ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

ent-Labdane Diterpenoid Lactone Stereoisomers from Andrographis paniculata

View Author Information
School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Peopleʼs Republic of China, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Kunming, 650204, Yunnan, Peopleʼs Republic of China, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Peopleʼs Republic of China, and Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029-6547
* To whom correspondence should be addressed. Tel: +86-24-23986463. Fax: +86-24-23993994. E-mail: [email protected].
†School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University.
‡Kunming Institute of Botany.
§School of Pharmacy, Shenyang Pharmaceutical University.
⊥Mount Sinai School of Medicine.
Cite this: J. Nat. Prod. 2008, 71, 5, 852–855
Publication Date (Web):March 22, 2008
https://doi.org/10.1021/np0704452
Copyright © 2008 The American Chemical Society and American Society of Pharmacognosy

    Article Views

    1693

    Altmetric

    -

    Citations

    50
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Two pairs of ent-labdane diterpenoid lactone stereoisomers (14) including three new compounds (13) were isolated from the 85% EtOH extract of the aerial parts of Andrographis paniculata. The structures of these compounds were identified as 7R-hydroxy-14-deoxyandrographolide (1), 7S-hydroxy-14-deoxyandrographolide (2), 12S,13S-hydroxyandrographolide (3), and 12R,13R-hydroxyandrographolide (4) by spectroscopic data analyses and calculated 13C NMR data at the B3LYP/6-311++G(2d,p)//B3LYP/6-31G* level using the GIAO method. The 12S-configuration of 4 was revised to 12R based on the spectroscopic data. The antiproliferative activities of the two pairs of stereoisomers and 14 other ent-labdane diterpenoid derivatives were determined in human leukemia HL-60 cells. Andrographolide (7) and isoandrographolide (12) exhibited higher antiproliferative activities than other ent-labdane diterpenoids with GI50ʼs of 9.33 and 6.30 µM, respectively.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Computational methods and results. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 50 publications.

    1. Suyu Gao, Dun Wang, Hao Chai, Jiamin Xu, Tianyu Li, Yingxue Niu, Xinxin Chen, Feng Qiu, Yang Li, Hua Li, Lixia Chen. Unusual ent-Labdane Diterpenoid Dimers and their Selective Activation of TRPV Channels. The Journal of Organic Chemistry 2019, 84 (21) , 13595-13603. https://doi.org/10.1021/acs.joc.9b01864
    2. Zhenming Zhang, Lu Ouyang, Wanqing Wu, Jianxiao Li, Zhicai Zhang, and Huanfeng Jiang . Palladium-Catalyzed Intermolecular Oxyvinylcyclization of Alkenes with Alkynes: An Approach to 3-Methylene γ-Lactones and Tetrahydrofurans. The Journal of Organic Chemistry 2014, 79 (22) , 10734-10742. https://doi.org/10.1021/jo501606c
    3. Guohong Li, Fangfang Liu, Lan Shen, Huajie Zhu, and Keqin Zhang . Stereumins H−J, Stereumane-Type Sesquiterpenes from the Fungus Stereum sp.. Journal of Natural Products 2011, 74 (2) , 296-299. https://doi.org/10.1021/np100813f
    4. Jun Zhao, Hua-Jie Zhu, Xiao-Jiang Zhou, Tong-Hua Yang, Yuan-Yuan Wang, Jia Su, Yan Li and Yong-Xian Cheng. Diterpenoids from the Feces of Trogopterus xanthipes. Journal of Natural Products 2010, 73 (5) , 865-869. https://doi.org/10.1021/np900814s
    5. Yang Yu, Yang Wang, Lan Ding, Gui-Chun Wang, Hao Geng, Cheng-Yong Tan, Yi Wang, Jin-Song Liu, Guo-Kai Wang. Discovery of ent-labdane derivatives from Andrographis paniculata and their anti-inflammatory activity. Phytochemistry 2024, 219 , 113986. https://doi.org/10.1016/j.phytochem.2024.113986
    6. Dipak P. Gonde, Bhumika K. Bhole, Kalyani S. Kakad. Andrographolide, diterpenoid constituent of Andrographis paniculata: Review on botany, phytochemistry, molecular docking analysis, and pharmacology. Annales Pharmaceutiques Françaises 2024, 82 (1) , 15-43. https://doi.org/10.1016/j.pharma.2023.10.001
    7. Tharani Subarmaniam, Rusydatul Nabila Mahmad Rusli, Kokila Vani Perumal, Yoke Keong Yong, Siti Hadizah, Fezah Othman, Khaled Salem, Nurul Husna Shafie, Rosnani Hasham, Khoo Boon Yin, Khairul Kamilah Abdul Kadir, Hasnah Bahari, Zainul Amiruddin Zakaria. The Potential Chemopreventive Effect of Andrographis paniculata on 1,2-Dimethylhydrazine and High-Fat-Diet-Induced Colorectal Cancer in Sprague Dawley Rats. International Journal of Molecular Sciences 2023, 24 (6) , 5224. https://doi.org/10.3390/ijms24065224
    8. Kazuki Fujii, Yasumasa Hara, Midori A. Arai, Samir K. Sadhu, Firoj Ahmed, Masami Ishibashi. Natural Compounds with BMI1 Promoter Inhibitory Activity from Mammea siamensis and Andrographis paniculata. Chemical and Pharmaceutical Bulletin 2022, 70 (12) , 885-891. https://doi.org/10.1248/cpb.c22-00556
    9. Zhenzhen Guan, Yaming Wang, Haiwei Xu, Yake Wang, Di Wu, Zhizi Zhang, Zihan Liu, Ning Shang, Di Zhang, Jingyang Sun, Xugang He, Yingxue Li, Lina Zhu, Zhentao Liu, Mingliang Zhang, Zhihao Xu, Zhe Song, Guifu Dai. Isoandrographolide from Andrographis paniculata ameliorates tubulointerstitial fibrosis in ureteral obstruction-induced mice, associated with negatively regulating AKT/GSK-3β/β-cat signaling pathway. International Immunopharmacology 2022, 112 , 109201. https://doi.org/10.1016/j.intimp.2022.109201
    10. K. Kannan, M. Govindaraj, B. Rajeswari, K. Vijayakumar. Green synthesis silver nanoparticles using medicinal plant and antimicrobial activity against human pathogens. Materials Today: Proceedings 2022, 4 https://doi.org/10.1016/j.matpr.2022.08.506
    11. Aekkhaluck Intharuksa, Warunya Arunotayanun, Wipawadee Yooin, Panee Sirisa-ard. A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules 2022, 27 (14) , 4479. https://doi.org/10.3390/molecules27144479
    12. Zhe Song, Li Wang, Yongxia Cao, Zihan Liu, Mingliang Zhang, Zhizi Zhang, Shan Jiang, Ruifeng Fan, Ting Hao, Ruyue Yang, Bingshun Wang, Zhenzhen Guan, Lina Zhu, Zhentao Liu, Shuya Zhang, Liang Zhao, Zhihao Xu, Haiwei Xu, Guifu Dai. Isoandrographolide inhibits NLRP3 inflammasome activation and attenuates silicosis in mice. International Immunopharmacology 2022, 105 , 108539. https://doi.org/10.1016/j.intimp.2022.108539
    13. Sunil Kumar, Bikarma Singh, Vikas Bajpai. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. Journal of Ethnopharmacology 2021, 275 , 114054. https://doi.org/10.1016/j.jep.2021.114054
    14. Sanower Hossain, Zannat Urbi, Hidayah Karuniawati, Ramisa Binti Mohiuddin, Ahmed Moh Qrimida, Akrm Mohamed Masaud Allzrag, Long Chiau Ming, Ester Pagano, Raffaele Capasso. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life 2021, 11 (4) , 348. https://doi.org/10.3390/life11040348
    15. Imtiaz Khan, Aliya Ibrar, Sumera Zaib. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Topics in Current Chemistry 2021, 379 (1) https://doi.org/10.1007/s41061-020-00316-4
    16. N.S. Aminah, K.N.W. Tun, A.N. Kristanti, H.T. Aung, Y. Takaya, M.I. Choudhary. Chemical constituents and their biological activities from Taunggyi (Shan state) medicinal plants. Heliyon 2021, 7 (2) , e06173. https://doi.org/10.1016/j.heliyon.2021.e06173
    17. Tatiane Cruz de Carvalho, Eliane de Oliveira Silva, Gilberto Augusto Soares, Renato Luis Tame Parreira, Sérgio Ricardo Ambrósio, Niege Araçari Jacometti Cardoso Furtado. Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess and Biosystems Engineering 2020, 43 (6) , 1051-1059. https://doi.org/10.1007/s00449-020-02303-x
    18. Shahid Akbar. Andrographis paniculata (Burm. f.) Nees. (Acanthaceae). 2020, 267-283. https://doi.org/10.1007/978-3-030-16807-0_26
    19. Tran Thi Hong Hanh, Nguyen Thi Thuy My, Pham Thi Cham, Tran Hong Quang, Nguyen Xuan Cuong, Tran Thu Huong, Nguyen Hoai Nam, Chau Van Minh. Diterpenoids and Flavonoids from Andrographis paniculata. Chemical and Pharmaceutical Bulletin 2020, 68 (1) , 96-99. https://doi.org/10.1248/cpb.c19-00662
    20. Wanqing Wu, Can Li, Jianxiao Li, Huanfeng Jiang. Palladium-catalyzed cascade carboesterification of norbornene with alkynes. Organic & Biomolecular Chemistry 2018, 16 (44) , 8495-8504. https://doi.org/10.1039/C8OB01799A
    21. Satoshi Takamatsu. Naturally occurring cell adhesion inhibitors. Journal of Natural Medicines 2018, 72 (4) , 817-835. https://doi.org/10.1007/s11418-018-1220-z
    22. José Luis Eiroa, Jorge Triana, Francisco J. Pérez, Quírico A. Castillo, Ignacio Brouard, José Quintana, Francisco Estévez, Francisco León. Secondary metabolites from two Hispaniola Ageratina species and their cytotoxic activity. Medicinal Chemistry Research 2018, 27 (7) , 1792-1799. https://doi.org/10.1007/s00044-018-2192-y
    23. Francis J. Barrios. Chemistry of Sesquiterpene Lactones. 2018, 93-117. https://doi.org/10.1007/978-3-319-78274-4_5
    24. Imran Khan, Mohd Aslam Yusuf, Irfan Ahmad Ansari, Mohd Sayeed Akhtar. Anticancer Potential of Andrographolide, a Diterpenoid Lactone from Andrographis paniculata: A Nature’s Treasure for Chemoprevention and Therapeutics. 2018, 143-163. https://doi.org/10.1007/978-981-10-8417-1_6
    25. Ying‐Qi Zhang, Shan‐Shan Wang, Chao Han, Jin‐Fang Xu, Jian‐Guang Luo, Ling‐Yi Kong. Online hyphenation of extraction, Sephadex LH‐20 column chromatography, and high‐speed countercurrent chromatography: A highly efficient strategy for the preparative separation of andrographolide from Andrographis paniculata in a single step. Journal of Separation Science 2017, 40 (24) , 4865-4871. https://doi.org/10.1002/jssc.201700704
    26. Uthaiwan Sirion, Teerapich Kasemsuk, Pawinee Piyachaturawat, Kanoknetr Suksen, Apichart Suksamrarn, Rungnapha Saeeng. Synthesis and cytotoxic activity of 14-deoxy-12-hydroxyandrographolide analogs. Medicinal Chemistry Research 2017, 26 (8) , 1653-1663. https://doi.org/10.1007/s00044-017-1881-2
    27. Venu Sharma, Tanwi Sharma, Sanjana Kaul, Kamal K. Kapoor, Manoj K. Dhar. Anticancer potential of labdane diterpenoid lactone “andrographolide” and its derivatives: a semi-synthetic approach. Phytochemistry Reviews 2017, 16 (3) , 513-526. https://doi.org/10.1007/s11101-016-9478-9
    28. Ben-Yin Zhang, Heng-Xia Yin, De-Jun Zhang. Two New ent-Labdane Diterpenes from the Roots of Euphorbia yinshanica. Chemistry of Natural Compounds 2017, 53 (2) , 295-298. https://doi.org/10.1007/s10600-017-1973-8
    29. Preeti Chandra, Rekha Kannujia, Renu Pandey, Shipra Shukla, Lal Bahadur, Mahesh Pal, Brijesh Kumar. Rapid quantitative analysis of multi-components in Andrographis paniculata using UPLC-QqQLIT-MS/MS: Application to soil sodicity and organic farming. Industrial Crops and Products 2016, 83 , 423-430. https://doi.org/10.1016/j.indcrop.2015.12.091
    30. Hai-Tao Gao, Bian-Lin Wang, Wei-Dong Z. Li. Synthetic applications of homoiodo allylsilane II. Total syntheses of (−)-andrographolide and (+)-rostratone. Tetrahedron 2014, 70 (49) , 9436-9448. https://doi.org/10.1016/j.tet.2014.10.015
    31. Gabriela Nosáľová, Sujay Kumar Majee, Kanika Ghosh, Washim Raja, Udipta Ranjan Chatterjee, Ľudovít Jureček, Bimalendu Ray. Antitussive arabinogalactan of Andrographis paniculata demonstrates synergistic effect with andrographolide. International Journal of Biological Macromolecules 2014, 69 , 151-157. https://doi.org/10.1016/j.ijbiomac.2014.05.030
    32. Li-Xia Chen, Hao He, Gui-Yang Xia, Kai-Lan Zhou, Feng Qiu. A new flavonoid from the aerial parts of Andrographis paniculata. Natural Product Research 2014, 28 (3) , 138-143. https://doi.org/10.1080/14786419.2013.856907
    33. Md. Sanower Hossain, Zannat Urbi, Abubakar Sule, K. M. Hafizur Rahman. Andrographis paniculata (Burm. f.) Wall. ex Nees: A Review of Ethnobotany, Phytochemistry, and Pharmacology. The Scientific World Journal 2014, 2014 , 1-28. https://doi.org/10.1155/2014/274905
    34. Sukanya Pandeti, Ravi Sonkar, Astha Shukla, Gitika Bhatia, Narender Tadigoppula. Synthesis of new andrographolide derivatives and evaluation of their antidyslipidemic, LDL-oxidation and antioxidant activity. European Journal of Medicinal Chemistry 2013, 69 , 439-448. https://doi.org/10.1016/j.ejmech.2013.09.002
    35. Yong-Xi Song, Shi-Ping Liu, Zhao Jin, Jian-Fei Qin, Zhi-Yuan Jiang. Qualitative and Quantitative Analysis of Andrographis paniculata by Rapid Resolution Liquid Chromatography/Time-of-Flight Mass Spectrometry. Molecules 2013, 18 (10) , 12192-12207. https://doi.org/10.3390/molecules181012192
    36. Mariano Pertino, Cristina Theoduloz, Marco Bastías, Guillermo Schmeda-Hirschmann. Dimeric Labdane Diterpenes: Synthesis and Antiproliferative Effects. Molecules 2013, 18 (5) , 5936-5953. https://doi.org/10.3390/molecules18055936
    37. Mohammad Faheem Khan, Padam Kumar, Jyotsana Pandey, Arvind Kumar Srivastava, Akhilesh Kumar Tamrakar, Rakesh Maurya. Synthesis of novel imbricatolic acid analogues via insertion of N-substituted piperazine at C-15/C-19 positions, displaying glucose uptake stimulation in L6 skeletal muscle cells. Bioorganic & Medicinal Chemistry Letters 2012, 22 (14) , 4636-4639. https://doi.org/10.1016/j.bmcl.2012.05.097
    38. Yanchun Li, Pengfei Zhang, Feng Qiu, Lixia Chen, Caixia Miao, Jianchun Li, Wei Xiao, Enlong Ma. Inactivation of PI3K/Akt signaling mediates proliferation inhibition and G2/M phase arrest induced by andrographolide in human glioblastoma cells. Life Sciences 2012, 90 (25-26) , 962-967. https://doi.org/10.1016/j.lfs.2012.04.044
    39. Rammohan Subramanian, Mohd. Zaini Asmawi, Amirin Sadikun. A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochemistry Reviews 2012, 11 (1) , 39-75. https://doi.org/10.1007/s11101-011-9219-z
    40. Dingfang Wu, Xiaoji Cao, Shihua Wu. Overlapping elution–extrusion counter-current chromatography: A novel method for efficient purification of natural cytotoxic andrographolides from Andrographis paniculata. Journal of Chromatography A 2012, 1223 , 53-63. https://doi.org/10.1016/j.chroma.2011.12.036
    41. Li-Xia Chen, Yu-Lei Zhuang, Lan Shen, En-Long Ma, Hua-Jie Zhu, Feng Zhao, Feng Qiu. Microbial transformation of 14-deoxy-11, 12-didehydroandrographolide and 14-deoxyandrographolide and inhibitory effects on nitric oxide production of the transformation products. Journal of Molecular Catalysis B: Enzymatic 2011, 72 (3-4) , 248-255. https://doi.org/10.1016/j.molcatb.2011.06.012
    42. Zakaria Cheikh-Ali, Timothée Okpekon, François Roblot, Christian Bories, Matthieu Cardao, Jean-Christophe Jullian, Erwan Poupon, Pierre Champy. Labdane diterpenoids from Aframomum sceptrum: NMR study and antiparasitic activities. Phytochemistry Letters 2011, 4 (3) , 240-244. https://doi.org/10.1016/j.phytol.2011.04.006
    43. Yixiong Wang, Lixia Chen, Feng Zhao, Zhihui Liu, Jianqiang Li, Feng Qiu. Microbial transformation of neoandrographolide by Mucor spinosus (AS 3.2450). Journal of Molecular Catalysis B: Enzymatic 2011, 68 (1) , 83-88. https://doi.org/10.1016/j.molcatb.2010.09.016
    44. Shuo Yang, Andrew M. Evens, Sheila Prachand, Amareshwar T.K. Singh, Savita Bhalla, Kevin David, Leo I. Gordon. Mitochondrial-Mediated Apoptosis in Lymphoma Cells by the Diterpenoid Lactone Andrographolide, the Active Component of Andrographis paniculata. Clinical Cancer Research 2010, 16 (19) , 4755-4768. https://doi.org/10.1158/1078-0432.CCR-10-0883
    45. Jiang-Bo He, Hua-Jie Zhu, Gui-Fen Luo, Guang-Ming Liu, Hao Chen, Yan Li, Shaopeng Chen, Xin Lu, Guochun Zhou, Yong-Xian Cheng. New Compounds from Euphorbia helioscopia and Absolute Configuration Determination by Computational Methods. Bulletin of the Korean Chemical Society 2010, 31 (8) , 2211-2214. https://doi.org/10.5012/bkcs.2010.31.8.2211
    46. Zhi Gang Chen, Ren Xiang Tan, Ming Huang. Efficient regioselective acylation of andrographolide catalyzed by immobilized Burkholderia cepacia lipase. Process Biochemistry 2010, 45 (3) , 415-418. https://doi.org/10.1016/j.procbio.2009.09.022
    47. Xiangjiu He, Xiaobin Zeng, Hui Hu, Yixuan Wu. Cytotoxic biotransformed products from andrographolide by Rhizopus stolonifer ATCC 12939. Journal of Molecular Catalysis B: Enzymatic 2010, 62 (3-4) , 242-247. https://doi.org/10.1016/j.molcatb.2009.11.002
    48. Marcelo A. Muñoz, Pedro Joseph‐Nathan. DFT‐GIAO 1 H and 13 C NMR prediction of chemical shifts for the configurational assignment of 6β‐hydroxyhyoscyamine diastereoisomers. Magnetic Resonance in Chemistry 2009, 47 (7) , 578-584. https://doi.org/10.1002/mrc.2432
    49. James R. Hanson. Diterpenoids. Natural Product Reports 2009, 26 (9) , 1156. https://doi.org/10.1039/b807311m
    50. Zhi Gang Chen, Ren Xiang Tan, Lin Cao. Efficient and highly regioselective acylation of andrographolide catalyzed by lipase in acetone. Green Chemistry 2009, 11 (11) , 1743. https://doi.org/10.1039/b915093e

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect