Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond DNA: integrating inclusive inheritance into an extended theory of evolution

Key Points

  • An emerging idea in evolutionary biology is that inheritance implies more than the sole transmission of the DNA sequence across generations. Non-genetic inheritance of information across generations results from various processes that contribute to parent–offspring resemblance, a property that is called heritability.

  • The concept of heritability has been generalized into that of inclusive heritability, which is the heredity of differences, including all forms of inheritance. It unifies genetic and non-genetic heritability into a single framework encompassing the multiple dimensions of inheritance. We briefly provide evidence for the four identified processes of non-genetic inheritance.

  • Epigenetic changes in DNA expression result in epigenetic inheritance when they are transmitted across generations, thus contributing to the transgenerational transmission of phenotypic variation. Epigenetic changes are usually mediated by changes in environmental conditions. Examples include the inheritance of maternal behaviour in rodents or the inheritance of flower symmetry.

  • Parental non-genetic effects can result in the inheritance of non-genetic information across generations, thus contributing to the non-genetic component of inclusive heritability. Examples include the inheritance of immunocompetence against given parasites in birds or flexible adaptation to the maternal light environment in plants.

  • Ecological inheritance occurs when offspring inherit the habitat of their parents. This indicates that any modification of the environment that results from ancestral activity and that affects fitness will change subsequent selective pressures. Examples include the webs, nests, dams and burrows that numerous animal species create, but also the changes in atmospheric gases and soil nutrients brought about by bacteria and plant species.

  • Culture is the part of phenotypic variance that is transmitted through social learning. Recent evidence suggests that cultural transmission is widespread among animals. Examples concern mate choice and species recognition. Cultural selection constitutes another engine of evolution when it interacts with natural selection in both animals and humans.

  • Non-genetic inheritance can easily be confounded with genetic inheritance. It is the intricate network of genetic and non-genetic inheritance systems that produce parent–offspring resemblance, which constitutes the whole evolutionary potential of a trait quantified by inclusive heritability.

  • We formally partition inclusive heritability and propose methods to disentangle its components in order to better integrate them into a comprehensive view of inheritance. We propose specific designs coupling field or experimental longitudinal data with animal model types of statistical tools.

  • Such methods should help to unravel fascinating enigmas in evolution and medicine, such as major evolutionary transitions or the 'missing heritability' in the human genome.

  • The time is ripe to broaden concepts of inheritance and heritability in order to fully grasp the richness of evolutionary processes, and we call for a multidimensional modern synthesis that would merge the current modern synthesis with an inclusive view of inheritance.

Abstract

Many biologists are calling for an 'extended evolutionary synthesis' that would 'modernize the modern synthesis' of evolution. Biological information is typically considered as being transmitted across generations by the DNA sequence alone, but accumulating evidence indicates that both genetic and non-genetic inheritance, and the interactions between them, have important effects on evolutionary outcomes. We review the evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and outline methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations. These issues have implications for diverse areas, from the question of missing heritability in human complex-trait genetics to the basis of major evolutionary transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative forms of transgenerational epigenetic inheritance.
Figure 2: Main vectors of transmission for the various forms of information inheritance.

Similar content being viewed by others

References

  1. Lamarck, J. B. P. A. Phylosophie Zoologique (Dentus, Paris, 1809).

    Google Scholar 

  2. Darwin, C. On the Origin of Species by Means of Natural Selection (John Murray, London, 1859).

    Google Scholar 

  3. West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  4. Danchin, É., Giraldeau, L. A., Valone, T. J. & Wagner, R. H. Public information: from nosy neighbors to cultural evolution. Science 305, 487–491 (2004). A review linking social information (that is, information extracted from other group members) in animal decision-making with cultural evolution.

    Article  CAS  PubMed  Google Scholar 

  5. Mameli, M. Nongenetic selection an nongenetic inheritance. Br. J. Philos. Sci. 55, 35–71 (2004). To our knowledge, this was the first paper to formally identify non-genetic inheritance.

    Article  Google Scholar 

  6. Johannes, F., Colot, V. & Jansen, R. C. Epigenome dynamics: a quantitative genetics perspective. Nature Rev. Genet. 9, 883–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Helanterä, H. & Uller, T. The Price equation and extended inheritance. Philos.Theory Biol. 2, 1–17 (2010). To our knowledge, this paper provides the most extensive framework to incorporate non-genetic inheritance into the study of evolution.

    Google Scholar 

  8. Jablonka, E. & Lamb, M. J. in Evolution: The Extended Synthesis (eds Pigliucci, M. & Müller, G. B.) 137–174 (MIT Press, Cambridge, Massachusetts, 2010).

    Book  Google Scholar 

  9. Danchin, É. & Wagner, R. H. Inclusive heritability: combining genetic and nongenetic information to study animal culture. Oikos 119, 210–218 (2010). This paper coins the term 'inclusive heritability' and documents several aspects of culture not discussed in this Review.

    Article  Google Scholar 

  10. Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Bonduriansky, R. & Day, T. Nongenetic inheritance and its evolutionary implications. Ann. Rev. Ecol. Evol. Syst. 40, 103–125 (2009).

    Article  Google Scholar 

  13. Pigliucci, M. & Müller, G. B. Evolution: The Extended Synthesis (MIT Press, Cambridge, Massachusetts, 2010). The most comprehensive discussion of the necessity to extend the modern synthesis. One chapter is dedicated to non-genetic inheritance.

    Book  Google Scholar 

  14. Tal, O., Kisdi, E. & Jablonka, E. Epigenetic contribution to covariance between relatives. Genetics 184, 1037–1050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McElreath, R. & Henrich, J. in Oxford Handbook of Evolutionary Psychology (eds Dunbar, R. & Barrett, L.) 571–585 (Oxford Univ. Press, Oxford, 2009).

    Google Scholar 

  16. Ellegren, H. & Sheldon, B. C. Genetic basis of fitness differences in natural populations. Nature 452, 169–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet. 7, 395–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Bossdorf, O., Richards, C. L. & Pigliucci, M. Epigenetics for ecologists. Ecol. Lett. 11, 106–115 (2008). References 17 to 19 provide interesting perspectives on epigenetics, from one of the first demonstrations of its impact on phenotype (reference 17) to a recent state-of-the-art Review (reference 18) and the implications of epigenetics for ecologists (reference 19).

    PubMed  Google Scholar 

  20. Riddihough, G. & Zahan, L. M. What is epignenetics? Science 330, 611 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Wilkinson, L. S., Davies, W. & Isles, A. R. Genomic imprinting effects on brain development and function. Nature Rev. Neurosci. 8, 832–843 (2007).

    Article  CAS  Google Scholar 

  22. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science 308, 1466–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Champagne, F. A. & Meaney, M. J. Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol. Psychiatry 59, 1227–1235 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Champagne, F. A. et al. Maternal care associated with methylation of the estrogen receptor-α 1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinol. 147, 2909–2915 (2006).

    Article  CAS  Google Scholar 

  25. Champagne, F. A. & Meaney, M. J. Transgenerational effects of social environment on variations in maternal care and behavioural response to novelty. Behav. Neurosci. 121, 1353–1363 (2007).

    Article  PubMed  Google Scholar 

  26. Champagne, F. A. Epigenetic mechanisms and the transgenerational effects of maternal care. Front. Neuroendocrinol. 29, 386–397 (2008). A review of one example of transgenerational epigenetic inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan, H. D., Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nature Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenfeld, C. S. Animal models to study environmental epigenetics. Biol. Reprod. 82, 473–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Crews, D. et al. Transgenerational epigenetic imprints on mate preference. Proc. Natl Acad. Sci. USA 104, 5942–5946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halfmann, R. & Lindquist, S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330, 629–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Smits, G. et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nature Genet. 40, 971–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998). A classic review on parental effects and their evolutionary implications.

    Article  CAS  PubMed  Google Scholar 

  34. Galloway, L. F. & Etterson, J. R. Transgenerational plasticity is adaptive in the wild. Science 318, 1134–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Falconer, D. S. Introduction to Quantitative Genetics (Longman, New York, 1981).

    Google Scholar 

  36. Kirkpatrick, M. & Lande, R. The evolution of maternal characters. Evolution 43, 485–503 (1989).

    Article  PubMed  Google Scholar 

  37. Wilson, A. J. et al. Maternal genetic effects set the potential for evolution in a free-living vertebrate population. J. Evol. Biol. 18, 405–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Rossiter, M. C. Incidence and consequences of inherited environmental effects. Ann. Rev. Ecol. Syst. 27, 451–476 (1996).

    Article  Google Scholar 

  39. Wolf, J. B., Brodie, E. D., Cheverud, J. M., Moore, A. J. & Wade, M. J. Evolutionary consequences of indirect genetic effects. Trends Ecol. Evol. 13, 64–69 (1998). One of the first reviews of indirect genetic effects.

    Article  CAS  PubMed  Google Scholar 

  40. McGlothlin, J. W., Moore, A. J., Wolf, J. B. & Brodie, E. D. Interacting phenotypes and the evolutionary process. III. Social selection. Evolution 64, 2558–2574 (2010).

    Article  PubMed  Google Scholar 

  41. Wilson, A. J., Gelin, U., Perron, M.-C. & Réale, D. Indirect genetic effects and the evolution of aggression in a vertebrate system. Proc . R. Soc. B 276, 533–541 (2009). A pedagogical paper illustrating the advantages of the animal model approach when estimating the genetic component of inclusive heritability.

    Article  PubMed  Google Scholar 

  42. McGlothlin, J. W. & Brodie, E. D. How to measure indirect genetic effects: the congruence of trait-based and variance-partitioning approaches. Evolution 63, 1785–1795 (2009).

    Article  PubMed  Google Scholar 

  43. Hager, R., Cheverud, J. M. & Wolf, J. B. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 178, 1755–1762 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qvarnstrom, A. & Price, T. D. Maternal effects, paternal effects and sexual selection. Trends Ecol. Evol. 16, 95–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Andersson, M. & Simmons, L. W. Sexual selection and mate choice. Trends Ecol. Evol. 21, 296–302 (2006).

    Article  PubMed  Google Scholar 

  46. Griffith, S. C., Owens, I. P. F. & Burke, T. Environmental determination of a sexually selected trait. Nature 400, 358–360 (1999).

    Article  CAS  Google Scholar 

  47. Kendrick, K. M., Hinton, M. R., Atkins, K., Haupt, M. A. & Skinner, J. D. Mothers determine sexual preferences. Nature 395, 229–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Mazer, S. J. & Gorchov, D. L. Parental effects on progeny phenotype in plants: distinguishing genetic and environmental causes. Evolution 50, 44–53 (1996).

    Article  PubMed  Google Scholar 

  49. Gasparini, J., McCoy, K. D., Haussy, C., Tveraa, T. & Boulinier, T. Induced maternal response to the Lyme disease spirochaete Borrelia burgdorferi senus lato in a colonial seabird, the kittiwake, Rissa tridactyla. Proc. R. Soc. Lond. B 268, 647–650 (2001).

    Article  CAS  Google Scholar 

  50. Gasparini, J., McCoy, K., Staszewski, V., Haussy, C. & Boulinier, T. Dynamics of anti-Borrelia antibodies in Black-legged Kittiwakes (Rissa tridactyla) chicks suggest a maternal educational effect. Can. J. Zool. 84, 623–627 (2006).

    Article  Google Scholar 

  51. Curley, J. P., Davidson, S., Bateson, P. & Champagne, F. A. Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behaviour in mice. Front. Behav. Neurosci. 3, 1–14 (2009).

    Article  CAS  Google Scholar 

  52. Curley, J. P., Champagne, F. A., Bateson, P. & Keverne, E. B. Transgenerational effects of impaired maternal care on behaviour of offspring and grandoffspring. Anim. Behav. 75, 1551–1561 (2008).

    Article  Google Scholar 

  53. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the 'animal model'. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004). An important pedagogical paper describing the animal model approach to estimate the additive genetic component of inclusive heritability.

    Article  Google Scholar 

  54. Kruuk, L. E. B. & Hadfield, J. D. How to separate genetic and environmental causes of similarity between relatives. J. Evol. Biol. 20, 1890–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Darwin, C. The Formation of Vegetable Mould Through the Action of Worms, with Observations on their Habits (John Murray, London, 1881).

    Book  Google Scholar 

  56. Odling Smee, F. J., Laland, K. N. & Feldman, M. Niche Construction (Princeton Univ. Press, Princeton, New Jersey, 2003). An important book on niche construction that provides many references on the topic.

    Google Scholar 

  57. Odling-Smee, J. in Evolution: The Extended Synthesis (eds Pigliucci, M. & Müller, G. B.) 175–207 (MIT Press, Cambridge, Massachusetts, 2010).

    Book  Google Scholar 

  58. Turner, J. S. The Extended Organism: The Physiology of Animal-Built Structures (Harvard Univ. Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  59. Erwin, D. H. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol. Evol. 23, 304–310 (2008).

    Article  PubMed  Google Scholar 

  60. Krakauer, D. C., Page, K. M. & Erwin, D. H. Diversity, dilemmas, and monopolies of niche construction. Am. Nat. 173, 26–40 (2009).

    Article  PubMed  Google Scholar 

  61. Laland, K. N. & Sterelny, K. Seven reasons (not) to neglect niche construction. Evolution 60, 1751–1762 (2006).

    Article  PubMed  Google Scholar 

  62. Lehmann, L. The adaptive dynamics of niche constructing traits in spatially subdivided populations: evolving posthumous extended phenotypes. Evolution 62, 549–566 (2008).

    Article  PubMed  Google Scholar 

  63. Laland, K. N. & Brown, G. R. Niche construction, human behaviour, and the adaptive-lag hypothesis. Evol. Anthropol. 15, 95–104 (2006).

    Article  Google Scholar 

  64. Jaffee, S. R. & Price, T. S. Gene-environment correlations: a review of the evidence and implications for prevention of mental illness. Mol. Psychiatry 12, 432–442 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton Univ. Press, Princeton, New Jersey, 1981).

    Google Scholar 

  66. Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (Univ. Chicago Press, Chicago, Illinois, 1985).

    Google Scholar 

  67. Mesoudi, A., Whiten, A. & Laland, K. N. Is human cultural evolution Darwinian? Evidence reviewed from the perspective of The Origin of Species. Evolution 58, 1–11 (2004).

    PubMed  Google Scholar 

  68. Mesoudi, A. Cultural Evolution (Univ. Chicago Press, Chicago, Illinois, 2011).

    Book  Google Scholar 

  69. Whiten, A. The second inheritance system of chimpanzees and humans. Nature 437, 52–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Laland, K. N. & Galef, B. G. The Question of Animal Culture (Harvard Univ. Press, Cambridge, Massachusetts, 2009).

    Google Scholar 

  71. Horner, V., Whiten, A., Flynn, E. & de Waal, F. B. M. Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children. Proc. Natl Acad. Sci. USA 103, 13878–13883 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whiten, A. & Mesoudi, A. An experimental science of culture: animal social diffusion experiments. Phil. Trans. R. Soc. B 363, 3477–3488 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wagner, R. H. & Danchin, É. A taxonomy of biological information. Oikos 119, 203–209 (2010).

    Article  Google Scholar 

  74. Coolen, I., van Bergen, Y., Day, R. L. & Laland, K. N. Species difference in adaptive use of public information in stickleblacks. Proc. R. Soc. Lond. B 270, 2413–2419 (2003).

    Article  Google Scholar 

  75. Doligez, B., Danchin, É. & Clobert, J. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002). The first experimental evidence for the use of social information in breeding habitat selection in a natural population.

    Article  CAS  PubMed  Google Scholar 

  76. Doligez, B., Cadet, C., Danchin, É. & Boulinier, T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 66, 973–988 (2003).

    Article  Google Scholar 

  77. Parejo, D., White, J. F., Clobert, J., Dreiss, A. N. & Danchin, É. Blue tits use fledging quantity and quality as public information in breeding habitat choice. Ecology 88, 2373–2382 (2007).

    Article  PubMed  Google Scholar 

  78. Dugatkin, L. A. Interface between culturally based preferences and genetic preferences: female mate choice in Poecilia reticulata. Proc. Natl Acad. Sci. USA 93, 2770–2773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pöysä, H. Public information and conspecific nest parasitism in goldeneyes: targeting safe nests by parasites. Behav. Ecol. 17, 459–465 (2006).

    Article  Google Scholar 

  80. Parejo, D. & Avilés, J. M. Do avian brood parasites eavesdrop on heterospecific sexual signals revealing host quality? A review of the evidence. Anim. Cogn. 10, 81–88 (2007).

    Article  PubMed  Google Scholar 

  81. Coolen, I., Dangles, O. & Casas, J. Social learning in noncolonial insects? Curr. Biol. 15, 1931–1935 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Mery, F. et al. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19, 730–734 (2009). The first evidence for the use of social information in mate choice in an invertebrate.

    Article  CAS  PubMed  Google Scholar 

  83. Danchin, É., Blanchet, S., Mery, F. & Wagner, R. H. Do invertebrates have culture? Commun. Integr. Biol. 3, 303–305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Halloy, J. et al. Social integration of robots into groups of cockroaches to control self-organized choices. Science 318, 1155–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. White, D. J. & Galef, B. G. 'Culture' in quail: social influences on mate choices of female Coturnix coturnix. Anim. Behav. 59, 975–979 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Fitch, W. T. Birdsong normalized by culture. Nature 459, 519–520 (2009).

    Article  PubMed  CAS  Google Scholar 

  87. Boyd, R. & Richerson, P. J. Why is culture adaptive? Q. Rev. Biol. 58, 209–214 (1983).

    Article  Google Scholar 

  88. Feldman, M. W. & Cavalli-Sforza, L. L. Cultural and biological evolutionary processes: gene-culture disequilibrium. Proc. Natl Acad. Sci. USA 81, 1604–1607 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hochberg, M. E., Sinervo, B. & Brown, S. P. Socially mediated speciation. Evolution 57, 154–158 (2003). A spatially explicit theoretical study of the impact of culturally transmitted information on speciation.

    Article  PubMed  Google Scholar 

  90. Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. 12, 123–135 (2003).

    Article  Google Scholar 

  91. Jansen, V. A. A. & Van Baalen, M. Altruism through beard chromodynamics. Nature 440, 663–666 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Grant, P. R. & Grant, B. R. The secondary contact phase of allopatric speciation in Darwin's finches. Proc. Natl Acad. Sci. USA 106, 20141–20148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haesler, M. P. & Seehausen, O. Inheritance of female mating preference in a sympatric sibling species pair of Lake Victoria cichlids: implications for speciation. Proc. R. Soc. Lond. B 272, 237–245 (2005).

    Article  Google Scholar 

  94. Verzijden, M. N. & ten Cate, C. Early learning influences species assortative mating preferences in Lake Victoria cichlid fish. Biol. Lett. 3, 134–136 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hochberg, M. E. A theory of modern cultural shifts and meltdowns. Biol. Lett. 271, S313–S316 (2004).

    Google Scholar 

  96. Henrich, J. & Boyd, R. The evolution of conformist transmission and the emergence of between-group differences. Evol. Hum. Behav. 19, 215–241 (1998).

    Article  Google Scholar 

  97. Dindo, M., Whiten, A. & de Waal, F. B. M. In-group conformity sustains different foraging traditions in capuchin monkeys (Cebus apella). PLoS ONE 4, 1–7 (2009).

    Article  CAS  Google Scholar 

  98. Franz, M. & Nunn, C. L. Rapid evolution of social learning. J. Evol. Biol. 22, 1914–1922 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Laland, K. N., Odling-Smee, J. & Myles, S. How culture shaped the human genome: bringing genetics and the human sciences together. Nature Rev. Genet. 11, 137–148 (2010). A Review illustrating the major impact of cultural transmission on human genetic evolution.

    Article  CAS  PubMed  Google Scholar 

  100. Henrich, J., Boyd, R. & Richerson, P. J. Five misunderstandings about cultural evolution. Hum. Nat. 19, 119–137 (2008).

    Article  PubMed  Google Scholar 

  101. Weaver, I. C. G. et al. Epigenetic programming by maternal behaviour. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Gintis, H., Bowles, S., Boyd, R. & Fehr, E. Explaining altruistic behaviour in humans. Evol. Hum. Behav. 24, 153–172 (2003).

    Article  Google Scholar 

  103. Henrich, J. Cultural group selection, co-evolutionary processes and large-scale cooperation. J. Econ. Behav. Organ. 53, 3–35 (2004).

    Article  Google Scholar 

  104. Lehmann, L. & Feldman, M. W. The co-evolution of culturally inherited altruistic helping and cultural transmission under random group formation. Theor. Popul. Biol. 4, 506–516 (2008).

    Article  Google Scholar 

  105. Lehmann, L., Feldman, M. W. & Foster, K. Cultural transmission can inhibit the evolution of altruistic helping. Am. Nat. 172, 12–24 (2008).

    Article  PubMed  Google Scholar 

  106. Boyd, R. & Richerson, P. J. Culture and the evolution of human cooperation. Phil. Trans. R. Soc. B 364, 3281–3288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kendal, R. L., Coolen, I. & Laland, K. N. The role of conformity in foraging when personal and social information conflict. Behav. Ecol. 15, 269–277 (2004).

    Article  Google Scholar 

  108. Ehrlich, P. R. & Levin, S. A. The evolution of norm. PLoS Biol. 3, 943–948 (2005).

    Article  CAS  Google Scholar 

  109. Frere, C. H. et al. Social and genetic interactions drive fitness variation in a free-living dolphin population. Proc. Natl Acad. Sci. USA 107, 19949–19954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bentley, R. A., Hahn, M. W. & Shennan, S. J. Random drift and culture change. Proc. R. Soc. Lond. B 271, S353–S356 (2004).

    Article  Google Scholar 

  111. Herzog, H. A., Bentley, R. A. & Hahn, M. W. Random drift and large shifts in popularity of dog breeds. Proc. R. Soc. Lond. B 271, S353–S356 (2004).

    Article  Google Scholar 

  112. Pujol, B. & Pannell, J. R. Reduced responses to selection after species range expansion. Science 321, 96 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Knott, S. A., Sibly, R. M., Smith, R. H. & Moller, H. Maximum-likelihood-estimation of genetic-parameters in life-history studies using the animal-model. Funct. Ecol. 9, 122–126 (1995).

    Article  Google Scholar 

  114. Mesoudi, A., Whiten, A. & Laland, K. N. Towards a unified science of cultural evolution. Behav. Brain Sci. 29, 329–383 (2006).

    Article  PubMed  Google Scholar 

  115. Lynch, A. & Baker, A. J. A population memetics approach to cultural-evolution in chaffinch song — meme diversity within populations. Am. Nat. 141, 597–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Lycett, S. J., Collard, M. & McGrew, W. C. Phylogenetic analyses of behaviour support existence of culture among wild chimpanzees. Proc. Natl Acad. Sci. USA 104, 17588–17592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mesoudi, A. & Whiten, A. The multiple roles of cultural transmission experiments in understanding human cultural evolution. Phil. Trans. R. Soc. B 363, 3489–3501 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kenward, B., Weir, A. A. S., Rutz, C. & Kacelnik, A. Tool manufacture by naive juvenile crows. Nature 433, 121 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998).

    Google Scholar 

  120. Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Wilson, A. J. et al. An ecologist's guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).

    Article  PubMed  Google Scholar 

  122. Muller, G. B. Evo-devo: extending the evolutionary synthesis. Nature Rev. Genet. 8, 943–949 (2007).

    Article  PubMed  CAS  Google Scholar 

  123. Caroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008). An important review of evo-devo. Many of the arguments proposed by advocates of the extended synthesis come from the evo-devo field, and need to be regrouped and formalized under the banner of non-genetic inheritance.

    Article  CAS  Google Scholar 

  124. Landry, C. R. Systems biology spins off a new model for the study of canalization. Trends Ecol. Evol. 24, 63–66 (2009).

    Article  PubMed  Google Scholar 

  125. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    Article  PubMed  Google Scholar 

  126. Goldenfeld, N. & Woese, C. Biology's next revolution. Nature 445, 369–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Wilson, D. S. in Evolution: The Extended Synthesis (eds Pigliucci, M. & Müller, G. B.) 81–93 (MIT Press, Cambridge, Massachusetts, 2010).

    Book  Google Scholar 

  128. Feldman, M. W. & Cavalli-Sforza, L. L. in Mathematical Evolutionary Theory (ed. Feldman, M. W.) 145–173 (Princeton Univ. Press, Princeton, New Jersey, 1989).

    Book  Google Scholar 

  129. Mesoudi, A. & Laland, K. N. Culturally transmitted paternity beliefs and the evolution of human mating behaviour. Proc. R. Soc. B 274, 1273–1278 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jablonka, E. & Lamb, M. J. The evolution of information in the major transitions. J. Theor. Biol. 239, 236–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Szathmàry, E. & Maynard Smith, J. The major evolutionary transitions. Nature 374, 227–232 (1995).

    Article  PubMed  Google Scholar 

  132. Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (Freeman, Oxford, 1995).

    Google Scholar 

  133. Newman, S. A. & Bhat, R. Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. Int. J. Dev. Biol. 53, 693–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Urushihara, H. The cellular slime mold: eukaryotic model microorganism. Exp. Anim. 58, 97–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  Google Scholar 

  136. Zavilgelsky, G. B. & Manukhov, I. V. Quorum sensing, or how bacteria 'talk' to each other. Mol. Biol. 35, 224–232 (2001).

    Article  CAS  Google Scholar 

  137. Richerson, P. J. & Boyd, R. Not By Genes Alone (Univ. Chicago Press, Chicago, Illinois, 2005).

    Google Scholar 

  138. Holden, C. J. & Mace, R. Phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 69, 605–628 (1997).

    CAS  PubMed  Google Scholar 

  139. Beja-Pereira, A. et al. Gene-culture co-evolution between cattle milk protein genes and human lactase genes. Nature Genet. 35, 311–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Wilson, D. S. in The Innate Mind: Culture and Cognition (eds Carruthers, P., Laurence, S. & Stich, S.) 1–21 (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  141. Chilton, G. & Lein, M. R. Long-term changes in songs and song dialect boundaries of puget sound white-crowned sparrows. Condor 98, 567–580 (1996).

    Article  Google Scholar 

  142. Warren, P. S. Winter dialects in the bronzed cowbird and their relationship to breeding-season dialects. Anim. Behav. 65, 1169–1178 (2003).

    Article  Google Scholar 

  143. MacDougall-Shackleton, E. A. & MacDougall-Shackleton, S. A. Cultural and genetic evolution in mountain white-crowned sparrows: song dialects are associated with population structure. Evolution 55, 2568–2575 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Chilton, G., Lein, M. R. & Baptista, L. F. Mate choice by female white-crowned sparrows in a mixed-dialect population. Behav. Ecol. Sociobiol. 27, 223–227 (1990).

    Article  Google Scholar 

  145. Brenowitz, E. A. & Beecher, M. D. Song learning in birds: diversity and plasticity, opportunities and challenges. Trends Neurosci. 28, 127–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Beecher, M. D. & Brenowitz, E. A. Functional aspects of song learning in songbirds. Trends Ecol. Evol. 20, 143–149 (2005).

    Article  PubMed  Google Scholar 

  147. Whitehead, H. Cultural selection and genetic diversity in matrilineal whales. Science 282, 1708–1711 (1998).

    Article  CAS  PubMed  Google Scholar 

  148. Nicholls, J. A., Austin, J. J., Moritz, C. & Goldizen, A. W. Genetic population structure and call variation in a passerine bird, the satin bowerbird, Ptilonorhynchus violaceus. Evolution 60, 1279–1290 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Slabbekoorn, H. & Smith, T. B. Bird song, ecology and speciation. Phil. Trans. R. Soc. Lond. B 357, 493–503 (2002).

    Article  Google Scholar 

  150. Boyd, R. & Richerson, P. J. in Social-Learning. Psychological and Biological Perspectives (eds Zentall, T. R. & Galef, B. G. J.) 29–48 (Lawrence Erlbaum Associates, Hillsdale (New Jersey), Hove and London, 1988).

    Google Scholar 

  151. Whiten, A., McGuigan, N., Marshall-Pescini, S. & Hopper, L. M. Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Phil. Trans. R. Soc. B 364, 2417–2428 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Heyes, C. M. & Galef, B. G. J. Social Learning and Imitation: The Roots of Culture (Academic Press, New York, 1996).

    Google Scholar 

  153. Galef, B. G. & Giraldeau, L. A. Social influences on foraging in vertebrates: causal mechanisms and adaptive functions. Anim. Behav. 51, 3–15 (2001).

    Article  Google Scholar 

  154. Whiten, A. & van Schaik, C. P. The evolution of animal 'cultures' and social intelligence. Phil. Trans. R. Soc. B 362, 603–620 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lefebvre, L. The opening of milk bottles by birds — evidence for accelerating learning rates, but against the wave-of-advance model of cultural transmission. Behav. Processes 34, 43–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. Avital, E. & Jablonka, E. Animal Traditions. Behavioural Inheritance in Evolution (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  157. Hirata, S., Watanabe, K. & Kawai, M. in Primate Origins of Human Cognition and Behaviour (ed. Matsuzawa, T.) 487–508 (Springer Japan, Tokyo, 2001).

    Google Scholar 

  158. Brooks, R. The importance of mate copying and cultural inheritance of mating preferences. Trends Ecol. Evol. 13, 45–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Witte, K. & Noltemeier, B. The role of information in mate-choice copying in female sailfin mollies (Poecilia latipinna). Behav. Ecol. Sociobiol. 52, 194–202 (2002).

    Article  Google Scholar 

  160. White, B. N. & Galef, B. G. Differences between the sexes in direction and duration of response to seeing a potential sex partner mate with another. Anim. Behav. 59, 1235–1240 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Godin, J.-G. J., Herdman, E. J. E. & Dugatkin, L. A. Social influences on female mate choice in the guppy, Poecilia reticulata: generalized and repeatable trait-copying behaviour. Anim. Behav. 69, 999–1005 (2005).

    Article  Google Scholar 

  162. Frigaard, N. U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Hochberg, J. Odling-Smee, R. Bonduriansky, A. Whiten and L.-A. Giraldeau for their constructive comments on previous versions of this paper. R. H. Wagner, D. Réale, M. Morange, A. Barelli, J. Dodson, N. Destainville and D. Paèz also provided constructive suggestions. This work was supported by the French Agence Nationale de la Recherche (ANR-05-BLAN-0265, EVO-INF-ECOL to É.D. and ANR-08-JCJC-0041 to A.C.) and by a postdoctoral grant from the French Fondation Fyssen to S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Étienne Danchin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Étienne Danchin's homepage

Anne Charmantier's homepage

Frances A. Champagne's homepage

Alex Mesoudi's homepage

Benoit Pujol's homepage

Simon Blanchet's homepage

Glossary

Modern synthesis

The merging of Darwinism with genetics that occurred from the 1930s to the 1950s.

Genome-wide association studies

(GWA studies). These are studies in which associations between genetic variation and a phenotype or trait of interest are identified by genotyping cases (for example, diseased individuals) and controls (for example, healthy individuals) for a set of genetic variants that capture variation across the entire genome. Tests of statistical association with a phenotype are performed locally along the genome.

Heritability

The percentage of variation in a trait that is genetically transmitted to offspring.

Inclusive heritability

The percentage of variation in a trait that is transmitted between generations, whatever the mechanism of transmission. Inclusive heritability should be greater than or equal to heritability.

Prions

Prion-forming proteins exist in different stable conformational states. In addition to a 'native' non-prion conformation, they occasionally fold into a prion conformation that replicates itself by templating the conformational conversion of other molecules of the same protein.

Partible paternity

Situations in which children are believed to have more than one biological father and each of those men provides resources for the child, enhancing its chances of survival.

Niche construction

This occurs when individuals modify their environments in such a way that it can affect their fitness, thus altering the selective pressures acting on them. Hence, members of many species inherit the cumulated environmental changes that previous generations have induced.

Macroevolutionary

Evolutionary processes that occur above the species level and over protracted periods of geological time (for example, speciation, morphological change and extinction).

Sympatric

Sympatry is the condition in which the distributions of two species or differentiated populations overlap and hybridization between taxa would be possible if they were not reproductively isolated by factors other than spatial separation.

Assortative mating

Nonrandom mating; it occurs when individuals select their mates on the basis of one or more physical or chemical characteristics. For instance, big males mate with big females and small males with small females.

Social imprinting

The process by which young individuals of many vertebrates become imprinted on an object, usually their parents, observed during a critical period, usually very early in life. At the adult stage, social imprinting allows individual animals to recognize members of their own species with which to interact or mate. However, young individuals can be artificially imprinted on humans or any other object presented at the right time.

Matrilineal

A social structure of species in which females spend their entire lives with close female relatives and form new groups primarily by group fissions.

Covariation

The association between two variables that characterizes the tendency for the two variables to covary around their mean in a systematic way.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danchin, É., Charmantier, A., Champagne, F. et al. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12, 475–486 (2011). https://doi.org/10.1038/nrg3028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing