Advertisement
No access
Special Reviews

The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity

Science
6 Feb 2009
Vol 323, Issue 5915
pp. 741-746

Abstract

The Bacteria and Archaea are the most genetically diverse superkingdoms of life, and techniques for exploring that diversity are only just becoming widespread. Taxonomists classify these organisms into species in much the same way as they classify eukaryotes, but differences in their biology—including horizontal gene transfer between distantly related taxa and variable rates of homologous recombination—mean that we still do not understand what a bacterial species is. This is not merely a semantic question; evolutionary theory should be able to explain why species exist at all levels of the tree of life, and we need to be able to define species for practical applications in industry, agriculture, and medicine. Recent studies have emphasized the need to combine genetic diversity and distinct ecology in an attempt to define species in a coherent and convincing fashion. The resulting data may help to discriminate among the many theories of prokaryotic species that have been produced to date.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
J. Handelsman, Microbiol. Mol. Biol. Rev.68, 669 (2004).
2
W. P. Hanage, C. Fraser, B. G. Spratt, Philos. Trans. R. Soc. London Ser. B361, 1917 (2006).
3
M. Achtman, M. Wagner, Nat. Rev. Microbiol.6, 431 (2008).
4
F. M. Cohan, Annu. Rev. Microbiol.56, 457 (2002).
5
W. F. Doolittle, R. T. Papke, Genome Biol.7, 116 (2006).
6
D. Geverset al., Nat. Rev. Microbiol.3, 733 (2005).
7
M. F. Polz, D. E. Hunt, S. P. Preheim, D. M. Weinreich, Philos. Trans. R. Soc. London Ser. B361, 2009 (2006).
8
D. B. Ruschet al., PLoS Biol.5, e77 (2007).
9
C. Darwin, The Origin of Species (Penguin Classics, London, 1985).
10
E. Stackebrandtet al., Int. J. Syst. Evol. Microbiol.52, 1043 (2002).
11
R. Facklam, Clin. Microbiol. Rev.15, 613 (2002).
12
J. C. Arbiqueet al., J. Clin. Microbiol.42, 4686 (2004).
13
D. E. Huntet al., Science320, 1081 (2008).
14
See supplementary information in (16) for a statistical comparison of the ecotype model with an effective neutral model and an implicit estimate of Ne.
15
C. Fraser, W. P. Hanage, B. G. Spratt, Science315, 476 (2007).
16
A. Koeppelet al., Proc. Natl. Acad. Sci. U.S.A.105, 2504 (2008).
17
J. Maynard Smith, Proc. R. Soc. London Ser. B245, 37 (1991).
18
H. Ochman, A. C. Wilson, in Escherichia coli and Salmonella typhimurium:Cellular and Molecular Biology, F. C. Neidhart, Ed. (ASM Press, Washington, DC, 1987), pp. 1649–1654.
19
J. R. Thompsonet al., Appl. Environ. Microbiol.70, 4103 (2004).
20
M. Kimura, Trends Biochem. Sci.1, N152 (1976).
21
R. Milkman, Trends Biochem. Sci.1, N152 (1976).
22
K. C. Atwood, L. K. Schneider, F. J. Ryan, Proc. Natl. Acad. Sci. U.S.A.37, 146 (1951).
23
B. R. Levin, Genetics99, 1 (1981).
24
F. M. Cohan, E. B. Perry, Curr. Biol.17, R373 (2007).
25
A. Rambautet al., Nature453, 615 (2008).
26
R. A. Fisher, E. B. Ford, Heredity1, 143 (1947).
27
M. Slatkin, Theor. Popul. Biol.12, 253 (1977).
28
J. Majewski, F. M. Cohan, Genetics152, 1459 (1999).
29
E. J. Feil, B. G. Spratt, Annu. Rev. Microbiol.55, 561 (2001).
30
J. Majewski, F. M. Cohan, Genetics153, 1525 (1999).
31
J. Majewski, P. Zawadzki, P. Pickerill, F. M. Cohan, C. G. Dowson, J. Bacteriol.182, 1016 (2000).
32
S. T. Cowan, in Microbial Classification, 12th Symposium of the Society for General Microbiology, G. C. Ainsworth, P. H. A. Sneath, Eds. (Cambridge Univ. Press, Cambridge, 1962), pp. 433–455.
33
S. K. Sheppard, N. D. McCarthy, D. Falush, M. C. J. Maiden, Science320, 237 (2008).
34
A. C. Retchless, J. G. Lawrence, Science317, 1093 (2007).
35
K. Vetsigian, N. Goldenfeld, Proc. Natl. Acad. Sci. U.S.A.102, 7332 (2005).
36
A. Tuanyoket al., BMC Genomics9, 566 (2008).
37
U. Dobrindt, B. Hochhut, U. Hentschel, J. Hacker, Nat. Rev. Microbiol.2, 414 (2004).
38
P. Wilmes, S. L. Simmons, V. J. Denef, J. F. Banfield, FEMS Microbiol. Rev.33, 109 (2009).
39
V. J. Denefet al., Environ. Microbiol.11, 313 (2008).
40
E. Bantinakiet al., Genetics176, 441 (2007).
41
R. A. Welchet al., Proc. Natl. Acad. Sci. U.S.A.99, 17020 (2002).
42
J. Maynard Smith, N. H. Smith, M. O'Rourke, B. G. Spratt, Proc. Natl. Acad. Sci. U.S.A.90, 4384 (1993).
43
K. H. Hoffmannet al., FEMS Microbiol. Lett.273, 224 (2007).
44
We thank T. Connor and S. Deeny for useful discussions. Supported by University Research Fellowships from the Royal Society (C.F. and W.P.H.), a program grant from the Wellcome Trust (B.G.S.), grants from the U.S. Department of Energy Genomes to Life program (M.F.P. and E.J.A.), and the NSF/National Institute of Environmental Health Sciences Woods Hole Centre for Oceans and Human Health, the NSF Biological Oceanography Program, and the Moore Foundation (M.F.P.).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 323 | Issue 5915
6 February 2009

Submission history

Published in print: 6 February 2009

Permissions

Request permissions for this article.

Authors

Affiliations

Christophe Fraser* [email protected]
Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK.
Eric J. Alm
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Broad Institute of MIT and Harvard University, Cambridge, MA 02139, USA.
Martin F. Polz
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Brian G. Spratt
Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK.
William P. Hanage
Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Challenges and opportunities of strain diversity in gut microbiome research, Frontiers in Microbiology, 14, (2023).https://doi.org/10.3389/fmicb.2023.1117122
    Crossref
  2. Investigating the eco‐evolutionary response of microbiomes to environmental change, Ecology Letters, (2023).https://doi.org/10.1111/ele.14209
    Crossref
  3. Opportunities to advance the synthesis of ecology and evolution, Ecology Letters, (2023).https://doi.org/10.1111/ele.14175
    Crossref
  4. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa, International Journal of Molecular Sciences, 23, 12, (6599), (2022).https://doi.org/10.3390/ijms23126599
    Crossref
  5. Bladder Microbiome in the Context of Urological Disorders—Is There a Biomarker Potential for Interstitial Cystitis?, Diagnostics, 12, 2, (281), (2022).https://doi.org/10.3390/diagnostics12020281
    Crossref
  6. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report), Pure and Applied Chemistry, 94, 10, (1161-1194), (2022).https://doi.org/10.1515/pac-2022-0201
    Crossref
  7. Gene flow and introgression are pervasive forces shaping the evolution of bacterial species, Genome Biology, 23, 1, (2022).https://doi.org/10.1186/s13059-022-02809-5
    Crossref
  8. Modular evolution of secretion systems and virulence plasmids in a bacterial species complex, BMC Biology, 20, 1, (2022).https://doi.org/10.1186/s12915-021-01221-y
    Crossref
  9. Synthetic microbial consortia with programmable ecological interactions, Methods in Ecology and Evolution, 13, 7, (1608-1621), (2022).https://doi.org/10.1111/2041-210X.13894
    Crossref
  10. expam—high-resolution analysis of metagenomes using distance trees, Bioinformatics, 38, 20, (4814-4816), (2022).https://doi.org/10.1093/bioinformatics/btac591
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media