ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment

Cite this: ACS Med. Chem. Lett. 2020, 11, 7, 1361–1366
Publication Date (Web):June 23, 2020
https://doi.org/10.1021/acsmedchemlett.0c00316

Copyright © 2020 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

29554

Altmetric

-

Citations

123
LEARN ABOUT THESE METRICS
PDF (4 MB)

Abstract

While remdesivir has garnered much hope for its moderate anti-Covid-19 effects, its parent nucleoside, GS-441524, has been overlooked. Pharmacokinetic analysis of remdesivir evidences premature serum hydrolysis to GS-441524; GS-441524 is the predominant metabolite reaching the lungs. With its synthetic simplicity and in vivo efficacy in the veterinary setting, we contend that GS-441524 is superior to remdesivir for Covid-19 treatment.

While remdesivir has demonstrated efficacy against Covid-19, its broad translational applicability has been hampered by limited supply and distribution (1) due to the difficulty of its synthesis (2) and its obligatory intravenous (IV) administration requiring an inpatient setting. We recently described in a general audience publication (3) the advantages that the parent nucleoside of remdesivir, GS-441524, has over remdesivir itself for the treatment of Covid-19. Fundamentally, our investigation into the metabolism of remdesivir evidences premature serum hydrolysis of its phosphate prodrug, followed by dephosphorylation. (4−6) As a result, the major metabolite circulating in the bloodstream is the parent nucleoside, GS-441524, even though remdesivir (monophosphate nucleotide prodrug) was the species initially administered. Accounting for this broader pharmacokinetic (PK) rationale, we herein provide a detailed analysis of the literature that supports the use of GS-441524 over remdesivir for the treatment of Covid-19.

The Phosphate Prodrug on Remdesivir Is Not Intended for Lung-Specific Delivery

Remdesivir is a structural analogue of adenosine monophosphate (AMP) that interferes with the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). (7) The anionic phosphate moiety on remdesivir is masked by McGuigan prodrug moieties (8) (phenol and l-alaninate ethylbutyl ester) to enhance cell permeability. In principle, these prodrug moieties would be removed intracellularly—first by esterases (cathepsin A/carboxylesterase 1) and then by phosphoramidases (HINT1-3) (9) to release the monophosphorylated nucleotide. This would then be phosphorylated twice to give the active NTP (7,9) (Figure 1a), which is substrate-competitive with ATP for incorporation by viral RdRp and inhibition of viral RNA synthesis. (7) The McGuigan phosphate prodrug was partly developed to overcome the perceived rate-limiting first phosphorylation step toward the active triphosphorylated species. Bioactivation of the prodrug first involves carboxylesterases (CES1) and cathepsin A (CTSA), followed by phosphoramidases (histidine triad nucleotide binding proteins; HINTs; Figure 1a). (9−11) Protein expression data from the Human Protein Atlas show that these enzymes (CES1, CTSA, HINT1, 2, 3) all have high expression in the liver, with minimal expression in type II pneumocytes in the lung (12) (Figure 2). For the HINT family of phosphoramidases, there is some slight variation in each isoform’s tissue-specific expression (Figure 2b, c); however, all 3 isoforms show high expression in the GI tract, liver, and kidneys. From the pattern of bioactivation for McGuigan prodrugs, it follows that the most significant accumulation active NTP will be in cell types with high expression of CES1/CTSA/HINT1-3, such as the liver. Preferential bioactivation of McGuigan prodrugs such as remdesivir could explain the grade 3/4 adverse events related to liver and kidney damage in Covid-19 patients treated with remdesivir. (13) Seeing that the enzymes involved in McGuigan prodrug hydrolysis are hardly expressed in the lungs undermines its utility in the context of a primarily respiratory disease such as Covid-19.

Figure 1

Figure 1. McGuigan prodrugs on remdesivir are prematurely hydrolyzed in serum. (A) The ideal bioactivation of remdesivir predominately occurs in vitro. (B) The presence of serum enzymes in vivo predominately results in premature hydrolysis of the phosphate prodrugs, followed by dephosphorylation to the nucleoside, GS-441524.

Figure 2

Figure 2. McGuigan prodrugs on remdesivir are preferentially bioactivated in the liver. (A) Labile prodrug moieties on remdesivir with corresponding bioactivation enzymes. (B) Relative tissue mRNA expression of initial prodrug bioactivating enzymes for RDV (CES1/CTSA/HINT1) adapted from the HPA data set on the Human Protein Atlas reported as median-centered protein-coding transcripts per million (pTPM). Overall, McGuigan prodrug bioactivating enzymes are more highly expressed in the liver than in the lungs. (C) Immunohistochemistry images from the Human Protein Atlas indicating expression for ProTide bioactivating enzymes. Brown regions indicate enzyme expression while blue regions indicate absent expression. For the lung, pneumocytes—cells frequently infected by Covid-19—are characterized by a threadlike appearance. Expression in the liver is generally higher compared to lung for all enzymes. For CTSA, darkly stained regions are associated with macrophages. IHC images for the skin are included to show lack of enzyme expression. Antibodies used: CTSA (CAB024930), CES1 (HPA046717), HINT1 (HPA044577).

GS-441524 Is the Predominant Metabolite in the Bloodstream When Remdesivir Is Administered IV

Hydrolytic enzymes are ubiquitous in serum. (14) This is one physiological factor that, especially for prodrugs, (15) prevents direct extrapolation of bioactivation mechanisms observed in vitro to the in vivo setting. For example, esterases and phosphatases are abundantly present in serum across species. (16,17) Premature serum hydrolysis of the McGuigan prodrug on remdesivir is thus unsurprising (Figure 1b). Multiple studies have demonstrated that the nucleoside, GS-441524, is the predominant species in serum after remdesivir is administered (Figure 3b, c). (4−6) All studies that have investigated the PK of remdesivir in nonhuman primates (NHP) have concluded that intact remdesivir exhibits a short plasma half-life of about 0.4 h in serum, with “persistence” of the downstream nucleoside, GS-441524 (Figure 3c). (4,6) IV injection of remdesivir in NHP results in GS-441524 being present in serum at concentrations 1000-fold higher than remdesivir throughout a 7-day treatment course (6) (Figure 3b). This recurring phenomenon can first be explained by the abundance of plasma esterases, as the phosphoramidases (HINT1) involved in removal of the l-alanine have a strictly intracellular presence (see Human Protein Atlas HINT1). Inadvertent biotransformation of remdesivir to GS-441524 can be explained by the following sequence: (1) esterase removal of the l-alaninate ester, (2) intramolecular cyclization, displacement of the phenolate, followed by reopening of the ring, (3) cleavage of the phosphate ester by serum phosphatases or nucleosidases (Figure 1b). The proposed serum bioactivation mechanism accounts for the general substrate constraints for each class of enzyme. For instance, CES1 is named as one of the enzymes involved in McGuigan prodrug hydrolysis. However, this does not preclude other esterases from acting on its l-alaninate ester. A study conducted by Sheahan and colleagues specifically investigated the PK of remdesivir in carboxylesterase 1c deficient mice (Ces1c–/–). (5) Even in this Ces1c–/– model, the half-life of remdesivir was still short (t1/2 ∼ 25 min), supporting the notion that other esterases are capable of performing the initial hydrolysis reaction. Thus, the abundance of hydrolytic enzymes in serum explains the persistent, multispecies observation that GS-441524 is the predominant metabolite when remdesivir is administered. (4−6) For the fleeting duration of time that remdesivir is in the blood (prior to hydrolysis to GS-441524), the expression of bioactivating enzymes for McGuigan prodrugs suggests that the highest concentrations of NTP formation by remdesivir—rather than GS-441524—would occur in cell types with high expression of CES1/CTSA/HINT1. This largely favors the liver over the lungs (Figure 2). Differential expression of prodrug bioactivating enzymes likely explains the wide range of EC50 values with remdesivir in vitro. (18−20)

Figure 3

Figure 3. Unlike remdesivir, GS-441524 persists in serum at concentrations above the EC50 value required against SARS-CoV-infected primary HAE cells for long durations. (A) In vitro potency data replotted from Agostini et al. mBio, 2018. (2) Primary HAE cells were infected with either MERS-CoV or SARS-CoV and treated with either GS-441524 (open squares) or remdesivir (closed circles). Mean EC50 of GS-441524 for SARS-CoV-infected HAE cells was found to be 0.18 ± 0.14 μM (note large standard deviations, red arrows). A study by Murphy et al. shows that GS-441524 has an EC50 value of 0.78 μM against FCoV-infected CRFK cells (red dashed line), (22) which is higher than the EC50 value for GS-441524 against SARS-CoV-infected primary HAE cells. (B) Estimated metabolite concentrations for a PK experiment in a SARS-CoV-2 primate model replotted from Williamson et al. Nature, 2020. (6) Primates were initially injected IV with 10 mg/kg of remdesivir 12 h postinoculation with SARS-CoV-2 and then 5 mg/kg of remdesivir every 24 h after. Throughout the experiment, GS-441524 is present in serum at concentrations ∼1000-fold higher than remdesivir; the concentration of GS-441524 is consistently above the EC50 value in SARS-CoV-infected primary HAE cells (red dashed line) at all time points taken in the experiment. In contrast, the concentration of remdesivir in serum never exceeds that required to give the EC50 value against SARS-CoV-infected primary HAE cells (gray dashed line). (C) PK data replotted from Warren et al. Nature, 2016 (3) following IV injection (10 mg/kg) of remdesivir in NHP. Dashed lines indicate the approximate EC50 values of GS-441524 (red) or remdesivir (gray) needed to reach EC50 in SARS-CoV primary HAE cells obtained in (A). Unlike remdesivir, the concentration of drug required to give the EC50 value against SARS-CoV primary HAE cells is maintained for significantly longer with GS-441524 than with remdesivir.

GS-441524 Is Exceptionally Effective and Well-Tolerated against Clinical Presentations of Feline Coronavirus

There are currently no studies that have compared the antiviral activities of remdesivir and GS-441524 in vivo, with most focusing exclusively on remdesivir. Where GS-441524 has been investigated in vivo is in the veterinary setting. (21−23) Cats infected with feline coronavirus (FCoV) present with a serious disease known as feline infectious peritonitis (FIP). While long considered fatal in its severe manifestations, (24) a study conducted by Pedersen and colleagues showed that GS-441524 is capable of treating cats suffering from FIP with a 96% cure rate. (21) Pedersen noted the “impressive” safety profile of GS-441524, with no systemic signs of toxicity observed when administered subcutaneously at 4 mg/kg. (21) In a more recent study, Pedersen and colleagues escalated the dose of GS-441524 (5–10 mg/kg) to treat neurological manifestations of FIP; this translates to about 350–700 mg in a 70 kg human, greatly exceeding the dose currently given to patients treated with remdesivir (200 mg loading, then 100 mg). (13,25) Even at these higher doses, they found that GS-441524 treatment resulted in the long term resolution of neurological FIP with an excellent safety profile: minimal dose-related toxicities were observed. (23)

GS-441524 Shows Comparable Efficacy in Cell-Based Models of Primary Human Lung and Cat Cells Infected with Coronavirus

In vitro potency comparisons between GS-441524 and remdesivir are ultimately moot in the context of respiratory diseases such as SARS-CoV-2, if GS-441524 is the predominant species that reaches the lungs. To better gauge the efficacy of GS-441524 against SARS-CoV-2, it is helpful to first compare EC50 values between coronavirus infected human and cat cells, as the clinical efficacy of GS-441524 has already been well-established in cats. (21) GS-441524 has an EC50 value of 0.78 μM in CRFK cells infected with FCoV (Figure 3a). (26) At the time of publication, a study by Agostini and colleagues is the only report that has compared the antiviral activities of GS-441524 and remdesivir in primary human airway epithelial (HAE) cells, the most clinically relevant in vitro model of the lung, infected with either SARS-CoV or MERS-CoV. (27) While the mean EC50 value of remdesivir is lower for both SARS-CoV and MERS-CoV-infected cells, close inspection of the data reveals large standard deviations between the EC50 values obtained from GS-441524 and remdesivir making these potency differences not statistically significant (Figure 3a). (27) For instance, against SARS-CoV-infected HAE cells, GS-441524 has a reported EC50 of 0.18 (±0.14) μM, which is comparable, if not lower, than that required to exert antiviral activity against FCoV-infected cells in vitro. Most significantly, the EC50 concentration for GS-441524 against SARS-CoV-infected primary HAE cells is sustained in the plasma of NHP for nearly the entire duration of the single-dose, 24 h PK experiment conducted by Warren and colleagues (Figure 3c). In contrast, the EC50 concentration for remdesivir against SARS-CoV-infected primary HAE cells diminishes after ∼2 h. The dominance of GS-441524 over remdesivir in serum was even more pronounced in Williamson’s 7-day PK study, in which GS-441524 was present in serum at concentrations 1,000-fold greater than remdesivir at every measured time point (Figure 3b). (6) Coupled with the robust antiviral activity that GS-441524 has demonstrated against FIP, these data compel further investigations into the therapeutic and prophylactic utility of GS-441524 against SARS-CoV-2 in patients.

Concluding Remarks

ARTICLE SECTIONS
Jump To

SARS-CoV-2 is a respiratory virus that primarily affects the lungs. (12) While remdesivir has shown some efficacy in patients with advanced Covid-19, (13) its phosphate prodrug is fundamentally not designed for lung-specific delivery. Enzymes that activate the McGuigan prodrug are preferentially expressed in tissues such as the liver, which results in uneven distribution of active NTP formation via remdesivir that disfavors the lungs. Practically, the structural complexity of the McGuigan prodrug (28) adds unnecessary synthetic difficulty that hampers mass production and impedes distribution. (1) Above all else, premature hydrolysis of the McGuigan prodrug, followed by dephosphorylation in serum such that GS-441524 is the predominant metabolite (4,5,29) compels studies investigating its utility in patients with Covid-19. In contrast to the prodrug activating enzymes that activate remdesivir, bioactivation of GS-441524 relies on expression of the kinase responsible for initial phosphorylation (likely adenosine kinase, ADK). According to the Human Protein Atlas, ADK is moderately expressed across all tissues, suggesting that administration of GS-441524 would result in even distribution across tissues. The remarkable safety profile of GS-441524, indicated by selectivity indices in vitro (EC50/CC50 ratio) (2,19,30) and by clinical observations in cats, (21−23) suggest that higher dosing and lung NTP loading could be achieved with GS-441524 without encountering serious adverse effects. GS-441524 is also a structurally simple molecule that is easier to synthesize compared to remdesivir, (2) which would ease mass production and distribution. Especially amidst the documented premature serum hydrolysis of remdesivir to GS-441524, (4,5,29) we see several advantages to using GS-441524 over remdesivir for patients with Covid-19. While GS-441524, is not included in the emergency use authorization of remdesivir, the exigence of the pandemic may allow ordinary regulatory hurdles to be overcome, especially as these two drugs yield the same active species. An investigational new drug (IND) waiver or an emergency IND could be filed. The FDA has previously made allowances for prodrugs and their corresponding active substances, as in the case of Lenflunomide/Teriflunomide. Further investigations into the anti-Covid-19 utility of GS-441524 are thus imperative.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Author
    • Florian L. Muller - Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United StatesOrcidhttp://orcid.org/0000-0001-7568-2948
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

We thank Niels Pedersen, Steve Kirsch, and David Piwnica-Worms for helpful discussions, Cong-Dat Pham for assistance with research, and Pat Skerrett for assistance with our general audience article published in STAT. This work was supported by the American Cancer Society (RSG-15-145-01-CDD).

References

ARTICLE SECTIONS
Jump To

This article references 30 other publications.

  1. 1
    Cohen, E.; Azad, A. The US Government’s Supply of Covid-19 Drug Remdesivir Runs out at the End of the Month. CNN . June 8, 2020.
  2. 2
    Siegel, D.; Hui, H. C.; Doerffler, E.; Clarke, M. O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1- f ][Triazin-4-Amino] Adenine C -Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60 (5), 16481661,  DOI: 10.1021/acs.jmedchem.6b01594
  3. 3
    Yan, V. C.; Muller, F. L. Gilead Should Ditch Remdesivir and Focus on Its Simpler and Safer Ancestor. STAT . May 14, 2020.
  4. 4
    Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola Virus in Rhesus Monkeys. Nature 2016, 531, 381385,  DOI: 10.1038/nature17180
  5. 5
    Sheahan, T. P.; Sims, A. C.; Graham, R. L.; Menachery, V. D.; Gralinski, L. E.; Case, J. B.; Leist, S. R.; Pyrc, K.; Feng, J. Y.; Trantcheva, I.; Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med. 2017, 9 (396), eaal3653 DOI: 10.1126/scitranslmed.aal3653
  6. 6
    Williamson, B. N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D. P.; Schulz, J.; Van Doremalen, N.; Leighton, I.; Yinda, C. K.; Pérez-Pérez, L. Clinical Benefit of Remdesivir in Rhesus Macaques Infected with SARS-CoV-2. Nature 2020,  DOI: 10.1038/s41586-020-2423-5
  7. 7
    Gordon, C. J.; Tchesnokov, E. P.; Feng, J. Y.; Porter, D. P.; Gotte, M. The Antiviral Compound Remdesivir Potently Inhibits RNA-Dependent RNA Polymerase from Middle East Respiratory Syndrome Coronavirus. J. Biol. Chem. 2020, 295, 4773,  DOI: 10.1074/jbc.AC120.013056
  8. 8
    Alanazi, A. S.; James, E.; Mehellou, Y. The ProTide Prodrug Technology: Where Next?. ACS Med. Chem. Lett. 2019, 10 (1), 25,  DOI: 10.1021/acsmedchemlett.8b00586
  9. 9
    Murakami, E.; Wang, T.; Babusis, D.; Lepist, E.-I.; Sauer, D.; Park, Y.; Vela, J. E.; Shih, R.; Birkus, G.; Stefanidis, D. Metabolism and Pharmacokinetics of the Anti-Hepatitis C Virus Nucleotide Prodrug GS-6620 Downloaded From. Antimicrob. Agents Chemother. 2014, 58, 19431951,  DOI: 10.1128/AAC.02350-13
  10. 10
    Bieganowski, P.; Garrison, P. N.; Hodawadekar, S. C.; Faye, G.; Barnes, L. D.; Brenner, C. Adenosine Monophosphoramidase Activity of Hint and Hnt1 Supports Function of Kin28, Ccl1, and Tfb3. J. Biol. Chem. 2002, 277 (13), 1085210860,  DOI: 10.1074/jbc.M111480200
  11. 11
    Chou, T.-F.; Baraniak, J.; Kaczmarek, R.; Zhou, X.; Cheng, J.; Ghosh, B.; Wagner, C. R. Phosphoramidate Pronucleotides: A Comparison of the Phosphoramidase Substrate Specificity of Human and Escherichia Coli Histidine Triad Nucleotide Binding Proteins. Mol. Pharmaceutics 2007, 4 (2), 208217,  DOI: 10.1021/mp060070y
  12. 12
    Wichmann, D.; Sperhake, J.-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A. S. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann. Intern. Med. 2020, M202003,  DOI: 10.7326/M20-2003
  13. 13
    Beigel, J. H.; Tomashek, K. M.; Dodd, L. E.; Mehta, A. K.; Zingman, B. S.; Kalil, A. C.; Hohmann, E.; Chu, H. Y.; Luetkemeyer, A.; Kline, S. Remdesivir for the Treatment of Covid-19 — Preliminary Report. N. Engl. J. Med. 2020,  DOI: 10.1056/NEJMoa2007764
  14. 14
    Cooke, A. M.; Baron, D. N. Section of Medicine with Section of Pathology-Serum Enzymes in Clinical Practice ; 1963; Vol. 56.
  15. 15
    Testa, B.; Mayer, J. M. Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry, and Enzymology; VHCA, 2003.
  16. 16
    Bahar, F. G.; Ohura, K.; Ogihara, T.; Imai, T. Species Difference of Esterase Expression and Hydrolase Activity in Plasma. J. Pharm. Sci. 2012, 101 (10), 39793988,  DOI: 10.1002/jps.23258
  17. 17
    Yong, J. M. Origins of Serum Alkaline Phosphatase. J. Clin. Pathol. 1967, 20 (4), 647653,  DOI: 10.1136/jcp.20.4.647
  18. 18
    Pruijssers, A. J.; George, A. S.; Schäfer, A.; Leist, S. R.; Gralinksi, L. E.; Dinnon Iii, K. H.; Yount, B. L.; Agostini, M. L.; Stevens, L. J.; Chappell, J. D. Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. bioRxiv 2020,  DOI: 10.1101/2020.04.27.064279
  19. 19
    Lo, M. K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A. L.; Flint, M.; McMullan, L. K.; Siegel, D.; Clarke, M. O. GS-5734 and Its Parent Nucleoside Analog Inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7 (1), 43395,  DOI: 10.1038/srep43395
  20. 20
    Choy, K.-T.; Wong, A. Y.-L.; Kaewpreedee, P.; Sia, S. F.; Chen, D.; Hui, K. P. Y.; Chu, D. K. W.; Chan, M. C. W.; Cheung, P. P.-H.; Huang, X. Remdesivir, Lopinavir, Emetine, and Homoharringtonine Inhibit SARS-CoV-2 Replication in Vitro. Antiviral Res. 2020, 178, 104786,  DOI: 10.1016/j.antiviral.2020.104786
  21. 21
    Pedersen, N. C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami, E.; Liepnieks, M.; Liu, H. Efficacy and Safety of the Nucleoside Analog GS-441524 for Treatment of Cats with Naturally Occurring Feline Infectious Peritoniti. J. Feline Med. Surg. 2019, 21 (4), 271281,  DOI: 10.1177/1098612X19825701
  22. 22
    Murphy, B. G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N. C. The Nucleoside Analog GS-441524 Strongly Inhibits Feline Infectious Peritonitis (FIP) Virus in Tissue Culture and Experimental Cat Infection Studies. Vet. Microbiol. 2018, 219, 226233,  DOI: 10.1016/j.vetmic.2018.04.026
  23. 23
    Dickinson, P. J.; Bannasch, M.; Thomasy, S. M.; Murthy, V. D.; Vernau, K. M.; Liepnieks, M.; Montgomery, E.; Knickelbein, K. E.; Murphy, B.; Pedersen, N. C. Antiviral Treatment Using the Adenosine Nucleoside Analogue GS −441524 in Cats with Clinically Diagnosed Neurological Feline Infectious Peritonitis. J. Vet. Intern. Med. 2020,  DOI: 10.1111/jvim.15780
  24. 24
    Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Hosie, M. J.; Lloret, A.; Lutz, H. Feline Infectious Peritonitis. ABCD Guidelines on Prevention and Management. J. Feline Med. Surg. 2009, 11 (7), 594604,  DOI: 10.1016/j.jfms.2009.05.008
  25. 25
    Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q. Remdesivir in Adults with Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet 2020, 395 (10236), 15691578,  DOI: 10.1016/S0140-6736(20)31022-9
  26. 26
    Murphy, B. G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N. C. The Nucleoside Analog GS-441524 Strongly Inhibits Feline Infectiousperitonitis (FIP) Virus in Tissue Culture and Experimental Cat Infection Studies. Vet. Microbiol. 2018, 219, 226233,  DOI: 10.1016/j.vetmic.2018.04.026
  27. 27
    Agostini, M. L.; Andres, E. L.; Sims, A. C.; Graham, R. L.; Sheahan, T. P.; Lu, X.; Clinton Smith, E.; Brett Case, J.; Feng, J. Y.; Jordan, R. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease Downloaded From. mBio 2018, 9 (2), ee0022118,  DOI: 10.1128/mBio.00221-18
  28. 28
    Jarvis, L. M. Scaling up Remdesivir amid the Coronavirus Crisis. C&EN . April 20, 2020.
  29. 29
    Williamson, B. N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D. P.; Schulz, J.; Doremalen, N.; van Leighton, I.; Yinda, C. K.; Pérez-Pérez, L. Clinical Benefit of Remdesivir in Rhesus Macaques Infected with SARS-CoV-2. bioRxiv 2020, 2020.04.15.043166
  30. 30
    Cho, A.; Saunders, O. L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J. E.; Feng, J. Y.; Ray, A. S.; Kim, C. U. Synthesis and Antiviral Activity of a Series of 1′-Substituted 4-Aza-7,9-Dideazaadenosine C-Nucleosides. Bioorg. Med. Chem. Lett. 2012, 22 (8), 27052707,  DOI: 10.1016/j.bmcl.2012.02.105

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 123 publications.

  1. Yueting Liu, Shuxin Sun, Jiapeng Li, Weiwen Wang, Hao-Jie Zhu. Cell-Dependent Activation of ProTide Prodrugs and Its Implications in Antiviral Studies. ACS Pharmacology & Translational Science 2023, 6 (10) , 1340-1346. https://doi.org/10.1021/acsptsci.3c00050
  2. Amgad M. Rabie, Marwa A. Abdel-Dayem, Mohnad Abdalla. Promising Experimental Anti-SARS-CoV-2 Agent “SLL-0197800”: The Prospective Universal Inhibitory Properties against the Coming Versions of the Coronavirus. ACS Omega 2023, 8 (39) , 35538-35554. https://doi.org/10.1021/acsomega.2c08073
  3. Xiao Jia, Dominique Schols, Chris Meier. Pronucleotides of 2′,3′-Dideoxy-2′,3′-Didehydrothymidine as Potent Anti-HIV Compounds. Journal of Medicinal Chemistry 2023, 66 (17) , 12163-12184. https://doi.org/10.1021/acs.jmedchem.3c00755
  4. Wafa A. Eltayb, Mohnad Abdalla, Amgad M. Rabie. Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species. ACS Omega 2023, 8 (6) , 5234-5246. https://doi.org/10.1021/acsomega.2c03881
  5. Amgad M. Rabie, Mohnad Abdalla. Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: In Silico and In Vitro Studies. ACS Bio & Med Chem Au 2022, 2 (6) , 565-585. https://doi.org/10.1021/acsbiomedchemau.2c00039
  6. Jinwen Zhang, Mingfeng He, Qian Xie, Ailing Su, Kuangyang Yang, Lichu Liu, Jianhui Liang, Ziqi Li, Xiuxin Huang, Jianshu Hu, Qian Liu, Bing Song, Chun Hu, Lei Chen, Yan Wang. Predicting In Vitro and In Vivo Anti-SARS-CoV-2 Activities of Antivirals by Intracellular Bioavailability and Biochemical Activity. ACS Omega 2022, 7 (49) , 45023-45035. https://doi.org/10.1021/acsomega.2c05376
  7. Amgad M. Rabie. Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease. ACS Omega 2022, 7 (25) , 21385-21396. https://doi.org/10.1021/acsomega.1c07095
  8. Victoria C. Yan. Phosphoramidate Prodrugs Continue to Deliver: The Journey of Remdesivir (GS-5734) from the Liver to Peripheral Blood Mononuclear Cells. ACS Medicinal Chemistry Letters 2022, 13 (4) , 520-523. https://doi.org/10.1021/acsmedchemlett.2c00105
  9. Richard L. Mackman. Phosphoramidate Prodrugs Continue to Deliver, The Journey of Remdesivir (GS-5734) from RSV to SARS-CoV-2. ACS Medicinal Chemistry Letters 2022, 13 (3) , 338-347. https://doi.org/10.1021/acsmedchemlett.1c00624
  10. Yingjun Li, Liu Cao, Ge Li, Feng Cong, Yunfeng Li, Jing Sun, Yinzhu Luo, Guijiang Chen, Guanguan Li, Ping Wang, Fan Xing, Yanxi Ji, Jincun Zhao, Yu Zhang, Deyin Guo, Xumu Zhang. Remdesivir Metabolite GS-441524 Effectively Inhibits SARS-CoV-2 Infection in Mouse Models. Journal of Medicinal Chemistry 2022, 65 (4) , 2785-2793. https://doi.org/10.1021/acs.jmedchem.0c01929
  11. Amgad M. Rabie. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS Omega 2022, 7 (3) , 2960-2969. https://doi.org/10.1021/acsomega.1c05998
  12. Jiapeng Li, Shuhan Liu, Jian Shi, Xinwen Wang, Yanling Xue, Hao-Jie Zhu. Tissue-Specific Proteomics Analysis of Anti-COVID-19 Nucleoside and Nucleotide Prodrug-Activating Enzymes Provides Insights into the Optimization of Prodrug Design and Pharmacotherapy Strategy. ACS Pharmacology & Translational Science 2021, 4 (2) , 870-887. https://doi.org/10.1021/acsptsci.1c00016
  13. Xiao Jia, Stefan Weber, Dominique Schols, Chris Meier. Membrane Permeable, Bioreversibly Modified Prodrugs of Nucleoside Diphosphate-γ-Phosphonates. Journal of Medicinal Chemistry 2020, 63 (20) , 11990-12007. https://doi.org/10.1021/acs.jmedchem.0c01294
  14. Andrew J. Wiemer. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacology & Translational Science 2020, 3 (4) , 613-626. https://doi.org/10.1021/acsptsci.0c00076
  15. Giorgio Di Paco, Marina Macchiagodena, Piero Procacci. Identification of Potential Inhibitors of the SARS‐CoV‐2 NSP13 Helicase via Structure‐Based Ligand Design, Molecular Docking and Nonequilibrium Alchemical Simulations. ChemMedChem 2024, 6 https://doi.org/10.1002/cmdc.202400095
  16. Robert W. Cross, Courtney Woolsey, Victor C. Chu, Darius Babusis, Roy Bannister, Meghan S. Vermillion, Romas Geleziunas, Kimberly T. Barrett, Elaine Bunyan, Anh-Quan Nguyen, Tomas Cihlar, Danielle P. Porter, Abhishek N. Prasad, Daniel J. Deer, Viktoriya Borisevich, Krystle N. Agans, Jasmine Martinez, Mack B. Harrison, Natalie S. Dobias, Karla A. Fenton, John P. Bilello, Thomas W. Geisbert. Oral administration of obeldesivir protects nonhuman primates against Sudan ebolavirus. Science 2024, 383 (6688) https://doi.org/10.1126/science.adk6176
  17. Nicholas J. Wright, Feng Zhang, Yang Suo, Lingyang Kong, Ying Yin, Justin G. Fedor, Kedar Sharma, Mario J. Borgnia, Wonpil Im, Seok-Yong Lee. Antiviral drug recognition and elevator-type transport motions of CNT3. Nature Chemical Biology 2024, 162 https://doi.org/10.1038/s41589-024-01559-8
  18. Eslam M. Abbass, Ali Kh. Khalil, Yousra Abdel-Mottaleb, Mohamed S. A. Abdel-Mottaleb. Exploiting Modeling Studies for Evaluating the Potential Antiviral Activities of some Clinically Approved Drugs and Herbal Materials against SARS-CoV-2: Theoretical Studies toward Hindering the Virus and Blocking the Human Cellular Receptor. Polycyclic Aromatic Compounds 2024, 44 (2) , 1209-1220. https://doi.org/10.1080/10406638.2023.2189736
  19. Xiao Jia, Dominique Schols, Chris Meier. Potent Anti‐HIV Activity of Alkyl‐Modified Di PP ro‐Nucleotides. Small Structures 2023, 36 https://doi.org/10.1002/sstr.202300430
  20. Viktoria Milkova, Neli Vilhelmova-Ilieva, Anna Gyurova, Kamelia Kamburova, Ivaylo Dimitrov, Elina Tsvetanova, Almira Georgieva, Milka Mileva. Remdesivir-Loaded Nanoliposomes Stabilized by Chitosan/Hyaluronic Acid Film with a Potential Application in the Treatment of Coronavirus Infection. Neurology International 2023, 15 (4) , 1320-1338. https://doi.org/10.3390/neurolint15040083
  21. Chian-Wei Chen, Chun-Ping Chang, Yi-Shuan Wen, Cheng-Hsiang Kuo, Shang-Wen Lin, Jui-Chen Tsai, Yan-Jye Shyong. Pulmonary delivery of remdesivir and dexamethasone encapsulated nanostructured lipid carriers for enhanced inflammatory suppression in lung. Journal of Drug Delivery Science and Technology 2023, 90 , 105144. https://doi.org/10.1016/j.jddst.2023.105144
  22. Bulat F. Garifullin, Leysan R. Khabibulina, Maya G. Belenok, Liliya F. Saifina, Vladimir V. Zarubaev, Alexander V. Slita, Alexandrina S. Volobueva, Vyacheslav E. Semenov, Vladimir E. Kataev. Synthesis and antiviral activity of 1,2,3-triazolyl nucleoside analogues with N -acetyl- d -glucosamine residue. Nucleosides, Nucleotides & Nucleic Acids 2023, 42 (9) , 743-765. https://doi.org/10.1080/15257770.2023.2189914
  23. Subarna Barua, Bernhard Kaltenboeck, Yen-Chen Juan, Richard Curtis Bird, Chengming Wang. Comparative Evaluation of GS-441524, Teriflunomide, Ruxolitinib, Molnupiravir, Ritonavir, and Nirmatrelvir for In Vitro Antiviral Activity against Feline Infectious Peritonitis Virus. Veterinary Sciences 2023, 10 (8) , 513. https://doi.org/10.3390/vetsci10080513
  24. Yuki Nakano, Yoko Inokuchi, Tadashi Hayama, Toshinori Hirai, Mamoru Nishiyama, Yoshiko Sueyasu, Kenjo Yokoo. Exploration of the optimal GS-441524 trough concentration for treating COVID-19. International Journal of Antimicrobial Agents 2023, 62 (2) , 106892. https://doi.org/10.1016/j.ijantimicag.2023.106892
  25. Mohnad Abdalla, Amgad M. Rabie. Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant. Computational Biology and Chemistry 2023, 104 , 107768. https://doi.org/10.1016/j.compbiolchem.2022.107768
  26. Ainan Zhou, Zhen Wang, Xingxing Diao, Dafang Zhong. Characterization of in-vivo human metabolites of the oral nucleoside anti-COVID-19 drug VV116 using UHPLC-Orbitrap-MS. Journal of Pharmaceutical and Biomedical Analysis 2023, 228 , 115340. https://doi.org/10.1016/j.jpba.2023.115340
  27. Wallada H. Ibrahim, Hana Sh. Mahmood. Identification, Determination and Spectral Study. Biomedicine and Chemical Sciences 2023, 2 (2) https://doi.org/10.48112/bcs.v2i2.444
  28. Ryan Kingsley, Christopher Rohlman, Ashley Otto, Rahul Chaudhary, David Phelan, Robert Kirchoff. Remdesivir-induced conduction abnormalities: A molecular model-based explanation. Journal of Pharmacy & Pharmaceutical Sciences 2023, 26 https://doi.org/10.3389/jpps.2023.11208
  29. Amgad M. Rabie, Mohnad Abdalla. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Medicinal Chemistry Research 2023, 32 (2) , 326-341. https://doi.org/10.1007/s00044-022-02970-3
  30. Amgad M. Rabie, Wafa A. Eltayb. Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study. Molecular Biotechnology 2023, 18 https://doi.org/10.1007/s12033-022-00551-8
  31. Lauren Kirkwood‐Johnson, Yusuke Marikawa. Developmental toxicity of remdesivir, an anti‐COVID ‐19 drug, is implicated by in vitro assays using morphogenetic embryoid bodies of mouse and human pluripotent stem cells. Birth Defects Research 2023, 115 (2) , 224-239. https://doi.org/10.1002/bdr2.2111
  32. Ahmed Abouellil, Muhammad Bilal, Max Taubert, Uwe Fuhr. A population pharmacokinetic model of remdesivir and its major metabolites based on published mean values from healthy subjects. Naunyn-Schmiedeberg's Archives of Pharmacology 2023, 396 (1) , 73-82. https://doi.org/10.1007/s00210-022-02292-6
  33. Praisy K. Prabha, Ajay Prakash, Bikash Medhi. Can changing the prodrug moiety in remdesivir be a life-saving strategy in COVID-19 infection?. Indian Journal of Medical Research 2023, 157 (1) , 100-103. https://doi.org/10.4103/ijmr.ijmr_233_22
  34. Amgad M. Rabie, Wafa A. Eltayb. Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage). Advances in Redox Research 2023, 18 , 100064. https://doi.org/10.1016/j.arres.2023.100064
  35. Nahal Mirzaie, Mohammad V. Sanian, Mohammad H. Rohban. Weakly-Supervised Drug Efficiency Estimation with Confidence Score: Application to COVID-19 Drug Discovery. 2023, 676-685. https://doi.org/10.1007/978-3-031-43993-3_65
  36. Rana Abdelnabi, Piet Maes, Steven de Jonghe, Birgit Weynand, Johan Neyts. Combination of the parent analogue of remdesivir (GS-441524) and molnupiravir results in a markedly potent antiviral effect in SARS-CoV-2 infected Syrian hamsters. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1072202
  37. Amgad M. Rabie, Mohnad Abdalla. A Series of Adenosine Analogs as the First Efficacious Anti‐SARS‐CoV‐2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study. ChemistrySelect 2022, 7 (46) https://doi.org/10.1002/slct.202201912
  38. Sibei Lei, Xiaohua Chen, Jieping Wu, Xingmei Duan, Ke Men. Small molecules in the treatment of COVID-19. Signal Transduction and Targeted Therapy 2022, 7 (1) https://doi.org/10.1038/s41392-022-01249-8
  39. JiaYi Zhu, Yuchong Li, Jady Liang, Samira Mubareka, Arthur S. Slutsky, Haibo Zhang. The Potential Protective Role of GS-441524, a Metabolite of the Prodrug Remdesivir, in Vaccine Breakthrough SARS-CoV-2 Infections. Intensive Care Research 2022, 2 (3-4) , 49-60. https://doi.org/10.1007/s44231-022-00021-4
  40. Mahsa Asadi Anar, Elaheh Foroughi, Elika Sohrabi, Samira Peiravi, Yasaman Tavakoli, Mozhgan Kameli Khouzani, Parisa Behshood, Melika Shamshiri, Arezoo Faridzadeh, Kimia Keylani, Seyedeh Faride Langari, Akram Ansari, Amirmohammad Khalaji, Setareh Garousi, Mehran Mottahedi, Sara Honari, Niloofar Deravi. Selective serotonin reuptake inhibitors: New hope in the fight against COVID-19. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.1036093
  41. Sara I. Aboras, Heba H. Abdine, Marwa A. A. Ragab, Mohamed A. Korany. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Critical Reviews in Analytical Chemistry 2022, 52 (8) , 1878-1900. https://doi.org/10.1080/10408347.2021.1923456
  42. Sarah Cook, Luke Wittenburg, Victoria C. Yan, Jacob H. Theil, Diego Castillo, Krystle L. Reagan, Sonyia Williams, Cong-Dat Pham, Chun Li, Florian L. Muller, Brian G. Murphy. An Optimized Bioassay for Screening Combined Anticoronaviral Compounds for Efficacy against Feline Infectious Peritonitis Virus with Pharmacokinetic Analyses of GS-441524, Remdesivir, and Molnupiravir in Cats. Viruses 2022, 14 (11) , 2429. https://doi.org/10.3390/v14112429
  43. Xiaohui Zhang, Xin Zhang, Aoqiong Xu, Mengdi Yu, Yu Xu, Ying Xu, Chao Wang, Gege Yang, Chunxia Song, Xiangwei Wu, Ying Lu. Aptamer-Gated Mesoporous Silica Nanoparticles for N Protein Triggered Release of Remdesivir and Treatment of Novel Coronavirus (2019-nCoV). Biosensors 2022, 12 (11) , 950. https://doi.org/10.3390/bios12110950
  44. Radi Alsafi, Saad Alghamdi, Mohammad Asif. Antiviral Drugs and Their Roles in the Treatment of Coronavirus Infection. 2022https://doi.org/10.5772/intechopen.101717
  45. Zhenchao Wu, Zhifei Han, Beibei Liu, Ning Shen. Remdesivir in treating hospitalized patients with COVID-19: A renewed review of clinical trials. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.971890
  46. M Bohm. Successful treatment of a South African cat with effusive feline infectious peritonitis with remdesivir. Journal of the South African Veterinary Association 2022, 93 (2) , 112-115. https://doi.org/10.36303/JSAVA.238
  47. Amy Q. Wang, Natalie R. Hagen, Elias C. Padilha, Mengbi Yang, Pranav Shah, Catherine Z. Chen, Wenwei Huang, Pramod Terse, Philip Sanderson, Wei Zheng, Xin Xu. Preclinical Pharmacokinetics and In Vitro Properties of GS-441524, a Potential Oral Drug Candidate for COVID-19 Treatment. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.918083
  48. Katja Merches, Leonie Breunig, Julia Fender, Theresa Brand, Vanessa Bätz, Svenja Idel, Laxmikanth Kollipara, Yvonne Reinders, Albert Sickmann, Angela Mally, Kristina Lorenz. The potential of remdesivir to affect function, metabolism and proliferation of cardiac and kidney cells in vitro. Archives of Toxicology 2022, 96 (8) , 2341-2360. https://doi.org/10.1007/s00204-022-03306-1
  49. Christine Skaggs, Hannah Zimmerman, Nicholas Manicke, Lindsey Kirkpatrick. Development and validation of a paper spray mass spectrometry method for the rapid quantitation of remdesivir and its active metabolite, GS-441524, in human plasma. Journal of Mass Spectrometry and Advances in the Clinical Lab 2022, 25 , 27-35. https://doi.org/10.1016/j.jmsacl.2022.06.001
  50. Wei Zheng, Tianwen Hu, Yumin Zhang, Daibao Wei, Yuanchao Xie, Jingshan Shen. Synthesis and anti-SARS-CoV-2 activity of deuterated GS-441524 analogs. Tetrahedron Letters 2022, 104 , 154012. https://doi.org/10.1016/j.tetlet.2022.154012
  51. Jacob D. Ramsey, Ian E. Stewart, Emily A. Madden, Chaemin Lim, Duhyeong Hwang, Mark T. Heise, Anthony J. Hickey, Alexander V. Kabanov. Nanoformulated Remdesivir with Extremely Low Content of Poly(2‐oxazoline)‐Based Stabilizer for Aerosol Treatment of COVID‐19. Macromolecular Bioscience 2022, 22 (8) https://doi.org/10.1002/mabi.202200056
  52. Aikaterini C. Tsika, Angelo Gallo, Nikolaos K. Fourkiotis, Aikaterini I. Argyriou, Sridhar Sreeramulu, Frank Löhr, Vladimir V. Rogov, Christian Richter, Verena Linhard, Santosh L. Gande, Nadide Altincekic, Robin Krishnathas, Isam Elamri, Harald Schwalbe, Jan Wollenhaupt, Manfred S. Weiss, Georgios A. Spyroulias. Binding Adaptation of GS-441524 Diversifies Macro Domains and Downregulates SARS-CoV-2 de-MARylation Capacity. Journal of Molecular Biology 2022, 434 (16) , 167720. https://doi.org/10.1016/j.jmb.2022.167720
  53. Prajakta Kulkarni, Sriram Padmanabhan. A novel property of hexokinase inhibition by Favipiravir and proposed advantages over Molnupiravir and 2 Deoxy d glucose in treating COVID-19. Biotechnology Letters 2022, 44 (7) , 831-843. https://doi.org/10.1007/s10529-022-03259-6
  54. Jared Pitts, Darius Babusis, Meghan S. Vermillion, Raju Subramanian, Kim Barrett, Diane Lye, Bin Ma, Xiaofeng Zhao, Nicholas Riola, Xuping Xie, Adriana Kajon, Xianghan Lu, Roy Bannister, Pei-Yong Shi, Maria Toteva, Danielle P. Porter, Bill J. Smith, Tomas Cihlar, Richard Mackman, John P. Bilello. Intravenous delivery of GS-441524 is efficacious in the African green monkey model of SARS-CoV-2 infection. Antiviral Research 2022, 203 , 105329. https://doi.org/10.1016/j.antiviral.2022.105329
  55. E. Leegwater, D. J. A. R. Moes, L. B. E. Bosma, T. H. Ottens, I. M. van der Meer, C. van Nieuwkoop, E. B. Wilms. Population Pharmacokinetics of Remdesivir and GS-441524 in Hospitalized COVID-19 Patients. Antimicrobial Agents and Chemotherapy 2022, 66 (6) https://doi.org/10.1128/aac.00254-22
  56. Wei Shen Ho, Ruirui Zhang, Yeong Lan Tan, Christina Li Lin Chai. COVID-19 and the promise of small molecule therapeutics: Are there lessons to be learnt?. Pharmacological Research 2022, 179 , 106201. https://doi.org/10.1016/j.phrs.2022.106201
  57. Anatoly Mayburd. Cross-testing of direct-action antivirals, universal vaccines, or search for host-level antivirals: what will sooner lead to a generic capability to combat the emerging viral pandemics?. Expert Review of Anti-infective Therapy 2022, 20 (4) , 507-511. https://doi.org/10.1080/14787210.2022.2000859
  58. Henrik Berg Rasmussen, Ragnar Thomsen, Peter Riis Hansen. Nucleoside analog GS‐441524: pharmacokinetics in different species, safety, and potential effectiveness against Covid‐19. Pharmacology Research & Perspectives 2022, 10 (2) https://doi.org/10.1002/prp2.945
  59. Hooman Aghamirza Moghim Aliabadi, Reza Eivazzadeh‐Keihan, Arezoo Beig Parikhani, Sara Fattahi Mehraban, Ali Maleki, Sepideh Fereshteh, Masoume Bazaz, Ashkan Zolriasatein, Bahareh Bozorgnia, Saman Rahmati, Fatemeh Saberi, Zeinab Yousefi Najafabadi, Shadi Damough, Sara Mohseni, Hamid Salehzadeh, Vahid Khakyzadeh, Hamid Madanchi, Gholam Ali Kardar, Payam Zarrintaj, Mohammad Reza Saeb, Masoud Mozafari. COVID‐19: A systematic review and update on prevention, diagnosis, and treatment. MedComm 2022, 3 (1) https://doi.org/10.1002/mco2.115
  60. Pyoeng Gyun Choe, Sae Im Jeong, Chang Kyung Kang, Liju Yang, SeungHwan Lee, Joo‐Youn Cho, Seung Seok Han, Dong Ki Kim, Sang Min Lee, Wan Beom Park, Myoung‐don Oh, Nam Joong Kim. Exploration for the effect of renal function and renal replacement therapy on pharmacokinetics of remdesivir and GS‐441524 in patients with COVID‐19: A limited case series. Clinical and Translational Science 2022, 15 (3) , 732-740. https://doi.org/10.1111/cts.13194
  61. Sourav Bhattacharjee, D. Ceri Davies, Jane C. Holland, Jonathan M. Holmes, David Kilroy, Imelda M. McGonnell, Alison L. Reynolds. On the importance of integrating comparative anatomy and One Health perspectives in anatomy education. Journal of Anatomy 2022, 240 (3) , 429-446. https://doi.org/10.1111/joa.13570
  62. H Ramakrishna Reddy, S R Pratap, N Chandrasekhar, S Z M Shamshuddin. A Novel Liquid Chromatographic Method for the Quantitative Determination of Degradation Products in Remdesivir Injectable Drug product. Journal of Chromatographic Science 2022, 60 (2) , 194-200. https://doi.org/10.1093/chromsci/bmab042
  63. Fanny Salasc, Thomas Lahlali, Emilie Laurent, Manuel Rosa-Calatrava, Andrés Pizzorno. Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Current Opinion in Pharmacology 2022, 62 , 43-59. https://doi.org/10.1016/j.coph.2021.11.002
  64. Suwen Hu, Songwei Jiang, Xiang Qi, Renren Bai, Xiang‐Yang Ye, Tian Xie. Races of small molecule clinical trials for the treatment of COVID‐19: An up‐to‐date comprehensive review. Drug Development Research 2022, 83 (1) , 16-54. https://doi.org/10.1002/ddr.21895
  65. Hye Jin Jeong, Sein Min, Sarah Kim, Sung Keon Namgoong, Keunhong Jeong. Hyperpolarization study on remdesivir with its biological reaction monitoring via signal amplification by reversible exchange. RSC Advances 2022, 12 (7) , 4377-4381. https://doi.org/10.1039/D2RA00062H
  66. Andrea Defant, Federico Dosi, Nicole Innocenti, Ines Mancini. Synthesis of Nucleoside-like Molecules from a Pyrolysis Product of Cellulose and Their Computational Prediction as Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors. International Journal of Molecular Sciences 2022, 23 (1) , 518. https://doi.org/10.3390/ijms23010518
  67. Manju Nidagodu Jayakumar, Jisha Pillai U., Moksha Mehta, Karanveer Singh, Eldhose Iype, Mainak Dutta. Identification of Potential Inhibitors Against SARS-CoV-2 3CLpro, PLpro, and RdRP Proteins: An In-Silico Approach. 2022, 85-112. https://doi.org/10.1007/978-981-16-7857-8_8
  68. Saumya Kapoor, Gurudutt Dubey, Samima Khatun, Prasad V. Bharatam. Remdesivir: Mechanism of Metabolic Conversion from Prodrug to Drug. Current Drug Metabolism 2022, 23 (1) , 73-81. https://doi.org/10.2174/1389200223666211228160314
  69. Kaiming Tao, Philip L. Tzou, Janin Nouhin, Hector Bonilla, Prasanna Jagannathan, Robert W. Shafer. SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews 2021, 34 (4) https://doi.org/10.1128/CMR.00109-21
  70. Sawittree Sahakijpijarn, Chaeho Moon, Zachary N. Warnken, Esther Y. Maier, Jennie E. DeVore, Dale J. Christensen, John J. Koleng, Robert O. Williams. In vivo pharmacokinetic study of remdesivir dry powder for inhalation in hamsters. International Journal of Pharmaceutics: X 2021, 3 , 100073. https://doi.org/10.1016/j.ijpx.2021.100073
  71. Daniela Krentz, Katharina Zenger, Martin Alberer, Sandra Felten, Michèle Bergmann, Roswitha Dorsch, Kaspar Matiasek, Laura Kolberg, Regina Hofmann-Lehmann, Marina L. Meli, Andrea M. Spiri, Jeannie Horak, Saskia Weber, Cora M. Holicki, Martin H. Groschup, Yury Zablotski, Eveline Lescrinier, Berthold Koletzko, Ulrich von Both, Katrin Hartmann. Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses 2021, 13 (11) , 2228. https://doi.org/10.3390/v13112228
  72. Jingjing Li, Kai Zhang, Di Wu, Lianjie Ren, Xinyu Chu, Chao Qin, Xiaopeng Han, Taijun Hang, Yungen Xu, Lei Yang, Lifang Yin. Liposomal remdesivir inhalation solution for targeted lung delivery as a novel therapeutic approach for COVID-19. Asian Journal of Pharmaceutical Sciences 2021, 16 (6) , 772-783. https://doi.org/10.1016/j.ajps.2021.09.002
  73. Erik De Clercq. Remdesivir: Quo vadis?. Biochemical Pharmacology 2021, 193 , 114800. https://doi.org/10.1016/j.bcp.2021.114800
  74. Ahmed S. Ali, Ibrahim M. Ibrahim, Abdulhadi S. Burzangi, Ragia H. Ghoneim, Hanin S. Aljohani, Hamoud A. Alsamhan, Jehan Barakat. Scoping insight on antiviral drugs against COVID-19. Arabian Journal of Chemistry 2021, 14 (10) , 103385. https://doi.org/10.1016/j.arabjc.2021.103385
  75. Jiapeng Li, Shuhan Liu, Jian Shi, Hao-Jie Zhu. Activation of Tenofovir Alafenamide and Sofosbuvir in the Human Lung and Its Implications in the Development of Nucleoside/Nucleotide Prodrugs for Treating SARS-CoV-2 Pulmonary Infection. Pharmaceutics 2021, 13 (10) , 1656. https://doi.org/10.3390/pharmaceutics13101656
  76. Yuanchao Xie, Xiaozhen Guo, Tianwen Hu, Daibao Wei, Xiuli Ma, Jiaqiang Wu, Bing Huang, Jingshan Shen. Significant Inhibition of Porcine Epidemic Diarrhea Virus In Vitro by Remdesivir, Its Parent Nucleoside and β-d-N4-hydroxycytidine. Virologica Sinica 2021, 36 (5) , 997-1005. https://doi.org/10.1007/s12250-021-00362-2
  77. Zeenat A. Shyr, Yu-Shan Cheng, Donald C. Lo, Wei Zheng. Drug combination therapy for emerging viral diseases. Drug Discovery Today 2021, 26 (10) , 2367-2376. https://doi.org/10.1016/j.drudis.2021.05.008
  78. Janeck Scott-Fordsmand, Monica Amorim. The Curious Case of Earthworms and COVID-19. Biology 2021, 10 (10) , 1043. https://doi.org/10.3390/biology10101043
  79. Robert T. Schooley, Aaron F. Carlin, James R. Beadle, Nadejda Valiaeva, Xing-Quan Zhang, Alex E. Clark, Rachel E. McMillan, Sandra L. Leibel, Rachael N. McVicar, Jialei Xie, Aaron F. Garretson, Victoria I. Smith, Joyce Murphy, Karl Y. Hostetler. Rethinking Remdesivir: Synthesis, Antiviral Activity, and Pharmacokinetics of Oral Lipid Prodrugs. Antimicrobial Agents and Chemotherapy 2021, 65 (10) https://doi.org/10.1128/AAC.01155-21
  80. Victoria C. Yan, Florian L. Muller. Why Remdesivir Failed: Preclinical Assumptions Overestimate the Clinical Efficacy of Remdesivir for COVID-19 and Ebola. Antimicrobial Agents and Chemotherapy 2021, 65 (10) https://doi.org/10.1128/AAC.01117-21
  81. Victoria C. Yan, Florian L. Muller. Single-Cell RNA Sequencing Supports Preferential Bioactivation of Remdesivir in the Liver. Antimicrobial Agents and Chemotherapy 2021, 65 (10) https://doi.org/10.1128/AAC.01333-21
  82. Manon Delaplace, Hélène Huet, Adèle Gambino, Sophie Le Poder. Feline Coronavirus Antivirals: A Review. Pathogens 2021, 10 (9) , 1150. https://doi.org/10.3390/pathogens10091150
  83. Dweipayan Goswami. Comparative assessment of RNA-dependent RNA polymerase (RdRp) inhibitors under clinical trials to control SARS-CoV2 using rigorous computational workflow. RSC Advances 2021, 11 (46) , 29015-29028. https://doi.org/10.1039/D1RA04460E
  84. Federico Romano, Salvatore D’Agate, Oscar Pasqua. Model-Informed Repurposing of Medicines for SARS-CoV-2: Extrapolation of Antiviral Activity and Dose Rationale for Paediatric Patients. Pharmaceutics 2021, 13 (8) , 1299. https://doi.org/10.3390/pharmaceutics13081299
  85. Henrik Berg Rasmussen, Gesche Jürgens, Ragnar Thomsen, Olivier Taboureau, Kornelius Zeth, Poul Erik Hansen, Peter Riis Hansen. Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness against COVID-19. Viruses 2021, 13 (7) , 1369. https://doi.org/10.3390/v13071369
  86. Zhao Huang, Lang Gong, Zezhong Zheng, Qi Gao, Xiongnan Chen, Yang Chen, Xiaojun Chen, Runda Xu, Jiachen Zheng, Zhiying Xu, Shengxun Zhang, Heng Wang, Guihong Zhang. GS-441524 inhibits African swine fever virus infection in vitro. Antiviral Research 2021, 191 , 105081. https://doi.org/10.1016/j.antiviral.2021.105081
  87. Marta Boffito, David J. Back, Charles Flexner, Peter Sjö, Terrence F. Blaschke, Peter W. Horby, Dario Cattaneo, Edward P. Acosta, Peter Anderson, Andrew Owen. Toward Consensus on Correct Interpretation of Protein Binding in Plasma and Other Biological Matrices for COVID‐19 Therapeutic Development. Clinical Pharmacology & Therapeutics 2021, 110 (1) , 64-68. https://doi.org/10.1002/cpt.2099
  88. Santseharay Ramirez, Carlota Fernandez-Antunez, Andrea Galli, Alexander Underwood, Long V. Pham, Line A. Ryberg, Shan Feng, Martin S. Pedersen, Lotte S. Mikkelsen, Sandrine Belouzard, Jean Dubuisson, Christina Sølund, Nina Weis, Judith M. Gottwein, Ulrik Fahnøe, Jens Bukh. Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of Compounds Inhibiting Viral Replication. Antimicrobial Agents and Chemotherapy 2021, 65 (7) https://doi.org/10.1128/AAC.00097-21
  89. Olga V. Andreeva, Bulat F. Garifullin, Vladimir V. Zarubaev, Alexander V. Slita, Iana L. Yesaulkova, Alexandrina S. Volobueva, Mayya G. Belenok, Maria A. Man’kova, Liliya F. Saifina, Marina M. Shulaeva, Alexandra D. Voloshina, Anna P. Lyubina, Vyacheslav E. Semenov, Vladimir E. Kataev. Synthesis and Antiviral Evaluation of Nucleoside Analogues Bearing One Pyrimidine Moiety and Two D-Ribofuranosyl Residues. Molecules 2021, 26 (12) , 3678. https://doi.org/10.3390/molecules26123678
  90. Liyan Yang, Zhonglei Wang. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021, 9 (6) , 689. https://doi.org/10.3390/biomedicines9060689
  91. Jiashu Xie, Zhengqiang Wang. Can remdesivir and its parent nucleoside GS-441524 be potential oral drugs? An in vitro and in vivo DMPK assessment. Acta Pharmaceutica Sinica B 2021, 11 (6) , 1607-1616. https://doi.org/10.1016/j.apsb.2021.03.028
  92. Francis K. Yoshimoto. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. The Protein Journal 2021, 40 (3) , 260-295. https://doi.org/10.1007/s10930-021-09967-8
  93. Yan Li, Hui-Xia Zhang, Wen-Di Luo, Christopher Wai Kei Lam, Cai-Yun Wang, Li-Ping Bai, Vincent Kam Wai Wong, Wei Zhang, Zhi-Hong Jiang. Profiling Ribonucleotide and Deoxyribonucleotide Pools Perturbed by Remdesivir in Human Bronchial Epithelial Cells. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.647280
  94. Zachary Enlo-Scott, Erica Bäckström, Ian Mudway, Ben Forbes. Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opinion on Drug Metabolism & Toxicology 2021, 17 (5) , 611-625. https://doi.org/10.1080/17425255.2021.1908262
  95. Rahul Kumar, Sahil Mishra, Shreya, Sushil K. Maurya. Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses. RSC Medicinal Chemistry 2021, 12 (3) , 306-320. https://doi.org/10.1039/D0MD00318B
  96. Afra Rezagholizadeh, Sajad Khiali, Parvin Sarbakhsh, Taher Entezari-Maleki. Remdesivir for treatment of COVID-19; an updated systematic review and meta-analysis. European Journal of Pharmacology 2021, 897 , 173926. https://doi.org/10.1016/j.ejphar.2021.173926
  97. Vladimir E. Kataev, Bulat F. Garifullin. Antiviral nucleoside analogs. Chemistry of Heterocyclic Compounds 2021, 57 (4) , 326-341. https://doi.org/10.1007/s10593-021-02912-8
  98. Victoria C. Yan, Florian L. Muller. Remdesivir for COVID-19: Why Not Dose Higher?. Antimicrobial Agents and Chemotherapy 2021, 65 (4) https://doi.org/10.1128/AAC.02713-20
  99. Omkar Indari, Shweta Jakhmola, Elangovan Manivannan, Hem Chandra Jha. An Update on Antiviral Therapy Against SARS-CoV-2: How Far Have We Come?. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.632677
  100. Lei Tian, Taotao Qiang, Chengyuan Liang, Xiaodong Ren, Minyi Jia, Jiayun Zhang, Jingyi Li, Minge Wan, Xin YuWen, Han Li, Wenqiang Cao, Hong Liu. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. European Journal of Medicinal Chemistry 2021, 213 , 113201. https://doi.org/10.1016/j.ejmech.2021.113201
Load all citations
  • Abstract

    Figure 1

    Figure 1. McGuigan prodrugs on remdesivir are prematurely hydrolyzed in serum. (A) The ideal bioactivation of remdesivir predominately occurs in vitro. (B) The presence of serum enzymes in vivo predominately results in premature hydrolysis of the phosphate prodrugs, followed by dephosphorylation to the nucleoside, GS-441524.

    Figure 2

    Figure 2. McGuigan prodrugs on remdesivir are preferentially bioactivated in the liver. (A) Labile prodrug moieties on remdesivir with corresponding bioactivation enzymes. (B) Relative tissue mRNA expression of initial prodrug bioactivating enzymes for RDV (CES1/CTSA/HINT1) adapted from the HPA data set on the Human Protein Atlas reported as median-centered protein-coding transcripts per million (pTPM). Overall, McGuigan prodrug bioactivating enzymes are more highly expressed in the liver than in the lungs. (C) Immunohistochemistry images from the Human Protein Atlas indicating expression for ProTide bioactivating enzymes. Brown regions indicate enzyme expression while blue regions indicate absent expression. For the lung, pneumocytes—cells frequently infected by Covid-19—are characterized by a threadlike appearance. Expression in the liver is generally higher compared to lung for all enzymes. For CTSA, darkly stained regions are associated with macrophages. IHC images for the skin are included to show lack of enzyme expression. Antibodies used: CTSA (CAB024930), CES1 (HPA046717), HINT1 (HPA044577).

    Figure 3

    Figure 3. Unlike remdesivir, GS-441524 persists in serum at concentrations above the EC50 value required against SARS-CoV-infected primary HAE cells for long durations. (A) In vitro potency data replotted from Agostini et al. mBio, 2018. (2) Primary HAE cells were infected with either MERS-CoV or SARS-CoV and treated with either GS-441524 (open squares) or remdesivir (closed circles). Mean EC50 of GS-441524 for SARS-CoV-infected HAE cells was found to be 0.18 ± 0.14 μM (note large standard deviations, red arrows). A study by Murphy et al. shows that GS-441524 has an EC50 value of 0.78 μM against FCoV-infected CRFK cells (red dashed line), (22) which is higher than the EC50 value for GS-441524 against SARS-CoV-infected primary HAE cells. (B) Estimated metabolite concentrations for a PK experiment in a SARS-CoV-2 primate model replotted from Williamson et al. Nature, 2020. (6) Primates were initially injected IV with 10 mg/kg of remdesivir 12 h postinoculation with SARS-CoV-2 and then 5 mg/kg of remdesivir every 24 h after. Throughout the experiment, GS-441524 is present in serum at concentrations ∼1000-fold higher than remdesivir; the concentration of GS-441524 is consistently above the EC50 value in SARS-CoV-infected primary HAE cells (red dashed line) at all time points taken in the experiment. In contrast, the concentration of remdesivir in serum never exceeds that required to give the EC50 value against SARS-CoV-infected primary HAE cells (gray dashed line). (C) PK data replotted from Warren et al. Nature, 2016 (3) following IV injection (10 mg/kg) of remdesivir in NHP. Dashed lines indicate the approximate EC50 values of GS-441524 (red) or remdesivir (gray) needed to reach EC50 in SARS-CoV primary HAE cells obtained in (A). Unlike remdesivir, the concentration of drug required to give the EC50 value against SARS-CoV primary HAE cells is maintained for significantly longer with GS-441524 than with remdesivir.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 30 other publications.

    1. 1
      Cohen, E.; Azad, A. The US Government’s Supply of Covid-19 Drug Remdesivir Runs out at the End of the Month. CNN . June 8, 2020.
    2. 2
      Siegel, D.; Hui, H. C.; Doerffler, E.; Clarke, M. O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1- f ][Triazin-4-Amino] Adenine C -Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60 (5), 16481661,  DOI: 10.1021/acs.jmedchem.6b01594
    3. 3
      Yan, V. C.; Muller, F. L. Gilead Should Ditch Remdesivir and Focus on Its Simpler and Safer Ancestor. STAT . May 14, 2020.
    4. 4
      Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola Virus in Rhesus Monkeys. Nature 2016, 531, 381385,  DOI: 10.1038/nature17180
    5. 5
      Sheahan, T. P.; Sims, A. C.; Graham, R. L.; Menachery, V. D.; Gralinski, L. E.; Case, J. B.; Leist, S. R.; Pyrc, K.; Feng, J. Y.; Trantcheva, I.; Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med. 2017, 9 (396), eaal3653 DOI: 10.1126/scitranslmed.aal3653
    6. 6
      Williamson, B. N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D. P.; Schulz, J.; Van Doremalen, N.; Leighton, I.; Yinda, C. K.; Pérez-Pérez, L. Clinical Benefit of Remdesivir in Rhesus Macaques Infected with SARS-CoV-2. Nature 2020,  DOI: 10.1038/s41586-020-2423-5
    7. 7
      Gordon, C. J.; Tchesnokov, E. P.; Feng, J. Y.; Porter, D. P.; Gotte, M. The Antiviral Compound Remdesivir Potently Inhibits RNA-Dependent RNA Polymerase from Middle East Respiratory Syndrome Coronavirus. J. Biol. Chem. 2020, 295, 4773,  DOI: 10.1074/jbc.AC120.013056
    8. 8
      Alanazi, A. S.; James, E.; Mehellou, Y. The ProTide Prodrug Technology: Where Next?. ACS Med. Chem. Lett. 2019, 10 (1), 25,  DOI: 10.1021/acsmedchemlett.8b00586
    9. 9
      Murakami, E.; Wang, T.; Babusis, D.; Lepist, E.-I.; Sauer, D.; Park, Y.; Vela, J. E.; Shih, R.; Birkus, G.; Stefanidis, D. Metabolism and Pharmacokinetics of the Anti-Hepatitis C Virus Nucleotide Prodrug GS-6620 Downloaded From. Antimicrob. Agents Chemother. 2014, 58, 19431951,  DOI: 10.1128/AAC.02350-13
    10. 10
      Bieganowski, P.; Garrison, P. N.; Hodawadekar, S. C.; Faye, G.; Barnes, L. D.; Brenner, C. Adenosine Monophosphoramidase Activity of Hint and Hnt1 Supports Function of Kin28, Ccl1, and Tfb3. J. Biol. Chem. 2002, 277 (13), 1085210860,  DOI: 10.1074/jbc.M111480200
    11. 11
      Chou, T.-F.; Baraniak, J.; Kaczmarek, R.; Zhou, X.; Cheng, J.; Ghosh, B.; Wagner, C. R. Phosphoramidate Pronucleotides: A Comparison of the Phosphoramidase Substrate Specificity of Human and Escherichia Coli Histidine Triad Nucleotide Binding Proteins. Mol. Pharmaceutics 2007, 4 (2), 208217,  DOI: 10.1021/mp060070y
    12. 12
      Wichmann, D.; Sperhake, J.-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A. S. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann. Intern. Med. 2020, M202003,  DOI: 10.7326/M20-2003
    13. 13
      Beigel, J. H.; Tomashek, K. M.; Dodd, L. E.; Mehta, A. K.; Zingman, B. S.; Kalil, A. C.; Hohmann, E.; Chu, H. Y.; Luetkemeyer, A.; Kline, S. Remdesivir for the Treatment of Covid-19 — Preliminary Report. N. Engl. J. Med. 2020,  DOI: 10.1056/NEJMoa2007764
    14. 14
      Cooke, A. M.; Baron, D. N. Section of Medicine with Section of Pathology-Serum Enzymes in Clinical Practice ; 1963; Vol. 56.
    15. 15
      Testa, B.; Mayer, J. M. Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry, and Enzymology; VHCA, 2003.
    16. 16
      Bahar, F. G.; Ohura, K.; Ogihara, T.; Imai, T. Species Difference of Esterase Expression and Hydrolase Activity in Plasma. J. Pharm. Sci. 2012, 101 (10), 39793988,  DOI: 10.1002/jps.23258
    17. 17
      Yong, J. M. Origins of Serum Alkaline Phosphatase. J. Clin. Pathol. 1967, 20 (4), 647653,  DOI: 10.1136/jcp.20.4.647
    18. 18
      Pruijssers, A. J.; George, A. S.; Schäfer, A.; Leist, S. R.; Gralinksi, L. E.; Dinnon Iii, K. H.; Yount, B. L.; Agostini, M. L.; Stevens, L. J.; Chappell, J. D. Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. bioRxiv 2020,  DOI: 10.1101/2020.04.27.064279
    19. 19
      Lo, M. K.; Jordan, R.; Arvey, A.; Sudhamsu, J.; Shrivastava-Ranjan, P.; Hotard, A. L.; Flint, M.; McMullan, L. K.; Siegel, D.; Clarke, M. O. GS-5734 and Its Parent Nucleoside Analog Inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7 (1), 43395,  DOI: 10.1038/srep43395
    20. 20
      Choy, K.-T.; Wong, A. Y.-L.; Kaewpreedee, P.; Sia, S. F.; Chen, D.; Hui, K. P. Y.; Chu, D. K. W.; Chan, M. C. W.; Cheung, P. P.-H.; Huang, X. Remdesivir, Lopinavir, Emetine, and Homoharringtonine Inhibit SARS-CoV-2 Replication in Vitro. Antiviral Res. 2020, 178, 104786,  DOI: 10.1016/j.antiviral.2020.104786
    21. 21
      Pedersen, N. C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami, E.; Liepnieks, M.; Liu, H. Efficacy and Safety of the Nucleoside Analog GS-441524 for Treatment of Cats with Naturally Occurring Feline Infectious Peritoniti. J. Feline Med. Surg. 2019, 21 (4), 271281,  DOI: 10.1177/1098612X19825701
    22. 22
      Murphy, B. G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N. C. The Nucleoside Analog GS-441524 Strongly Inhibits Feline Infectious Peritonitis (FIP) Virus in Tissue Culture and Experimental Cat Infection Studies. Vet. Microbiol. 2018, 219, 226233,  DOI: 10.1016/j.vetmic.2018.04.026
    23. 23
      Dickinson, P. J.; Bannasch, M.; Thomasy, S. M.; Murthy, V. D.; Vernau, K. M.; Liepnieks, M.; Montgomery, E.; Knickelbein, K. E.; Murphy, B.; Pedersen, N. C. Antiviral Treatment Using the Adenosine Nucleoside Analogue GS −441524 in Cats with Clinically Diagnosed Neurological Feline Infectious Peritonitis. J. Vet. Intern. Med. 2020,  DOI: 10.1111/jvim.15780
    24. 24
      Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Hosie, M. J.; Lloret, A.; Lutz, H. Feline Infectious Peritonitis. ABCD Guidelines on Prevention and Management. J. Feline Med. Surg. 2009, 11 (7), 594604,  DOI: 10.1016/j.jfms.2009.05.008
    25. 25
      Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q. Remdesivir in Adults with Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet 2020, 395 (10236), 15691578,  DOI: 10.1016/S0140-6736(20)31022-9
    26. 26
      Murphy, B. G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N. C. The Nucleoside Analog GS-441524 Strongly Inhibits Feline Infectiousperitonitis (FIP) Virus in Tissue Culture and Experimental Cat Infection Studies. Vet. Microbiol. 2018, 219, 226233,  DOI: 10.1016/j.vetmic.2018.04.026
    27. 27
      Agostini, M. L.; Andres, E. L.; Sims, A. C.; Graham, R. L.; Sheahan, T. P.; Lu, X.; Clinton Smith, E.; Brett Case, J.; Feng, J. Y.; Jordan, R. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease Downloaded From. mBio 2018, 9 (2), ee0022118,  DOI: 10.1128/mBio.00221-18
    28. 28
      Jarvis, L. M. Scaling up Remdesivir amid the Coronavirus Crisis. C&EN . April 20, 2020.
    29. 29
      Williamson, B. N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D. P.; Schulz, J.; Doremalen, N.; van Leighton, I.; Yinda, C. K.; Pérez-Pérez, L. Clinical Benefit of Remdesivir in Rhesus Macaques Infected with SARS-CoV-2. bioRxiv 2020, 2020.04.15.043166
    30. 30
      Cho, A.; Saunders, O. L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J. E.; Feng, J. Y.; Ray, A. S.; Kim, C. U. Synthesis and Antiviral Activity of a Series of 1′-Substituted 4-Aza-7,9-Dideazaadenosine C-Nucleosides. Bioorg. Med. Chem. Lett. 2012, 22 (8), 27052707,  DOI: 10.1016/j.bmcl.2012.02.105

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect