Titlecase_Mapping(C), as well as the context-dependent mappings
based on the casing context, as specified in Table 3-17.

For a string X:

R1 toUppercase(X): Map each character C in X to Uppercase_Mapping(C).

R2 toLowercase(X): Map each character C in X to Lowercase_Mapping(C).

R3 toTitlecase(X): Find the word boundaries in X according to Unicode Standard
Annex #29, “Unicode Text Segmentation.” For each word boundary, find the first
cased character F following the word boundary. If F exists, map F to Titlecase_-
Mapping(F); then map all characters C between F and the following word bound-
ary to Lowercase_Mapping(C).

More_Above C is followed by a character of combin-
ing class 230 (Above) with no inter-
vening character of combining class 0
or 230 (Above).

After C [^\p{ccc=230}\p{ccc=0}]*
[\p{ccc=230}]

Before_Dot C is followed by combining dot
above (U+0307). Any sequence of
characters with a combining class
that is neither 0 nor 230 may inter-
vene between the current character
and the combining dot above.

After C ([^\p{ccc=230} \p{ccc=0}])*
[\u0307]

After_I There is an uppercase I before C, and
there is no intervening combining
character class 230 (Above) or 0.

Before C [I] ([^\p{ccc=230} \p{ccc=0}])*

Table 3-17. Context Specification for Casing (Continued)

Context Description Regular Expressions

Conformance 153 3.13 Default Case Algorithms
The default case conversion operations may be tailored for specific requirements. A com-
mon variant, for example, is to make use of simple case conversion, rather than full case
conversion. Language- or locale-specific tailorings of these rules may also be used.

Default Case Folding
Case folding is related to case conversion. However, the main purpose of case folding is to
contribute to caseless matching of strings, whereas the main purpose of case conversion is
to put strings into a particular cased form.

Default Case Folding does not preserve normalization forms. A string in a particular Uni-
code normalization form may not be in that normalization form after it has been case-
folded.

Default Case Folding is based on the full case conversion operations without the context-
dependent mappings sensitive to the casing context. There are also some adaptations spe-
cifically to support caseless matching. Lowercase_Mapping(C) is used for most characters,
but there are instances in which the folding must be based on Uppercase_Mapping(C),
instead. In particular, the addition of lowercase Cherokee letters as of Version 8.0 of the
Unicode Standard, together with the stability guarantees for case folding, require that
Cherokee letters be case folded to their uppercase counterparts. As a result, a case folded
string is not necessarily lowercase.

Any two strings which are considered to be case variants of each other under any of the full
case conversions, toUppercase(X), toLowercase(X), or toTitlecase(X) will fold to the same
string by the toCasefold(X) operation:

R4 toCasefold(X): Map each character C in X to Case_Folding(C).

• Case_Folding(C) uses the mappings with the status field value “C” or “F” in the
data file CaseFolding.txt in the Unicode Character Database.

A modified form of Default Case Folding is designed for best behavior when doing caseless
matching of strings interpreted as identifiers. This folding is based on Case_Folding(C),
but also removes any characters which have the Unicode property value Default_Ignor-
able_Code_Point = True. It also maps characters to their NFKC equivalent sequences.
Once the mapping for a string is complete, the resulting string is then normalized to NFC.
That last normalization step simplifies the statement of the use of this folding for caseless
matching.

R5 toNFKC_Casefold(X): Map each character C in X to NFKC_Casefold(C) and then
normalize the resulting string to NFC.

• The mapping NFKC_Casefold (short alias NFKC_CF) is specified in the data
file DerivedNormalizationProps.txt in the Unicode Character Database.

• The derived binary property Changes_When_NFKC_Casefolded is also listed
in the data file DerivedNormalizationProps.txt in the Unicode Character Data-
base.

Conformance 154 3.13 Default Case Algorithms
For more information on the use of NFKC_Casefold and caseless matching for identifiers,
see Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax.”

Default Case Detection
The casing status of a string can be determined by using the casing operations defined ear-
lier. The following definitions provide a specification. They assume that X and Y are strings.
In the following, functional names beginning with “is” are binary functions which take the
string X and return true when the string as a whole matches the given casing status. For
example, isLowerCase(X) would be true if the string X as a whole is lowercase. In contrast,
the Unicode character properties such as Lowercase are properties of individual charac-
ters.

For each definition, there is also a related Unicode character property which has a name
beginning with “Changes_When_”. That property indicates whether each character is
affected by a particular casing operation; it can be used to optimize implementations of
Default Case Detection for strings.

When case conversion is applied to a string that is decomposed (or more precisely, nor-
malized to NFD), applying the case conversion character by character does not affect the
normalization status of the string. Therefore, these definitions are specified in terms of
Normalization Form NFD. To make the definitions easier to read, they adopt the conven-
tion that the string Y equals toNFD(X).

D139 isLowercase(X): isLowercase(X) is true when toLowercase(Y) = Y.

• For example, isLowercase(“combining mark”) is true, and isLowercase(“Com-
bining mark”) is false.

• The derived binary property Changes_When_Lowercased is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

D140 isUppercase(X): isUppercase(X) is true when toUppercase(Y) = Y.

• For example, isUppercase(“COMBINING MARK”) is true, and isUpper-
case(“Combining mark”) is false.

• The derived binary property Changes_When_Uppercased is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

D141 isTitlecase(X): isTitlecase(X) is true when toTitlecase(Y) = Y.

• For example, isTitlecase(“Combining Mark”) is true, and isTitlecase(“Combin-
ing mark”) is false.

• The derived binary property Changes_When_Titlecased is listed in the data file
DerivedCoreProperties.txt in the Unicode Character Database.

D142 isCasefolded(X): isCasefolded(X) is true when toCasefold(Y) = Y.

• For example, isCasefolded(“heiss”) is true, and isCasefolded(“heiß”) is false.

Conformance 155 3.13 Default Case Algorithms
• The derived binary property Changes_When_Casefolded is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

Uncased characters do not affect the results of casing detection operations such as the
string function isLowercase(X). Thus a space or a number added to a string does not affect
the results.

The examples in Table 3-18 show that these conditions are not mutually exclusive. “A2” is
both uppercase and titlecase; “3” is uncased, so it is simultaneously lowercase, uppercase,
and titlecase.

Only when a string, such as “123”, contains no cased letters will all three conditions,—
isLowercase, isUppercase, and isTitlecase—evaluate as true. This combination of condi-
tions can be used to check for the presence of cased letters, using the following definition:

D143 isCased(X): isCased(X) is true when isLowercase(X) is false, or isUppercase(X) is
false, or isTitlecase(X) is false.

• Any string X for which isCased(X) is true contains at least one character that
has a case mapping other than to itself.

• For example, isCased(“123”) is false because all the characters in “123” have
case mappings to themselves, while isCased(“abc”) and isCased(“A12”) are
both true.

• The derived binary property Changes_When_Casemapped is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

To find out whether a string contains only lowercase letters, implementations need to test
for (isLowercase(X) and isCased(X)).

Default Caseless Matching
Default caseless matching is the process of comparing two strings for case-insensitive
equality. The definitions of Unicode Default Caseless Matching build on the definitions of
Unicode Default Case Folding.

Default Caseless Matching uses full case folding:

D144 A string X is a caseless match for a string Y if and only if:
toCasefold(X) = toCasefold(Y)

Table 3-18. Case Detection Examples

Case Letter Name Alphanumeric Digit
Lowercase a john smith a2 3
Uppercase A JOHN SMITH A2 3
Titlecase A John Smith A2 3

Conformance 156 3.13 Default Case Algorithms
When comparing strings for case-insensitive equality, the strings should also be normal-
ized for most correct results. For example, the case folding of U+00C5 Å latin capital

letter a with ring above is U+00E5 å latin small letter a with ring above,
whereas the case folding of the sequence <U+0041 “A” latin capital letter a, U+030A
combining ring above> is the sequence <U+0061 “a” latin small letter a, U+030A
combining ring above>. Simply doing a binary comparison of the results of case folding
both strings will not catch the fact that the resulting case-folded strings are canonical-
equivalent sequences. In principle, normalization needs to be done after case folding,
because case folding does not preserve the normalized form of strings in all instances. This
requirement for normalization is covered in the following definition for canonical caseless
matching:

D145 A string X is a canonical caseless match for a string Y if and only if:
NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))

The invocations of canonical decomposition (NFD normalization) before case folding in
D145 are to catch very infrequent edge cases. Normalization is not required before case
folding, except for the character U+0345 n combining greek ypogegrammeni and any
characters that have it as part of their canonical decomposition, such as U+1FC3 o greek

small letter eta with ypogegrammeni. In practice, optimized versions of canonical
caseless matching can catch these special cases, thereby avoiding an extra normalization
step for each comparison.

In some instances, implementers may wish to ignore compatibility differences between
characters when comparing strings for case-insensitive equality. The correct way to do this
makes use of the following definition for compatibility caseless matching:

D146 A string X is a compatibility caseless match for a string Y if and only if:
NFKD(toCasefold(NFKD(toCasefold(NFD(X))))) =

NFKD(toCasefold(NFKD(toCasefold(NFD(Y)))))

Compatibility caseless matching requires an extra cycle of case folding and normalization
for each string compared, because the NFKD normalization of a compatibility character
such as U+3392 square mhz may result in a sequence of alphabetic characters which must
again be case folded (and normalized) to be compared correctly.

Caseless matching for identifiers can be simplified and optimized by using the NFKC_-
Casefold mapping. That mapping incorporates internally the derived results of iterated
case folding and NFKD normalization. It also maps away characters with the property
value Default_Ignorable_Code_Point = True, which should not make a difference when
comparing identifiers.

The following defines identifier caseless matching:

D147 A string X is an identifier caseless match for a string Y if and only if:
toNFKC_Casefold(NFD(X)) = toNFKC_Casefold(NFD(Y))

	3 Conformance
	3.1 Versions of the Unicode Standard
	Stability
	Version Numbering
	Errata and Corrigenda
	References to the Unicode Standard
	Precision in Version Citation
	References to Unicode Character Properties
	References to Unicode Algorithms

	3.2 Conformance Requirements
	Code Points Unassigned to Abstract Characters
	Interpretation
	Modification
	Character Encoding Forms
	Character Encoding Schemes
	Bidirectional Text
	Normalization Forms
	Normative References
	Unicode Algorithms
	Default Casing Algorithms
	Unicode Standard Annexes

	3.3 Semantics
	Definitions
	Character Identity and Semantics

	3.4 Characters and Encoding
	Table 3-1. Named Unicode Algorithms

	3.5 Properties
	Types of Properties
	Property Values
	Default Property Values
	Classification of Properties by Their Values
	Property Status
	Table 3-2. Normative Character Properties
	Table 3-3. Informative Character Properties

	Context Dependence
	Stability of Properties
	Simple and Derived Properties
	Property Aliases
	Private Use

	3.6 Combination
	Combining Character Sequences
	Grapheme Clusters
	Application of Combining Marks
	Figure 3-1. Enclosing Marks

	3.7 Decomposition
	Compatibility Decomposition
	Canonical Decomposition

	3.8 Surrogates
	3.9 Unicode Encoding Forms
	Table 3-4. Examples of Unicode Encoding Forms
	UTF-32
	UTF-16
	Table 3-5. UTF-16 Bit Distribution

	UTF-8
	Table 3-6. UTF-8 Bit Distribution
	Table 3-7. Well-Formed UTF-8 Byte Sequences

	Encoding Form Conversion
	Constraints on Conversion Processes
	U+FFFD Substitution of Maximal Subparts
	Table 3-8. U+FFFD for Non-Shortest Form Sequences
	Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates
	Table 3-10. U+FFFD for Other Ill-Formed Sequences
	Table 3-11. U+FFFD for Truncated Sequences

	3.10 Unicode Encoding Schemes
	Table 3-12. Summary of UTF-16BE, UTF-16LE, and UTF-16
	Table 3-13. Summary of UTF-32BE, UTF-32LE, and UTF-32

	3.11 Normalization Forms
	Normalization Stability
	Combining Classes
	Specification of Unicode Normalization Forms
	Starters
	Table 3-14. Combining Marks and Starter Status

	Canonical Ordering Algorithm
	Table 3-15. Reorderable Pairs

	Canonical Composition Algorithm
	Definition of Normalization Forms

	3.12 Conjoining Jamo Behavior
	Definitions
	Hangul Syllable Decomposition
	Table 3-16. Hangul Characters Used in Examples

	Hangul Syllable Composition
	Hangul Syllable Name Generation
	Sample Code for Hangul Algorithms

	3.13 Default Case Algorithms
	Definitions
	Table 3-17. Context Specification for Casing

	Default Case Conversion
	Default Case Folding
	Default Case Detection
	Table 3-18. Case Detection Examples

	Default Caseless Matching

