The possibilities for the extension of spectroscopy to two dimensions are discussed. Applications to nuclear magnetic resonance are described. The basic theory of two‐dimensional spectroscopy is developed. Numerous possible applications are mentioned and some of them treated in detail, including the elucidation of energy level diagrams, the observation of multiple quantum transitions, and the recording of high‐resolution spectra in inhomogenous magnetic fields. Experimental results are presented for some simple spin systems.

1.
S. Goldman, Information Theory (Dover, New York, 1968);
B. M. Brown, The Mathematical Theory of Linear Systems (Science, New York, 1965).
2.
P. B. Fellgett (Thesis, University of Cambridge, 1951);
G. A.
Vanasse
and
H.
Sakai
,
Prog. Opt.
6
,
259
(
1967
);
R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
3.
R. R.
Ernst
and
W. A.
Anderson
,
Rev. Sci. Instrum.
37
,
93
(
1966
);
R. R.
Ernst
,
Adv. in Magn. Reson.
2
,
1
(
1966
);
T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR (Academic, New York, 1971).
4.
D. Ziessow, On‐line Rechner in der Chemie (de Gruyter, Berlin, 1973).
5.
A. Abragam, The Principles of Nuclear Magnetism (Oxford, University, New York, 1961), Chap. XII.
6.
R. K.
Harris
and
K. M.
Worvill
,
J. Magn. Reson.
9
,
394
(
1973
);
R. K.
Harris
,
N. C.
Pyper
, and
K. M.
Worvill
,
J. Magn. Reson.
18
,
139
(
1975
).
7.
F.
Bloch
,
Phys. Rev.
111
,
841
(
1958
).
8.
W. A.
Anderson
and
R.
Freeman
,
J. Chem. Phys.
37
,
85
(
1962
).
9.
R.
Freeman
and
W. A.
Anderson
,
J. Chem. Phys.
37
,
2053
(
1962
).
10.
E. B.
Baker
,
J. Chem. Phys.
37
,
911
(
1962
).
11.
S.
So/rensen
,
R. S.
Hansen
and
H. J.
Jakobsen
,
J. Magn. Reson.
14
,
243
(
1974
).
12.
E. L.
Hahn
,
Phys. Rev.
80
,
580
(
1950
).
13.
R. L.
Vold
,
J. S.
Waugh
,
M. P.
Klein
, and
D. E.
Phelps
,
J. Chem. Phys.
48
,
3831
(
1968
);
R.
Freeman
and
H. D. W.
Hill
,
J. Chem. Phys.
54
,
3367
(
1971
).
14.
R.
Freeman
,
J. Chem. Phys.
53
,
457
(
1970
).
15.
F.
Günther
,
Ann. Phys.
7
,
396
(
1971
).
16.
J. Jeener and G. Alewaeters (private communication).
17.
R. R.
Ernst
,
Chimia
29
,
179
(
1975
).
18.
R. R.
Ernst
,
J. Magn. Reson.
3
,
10
(
1970
);
E. Bartholdi, A. Wokaun, and R. R. Ernst (to be published).
19.
A.
Kumar
,
D.
Welti
, and
R. R.
Ernst
,
J. Magn. Reson.
18
,
69
(
1975
).
20.
S.
Schäublin
,
A.
Höhener
, and
R. R.
Ernst
,
J. Magn. Reson.
13
,
196
(
1974
);
S. Schäublin, A. Wokaun, and R. R. Ernst (to be published).
21.
L.
Müller
,
A.
Kumar
, and
R. R.
Ernst
,
J. Chem. Phys.
63
,
5490
(
1975
).
22.
A.
Pines
,
M. G.
Gibby
, and
J. S.
Waugh
,
J. Chem. Phys.
59
,
569
(
1973
).
23.
L.
Müller
,
A.
Kumar
,
T.
Baumann
, and
R. R.
Ernst
,
Phys. Rev. Lett.
32
,
1402
(
1974
);
R. K.
Hester
,
J. L.
Ackerman
,
V. R.
Gross
, and
J. S.
Waugh
,
Phys. Rev. Lett.
34
,
993
(
1975
).
24.
J. S. Waugh (private communication).
25.
Superoperators (also called Liouville operators), are indicated by ̂̂ see
C. N.
Banwell
and
H.
Primas
,
Mol. Phys.
6
,
225
(
1963
).
26.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
27.
P. L. Corio, Structures of High‐Resolution NMR Spectra (Academic, New York, 1966).
28.
R. R.
Ernst
,
J. Magn. Reson.
4
,
280
(
1971
).
29.
E. L.
Hahn
and
D. E.
Maxwell
,
Phys. Rev.
88
,
1070
(
1952
).
30.
R.
Freeman
and
H. D. W.
Hill
,
J. Chem. Phys.
54
,
301
(
1971
).
31.
The notion “zero quantum transition” is not strictly correct. These transitions are also double quantum transition, one quantum being absorbed and one being emitted.
32.
S.
Yatsiv
,
Phys. Rev.
113
,
1522
(
1959
).
33.
E.
Bartholdi
and
R. R.
Ernst
,
J. Magn. Reson.
11
,
9
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.