Skip to main content
AAN.com

Abstract

Objective

To determine if migraine with aura is associated with neuroinflammation, which has been suggested by preclinical models of cortical spreading depression (CSD) as well as imaging of human pain conditions.

Methods

Thirteen migraineurs with aura and 16 healthy controls received integrated PET/MRI brain scans with [11C]PBR28, a radioligand that binds to the 18 kDa translocator protein, a marker of glial activation. Standardized uptake value ratio (SUVR) was compared between groups, and regressed against clinical variables, using region of interest and whole-brain voxelwise analyses.

Results

Compared to healthy controls, migraineurs demonstrated SUVR elevations in nociceptive processing areas (e.g., thalamus and primary/secondary somatosensory and insular cortices) as well as in areas previously shown to be involved in CSD generation (visual cortex). SUVR levels in frontoinsular cortex, primary/secondary somatosensory cortices, and basal ganglia were correlated with frequency of migraine attacks.

Conclusions

These findings demonstrate that migraine with aura is associated with neuroimmune activation/neuroinflammation, and support a possible link between CSD and glial activation, previously observed in animals.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2197–2223.
2.
Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 2001;98:4687–4692.
3.
Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol 2013;75:365–391.
4.
Karatas H, Erdener SE, Gursoy-Ozdemir Y, et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 2013;339:1092–1095.
5.
Loggia ML, Chonde DB, Akeju O, et al. Evidence for brain glial activation in chronic pain patients. Brain 2015;138:604–615.
6.
Albrecht D, Shcherbinin S, Wooten D, et al. Occipital lobe as a pseudo-reference region for [11C] PBR28 PET imaging: validation in chronic pain and amyotrophic lateral sclerosis cohorts. J Nucl Med 2016;57:1814.
7.
Cosenza-Nashat M, Zhao ML, Suh HS, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009;35:306–328.
8.
Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008;118:1–17.
9.
Hannestad J, Gallezot JD, Schafbauer T, et al. Endotoxin-induced systemic inflammation activates microglia: [(1)(1)C]PBR28 positron emission tomography in nonhuman primates. NeuroImage 2012;63:232–239.
10.
Cui Y, Takashima T, Takashima-Hirano M, et al. 11C-PK11195 PET for the in vivo evaluation of neuroinflammation in the rat brain after cortical spreading depression. J Nucl Med 2009;50:1904–1911.
11.
Herranz E, Gianni C, Louapre C, et al. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol 2016;80:776–790.
12.
Zurcher NR, Loggia ML, Lawson R, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin 2015;7:409–414.
13.
Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood flow Metab 2012;32:1–5.
14.
Izquierdo-Garcia D, Hansen AE, Forster S, et al. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med 2014;55:1825–1830.
15.
Owen DR, Guo Q, Rabiner EA, Gunn RN. The impact of the rs6971 polymorphism in TSPO for quantification and study design. Clin Transl Imaging 2015;3:1–6.
16.
Bloomfield PS, Selvaraj S, Veronese M, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry 2016;173:44–52.
17.
Turkheimer FE, Rizzo G, Bloomfield PS, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 2015;43:586–592.
18.
Yousry TA, Schmid UD, Alkadhi H, et al. Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 1997;120:141–157.
19.
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 2017;97:553–622.
20.
Borsook D, Veggeberg R, Erpelding N, et al. The insula: a "Hub of activity" in migraine. Neuroscientist 2016;22:632–652.
21.
Lee J, Lin RL, Garcia RG, et al. Reduced insula habituation associated with amplification of trigeminal brainstem input in migraine. Cephalalgia 2017;37:1026–1038.
22.
Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache [see comments]. N Engl J Med 1994;331:1689–1692.
23.
Boulloche N, Denuelle M, Payoux P, Fabre N, Trotter Y, Géraud G. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry 2010;81:978–984.
24.
Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Geraud G. A PET study of photophobia during spontaneous migraine attacks. Neurology 2011;76:213–218.
25.
Maniyar FH, Sprenger T, Schankin C, Goadsby PJ. The origin of nausea in migraine: a PET study. J Headache Pain 2014;15:84.
26.
Kim JH, Kim S, Suh SI, Koh SB, Park KW, Oh K. Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 2010;30:53–61.
27.
Demarquay G, Lothe A, Royet JP, et al. Brainstem changes in 5-HT1A receptor availability during migraine attack. Cephalalgia 2011;31:84–94.
28.
Jensen KB, Regenbogen C, Ohse MC, Frasnelli J, Freiherr J, Lundström JN. Brain activations during pain: a neuroimaging meta-analysis of pain patients and healthy controls. Pain 2016;157:1279–1286.
29.
Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011;70:838–845.
30.
Deen M, Hansen HD, Hougaard A, et al. Low 5-HT1B receptor binding in the migraine brain: a PET study. Cephalalgia 2018;38:519–527.
31.
Granziera C, Daducci A, Romascano D, et al. Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp 2014;35:1461–1468.
32.
Hodkinson DJ, Wilcox SL, Veggeberg R, et al. Increased amplitude of thalamocortical low-frequency oscillations in patients with migraine. J Neurosci 2016;36:8026–8036.
33.
Alshelh Z, Di Pietro F, Youssef AM, et al. Chronic neuropathic pain: it's about the rhythm. J Neurosci 2016;36:1008–1018.
34.
Teixeira AL, Jr., Meira FC, Maia DP, Cunningham MC, Cardoso F. Migraine headache in patients with Sydenham's chorea. Cephalalgia 2005;25:542–544.
35.
Maleki N, Becerra L, Nutile L, et al. Migraine attacks the basal ganglia. Mol Pain 2011;7:71.
36.
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013;154(suppl 1):S10–S28.
37.
Calvo M, Bennett DL. The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 2012;234:271–282.
38.
Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003;424:778–783.
39.
Guo W, Wang H, Watanabe M, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 2007;27:6006–6018.
40.
Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005;115:71–83.
41.
Raghavendra V, Tanga F, Rutkowski MD, DeLeo JA. Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain 2003;104:655–664.
42.
Vincent MB, Hadjikhani N. Migraine aura and related phenomena: beyond scotomata and scintillations. Cephalalgia 2007;27:1368–1377.
43.
Granziera C, DaSilva AF, Snyder J, Tuch DS, Hadjikhani N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLos Med 2006;3:e402.
44.
Ghaemi A, Alizadeh L, Babaei S, et al. Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 2017:333102417702132.
45.
Shibata M, Suzuki N. Exploring the role of microglia in cortical spreading depression in neurological disease. J Cereb Blood Flow Metab 2017;37:1182–1191.
46.
Maleki N, Becerra L, Brawn J, Bigal M, Burstein R, Borsook D. Concurrent functional and structural cortical alterations in migraine. Cephalalgia 2012;32:607–620.
47.
Mathur VA, Moayedi M, Keaser ML, et al. High frequency migraine is associated with lower acute pain sensitivity and abnormal insula activity related to migraine pain intensity, attack frequency, and pain catastrophizing. Front Hum Neurosci 2016;10:489.
48.
Jin WJ, Feng SW, Feng Z, Lu SM, Qi T, Qian YN. Minocycline improves postoperative cognitive impairment in aged mice by inhibiting astrocytic activation. Neuroreport 2014;25:1–6.
49.
Ortega FJ, Vukovic J, Rodriguez MJ, Bartlett PF. Blockade of microglial KATP-channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells. Glia 2014;62:247–258.
50.
Kwok YH, Swift JE, Gazerani P, Rolan P. A double-blind, randomized, placebo-controlled pilot trial to determine the efficacy and safety of ibudilast, a potential glial attenuator, in chronic migraine. J Pain Res 2016;9:899–907.
Letters to the Editor
28 April 2019
Reader response: Imaging of neuroinflammation in migraine with aura: A [11C]PBR28 PET/MRI study
Vinod K. Gupta, Physician | Migraine-Headache Institute, Gupta Medical Centre (New Delhi, India)

I read with interest the article by Albrecht et al. on neuroinflammation and migraine with aura (MWA).1 Seven decades after the serendipitous discovery of cortical spreading depression (CSD), no headway has been made in migraine pathophysiology.2,3 Conversely, an adaptive neuroprotective role for CSD has been reported,4,5 while drugs that do not freely cross the blood-brain barrier prevent migraine as well as those that do (a pharmacologic absolute against CSD).2 Pathophysiologically, CSD cannot affect the ophthalmic trigeminal selectively, but the phenotype of migraine most often indicates that such an involvement indeed occurs.2

While the authors acknowledge that the role of neuroinflammation in pain—in general and in migraine in particular—is vague,1 is neuroinflammation confined to the MWA subset? How is neuroinflammation linked to the pathognomonic scintillating scotoma, to the characteristically lateralizing headache, or to the early headache-aborting vomiting of migraine? Until these issues are settled, or until lateralizing neuroinflammation is demonstrated, the conclusion or Albrecht et al.1 that “CSD is now well-accepted as the pathophysiologic mechanism underlying migraine aura” is premature.

In the pathophysiology of migraine, it is important to focus on the first division of the trigeminal nerve, rather than the trigeminal nerve—a major shift in primary headache research.2

Disclosure

The author reports no relevant disclosures. Contact [email protected] for full disclosures.

References

  1. Albrecht DS, Mainero C, Ichijo E, et al. Imaging of neuroinflammation in migraine with aura: A [11C]PBR28 PET/MRI study. Neurology 2019;92:e2038–e2050.
  2. Gupta VK. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev Neurother 2009;9:1595–1614.
  3. Borgdorff P. Arguments against the role of cortical spreading depression in migraine. Neurol Res 2018;40:173–181.
  4. Rodgers CI, Armstrong GA, Robertson RM. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J Insect Physiol 2010;56:980–990.
  5. Shen P, Hou S, Zhu M, Zhao M, Ouyang Y, Feng J. Cortical spreading depression preconditioning mediates neuroprotection against ischemic stroke by inducing AMP-activated protein kinase-dependent autophagy in a rat cerebral ischemic/reperfusion injury model. J Neurochem 2017;140:799–813.

Information & Authors

Information

Published In

Neurology®
Volume 92Number 17April 23, 2019
Pages: e2038-e2050
PubMed: 30918090

Publication History

Received: July 2, 2018
Accepted: January 7, 2019
Published online: March 27, 2019
Published in print: April 23, 2019

Permissions

Request permissions for this article.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Study Funding

This work was supported by 5R21NS082926-02 (N.H.), National MS Society RG 4729A2/1, Department of Defense US Army W81XWH-13-1-0112 Award (C.M.), 5T32EB13180 (T32 supporting DSA), NIH R01NS07832201 A1 (C.M.), 1R01NS094306-01A1 (M.L.L.), 1R01NS095937-01A1 (M.L.L.), 1R21NS087472-01A1 (M.L.L.), R61AT009306 (V.N.), R01AR064367 (V.N.), R01AT007550 (V.N.), 1UL1TR001102-01, 8UL1TR000170-05, from the National Center for Advancing Translational Science, and 1UL1RR025758-04, from the National Center for Research Resources, Harvard Catalyst Advanced Imaging Pilot Grant (J.M.H.), Harvard Clinical and Translational Science Center, and financial contributions from Harvard University and its affiliated academic health care centers.

Authors

Affiliations & Disclosures

Daniel S. Albrecht, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NONE
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Caterina Mainero, MD, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
Journal of Neuroimaging, Editorial Board since 1/2015
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NIH R01NS078322-01A1
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
National Multiple Sclerosis Society RG 4281-A-1;RG 4729A2/1 MSRP Idea Award DoD W81XW-13-1-0112;
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Eri Ichijo, MS
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NONE
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Noreen Ward, MS
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NIH, 1R21N5082926-01A1, imaging, data analysis, 2014-2017
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Cristina Granziera, MD, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
My Husband is a Siemens employee. A part from this, I have nothing to disclose.
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NONE
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Nicole R. Zürcher, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Oluwaseun Akeju, MD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NONE
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Guillaume Bonnier, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NONE
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Julie Price, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NIH Center for Scientific Review, Advisory Board to Director
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
[1] Hadassah-Fulbright-Yale Symposium, Travel Reimbursement and speaker honorarium [2] Mount Sinai Hospital, Travel Reimbursement and speaker honorarium [3] University of Arizona, Arizona Alzheimer?s Disease Core Center, pilot grant review, honorarium [4] Georgetown University, Travel Reimbursement and speaker honorarium [5] Harvard Catalyst - Biomarkers Course April 2018
Editorial Boards:
1.
NONE
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
- University of Pittsburgh, Department of Radiology, PET Facility, Professor - Massachusetts General Hospital, Department of Radiology, Martinos Center, Professor
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
[1] National Institutes of Health, grant reviews [2] Scientific Advisory Committees (Scientific Conferences) - International Symposium on Quantification of Brain Function with PET (BrainPET) - International Symposium on Functional Neuroreceptor Mapping of Living Brain (NRM)
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
(1) NIH R21 NS098407, Co-investigator, 04/01/17-03/31/19 (2) NIH R01 AG050436, PI, 07/15/17?3/31/19 (3) NIH R01 DK112700, MPI, 09/01/17-06/30/20 (4) NIH U01 to AG051412,Co-investigator, 05/01/17-04/30/20 (5) NIH P01 AT009965,Co-investigator, 07/01/18-06/30/23 (6) NIH R01 AG052414, MPI, 08/15/18-05/31/22 (7) NIH R21 NS109833, Co-investigator,09/01/18-08/31/20 (8)NIH P50 AG005134, Co-investigator,04/01/2019-03/31/2024 Completed or no longer active role, as of July 2016: [1] 2RF1 AG025516, Co-investigator, 9/15/14 ? 2/28/19 [2] 2P50 AG005133, Co-investigator & Core Leader, 4/1/15 ? 3/31/20 [3] 3U01 AG024904, Co-investigator, 9/1/10 - 7/31/16 [4] W81XWH-13-2-0079, Co-investigator, 9/30/13-9/29/16 [5] W81XWH-014-2-0002, Co-investigator, 3/24/15-3/23/17 [6] R21 MH101566, Co-investigator, 7/1/14 - 6/30/16 [7] R01 AG031110, Co-investigator, 9/15/14 ? 3/31/17 [8] 2R01 MH080243, Co-investigator 4/1/15 ? 2/29/20 [9] R01 NS089638, Co-investigator 9/1/15 ? 5/31/16 [10] U01 AG051406, Co-investigator 10/1/15 - 9/30/20
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
Dana Foundation (1) 2004-2009 PI (2) 2005-2009 Co-investigator Alzheimer's Association (internal funds), MPI, pending
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Jacob M. Hooker, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
(1) Psy Therapeutics (2) Eikonizo Therapeutics
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
(1) Merk & Co. (2) Fidelity Biomedical Research Initiative (3) Association for Frontotemporal Dementia (4) Lawrence Berkeley National Lab (5) Yale University (6) Princeton University (7) Broad Institute (8) Western Washington University (9) UC Davis (10) New York Academy of Science (11) NIMH (12) Alzheimer's Drug Discovery Foundation (13) UCLA (14) UCSF (15) Discovery on Target (16) American Chemical Society (17) Novartis (18) MGH / Peking University (19) Wangjing Pioneer Park
Editorial Boards:
1.
(1) ACS Chemical neuroscience, associate editor, 2013-present
Patents:
1.
(1) Patent Filed (PCT/US2007/007484): Chemically Modified Viral Capsids as Targeted Delivery Vectors for Diagnostic and Therapeutic Agents (2) US Patent (US8030526): Simple, rapid method for the preparation of isotopically labeled formaldehyde (3) US Patent (US8932551B2): C-11 cyanide production system (4) Patent Filed (PCT/US2014/056068): Dynamic Positron Emission Tomography Imaging (5) Patent Filed (PCT/US2015/040971): Imaging Agents for Neural Flux (6) Patent Filed (PCT/US2014/061179): Imaging Histone Deacetylases with a Radiotracer Using Positron Emission Tomography (7) Patent Filed (PCT/US2015/042206): Histone Deacetylase Inhibitors (8) Patent Filed (PCT/US2018/027077): HDAC6 Inhibitors and Imaging Agents (9) Patent Filed (PCT/US2018/013287): Imaging Voltage Gated Sodium Channels with Positron Emission Tomography
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
(1) Massachusetts General Hospital
Consultancies:
1.
(1) Psy Therapeutics (2) Rodin Therapeutics (3) Evelo Biosciences (4) Denali Therapeutics (5) Sunovion (6) Merck & Co. (7) Treventis Corporation (8) Vaccinex (9) MIT
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
(1) KDAC Therapeutics (2) Sanofi (3) Acetylon (4) Rodin Therapeutics
Research Support, Government Entities:
1.
(1) NIH, R01CA129371 coI, R01MH102279 coI, R01NS094306 coI, R01NS095937 coI, R21MH110933 coI, R21AA025192 / R33AA02519203 coI, 1R01NS099250 PI, R61MH110027 coI, R21MH111971 PI, R21NS098407 PI, S10OD023517 PI, R21NS109833 coI, R21MH111723 coI, R03EB025959 coI
Research Support, Academic Entities:
1.
(1) Broad institute (2) MGH
Research Support, Foundations and Societies:
1.
(1) ADDF (2) CureAlz
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
(1) HDAC6 patent, Eikonizo Therapeutics
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Vitaly Napadow, PhD
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
(1) Cala Health, Inc.
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
(1) Pain Medicine, Associate Editor, 2014-2019, (2) Frontiers in Human Neuroscience, editor, 2018-2019, (3) JACM, Associate Editor, 2016-2019
Patents:
1.
(1) Respiratory-gated auricular vagal afferent nerve stimulation
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
(1) Glaxo Smith Kline, (2) Cala Health, Inc.
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
(1) Glaxo Smith Kline, Inc.
Research Support, Government Entities:
1.
(1) NIH, (2) Korean Institute for Oriental Medicine
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
(1) Dana Foundation
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Marco L. Loggia, PhD*
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
NONE
Editorial Boards:
1.
Pain Medicine, editorial board member, 2014-current. Journal of Pain, editorial board member, 2014-current.
Patents:
1.
NONE
Publishing Royalties:
1.
NONE
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
NIDA, 1R01 DA047088-01, PI, 2018-2023 NINDS, 1R01 NS095937-01A1, PI 2016-2021 NINDS, 1R01 NS094306-01A1, PI 2016-2021
Research Support, Academic Entities:
1.
NONE
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
NONE
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE
Nouchine Hadjikhani, MD, PhD* https://orcid.org/0000-0003-4075-3106
From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
Disclosure
Scientific Advisory Boards:
1.
NONE
Gifts:
1.
NONE
Funding for Travel or Speaker Honoraria:
1.
Travel and honorarium for the first Swiss conference on Autism, November 2019
Editorial Boards:
1.
Academic editor at PLoS ONE
Patents:
1.
NONE
Publishing Royalties:
1.
(1) Traiter l?autisme? Au-del? des g?nes et de la psychanalyse. De Boeck Solal, 2015
Employment, Commercial Entity:
1.
NONE
Consultancies:
1.
NONE
Speakers' Bureaus:
1.
NONE
Other Activities:
1.
NONE
Clinical Procedures or Imaging Studies:
1.
NONE
Research Support, Commercial Entities:
1.
NONE
Research Support, Government Entities:
1.
(1) NIH 1R21NS082926-01A1 PI, 2014-2017 (2) NIH 1R21MH115306-01, PI, 2017-2018 (3) NIH P01AT009965, co-I, 2018-2023
Research Support, Academic Entities:
1.
MGH internal funding (ECOR)
Research Support, Foundations and Societies:
1.
NONE
Stock/stock Options/board of Directors Compensation:
1.
(1) Neurochlore Stock/Stock Options, Medical Equipment & Materials: (1) Neurochlore (2011-)
License Fee Payments, Technology or Inventions:
1.
NONE
Royalty Payments, Technology or Inventions:
1.
NONE
Stock/stock Options, Research Sponsor:
1.
NONE
Stock/stock Options, Medical Equipment & Materials:
1.
NONE
Legal Proceedings:
1.
NONE

Notes

Correspondence Dr. Hadjikhani [email protected]
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
*
These authors contributed equally to this work as co–senior authors.

Metrics & Citations

Metrics

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

Cited By
  1. Modification of the TRP Channel TRPA1 as a Relevant Factor in Migraine-Related Intracranial Hypersensitivity, International Journal of Molecular Sciences, 24, 6, (5375), (2023).https://doi.org/10.3390/ijms24065375
    Crossref
  2. Efficacy and safety of transesophageal ultrasound-guided patent foramen ovale closure for migraine in adolescents, Frontiers in Pediatrics, 11, (2023).https://doi.org/10.3389/fped.2023.1296825
    Crossref
  3. A systematic literature review on the role of glial cells in the pathomechanisms of migraine, Frontiers in Molecular Neuroscience, 16, (2023).https://doi.org/10.3389/fnmol.2023.1219574
    Crossref
  4. Evaluating migraine with typical aura with neuroimaging, Frontiers in Human Neuroscience, 17, (2023).https://doi.org/10.3389/fnhum.2023.1112790
    Crossref
  5. Neuroinflammatory disorders of the brain and inner ear: a systematic review of auditory function in patients with migraine, multiple sclerosis, and neurodegeneration to support the idea of an innovative ‘window of discovery’, Frontiers in Neurology, 14, (2023).https://doi.org/10.3389/fneur.2023.1204132
    Crossref
  6. Vesicular HMGB1 release from neurons stressed with spreading depolarization enables confined inflammatory signaling to astrocytes, Journal of Neuroinflammation, 20, 1, (2023).https://doi.org/10.1186/s12974-023-02977-6
    Crossref
  7. Compromised trigemino-coerulean coupling in migraine sensitization can be prevented by blocking beta-receptors in the locus coeruleus, The Journal of Headache and Pain, 24, 1, (2023).https://doi.org/10.1186/s10194-023-01691-1
    Crossref
  8. Advanced brain MRI may help understand the link between migraine and multiple sclerosis, The Journal of Headache and Pain, 24, 1, (2023).https://doi.org/10.1186/s10194-023-01645-7
    Crossref
  9. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review, The Journal of Headache and Pain, 24, 1, (2023).https://doi.org/10.1186/s10194-023-01617-x
    Crossref
  10. Cytokines in primary headache disorders: a systematic review and meta-analysis, The Journal of Headache and Pain, 24, 1, (2023).https://doi.org/10.1186/s10194-023-01572-7
    Crossref
  11. See more
Loading...

View Options

Get Access

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

Purchase this article to get full access to it.

Purchase Access, $39 for 24hr of access

View options

Short Form

View Short Form

Full Text

View Full Text

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share