Skip to main content
Log in

Plant regeneration protocol of medicinally important Andrographis paniculata (Burm. F.) Wallich ex Nees via somatic embryogenesis

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

In vitro propagation of Andrographis paniculata (Burm. f.) Wallich ex Nees through somatic embryogenesis, and influence of 2,4-dichlorophenoxyacetic acid (2,4-1) on induction, maturation, and conversion of somatic embryos were investigated. The concentration of 2,4-D in callus induction medium determined the induction, efficacy of somatic embryogenesis, embryo maturation, and conversion. Friable callus initiated from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 2.26, 4.52, 6.78, and 9.05μM 2,4-D started to form embryos at 135, 105, 150, and 185d, respectively, after explant establishment. Callus initiated at 13.56μM 2,4-D did not induce embryos even after 240 d, whereas those initiated on MS medium with 4.52μM 2,4-D was most favorable for the formation and maturation of somatic embryos. Callus subcultured on the medium with reduced concentration of 2,4-D (2.26μM) became embryogenic. This embryogenic callus gave rise to the highest number of embryos (mean of 312 embryos) after being transferred to half-strength MS basal liquid medium. The embryos were grown only up to the torpedo stage. A higher frequency of embryos developed from callus initiated on 2.26 or 4.52 μM 2,4-D underwent maturation compared to that initiated on higher concentrations of 2.4-D. The addition of 11.7μM silver nitrate to half-strength MS liquid medium resulted in 71% of embryos undergoing maturation, while 83% of embryos developed into plantlets after being transferred to agar inedium with 0.44 μMN6-benzyladenine and 1.44 μM gibberellic acid. Most plantlets (88%) survived under field conditions and were morphologically identical to the parent plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguado-Santaeruz, G. A.; Cabrera-Ponce, J. L.; Olade-Portugal, V.; Sanchez-Gonzalez, M. R.; Marquez-Guzman, J.; Herrera-Estrella, L. Tissue culture and plant regeneration of blue grama grass, Bouteloua gracilis (H.B.K.). Lag. Ex. Steud. In Vitro Cell. Dev. Biol. Plant 37:182–189; 2001.

    Article  Google Scholar 

  • Biddington, N. L.; Sutherland, R. A.; Robinson, H. T. Silver nitrate increases embryo production in anther cultures of Brussels sprouts. Ann. Bot. 62:181–185; 1988.

    CAS  Google Scholar 

  • Choi, Y. E.; Ko, S. K.; Lee, K. S.; Yoon, E. S. Production of plantlets of Eleutherococcus sessiliflorus via somatic embryogenesis and successful transfer to soil. Plant Cell Tiss. Organ Cult. 69:35–40; 2002.

    Article  Google Scholar 

  • Duncan, D. B. Multiple range and multiple F-tests. Biometrics 11:1–42; 1955.

    Article  Google Scholar 

  • Duncan, D. R.; Widholm, J. M. Improved plant regeneration from maize callus using AgNO3 Plant Physiol. 83 (Suppl.):35 (Abstr. 208); 1987.

    Google Scholar 

  • Fei, S.-Z.; Riordan, T.; Read, P. Stepwise decrease of 2,4-D and addition of BA in subculture medium stimulated regeneration and somatic embryogenesis in buffalograss. Plant Cell Tiss. Organ Cult. 70:275–279; 2002.

    Article  CAS  Google Scholar 

  • Jayanthi, M.; Mandal, P. K. Plant regeneration through somatic embryogenesis and RAPD analysis of regenerated plants in Tylophora indica (Burm. f. Merril.) In Vitro Cell. Dev. Biol. Plant 37:576–580; 2001.

    Article  CAS  Google Scholar 

  • Karamian, R.; Ebrahimzadeh, H. Plantlet regeneration from protoplast-derived embryogenic calli of Crocus cancellatus. Plant Cell Tiss. Organ Cult. 65: 115–121; 2001.

    Article  CAS  Google Scholar 

  • Kumar, H. G. A.; Murthy, H. N.; Paek, K. Y. Somatic embryogenesis and plant regeneration in Gymnema sylvestre. Plant Cell Tiss. Organ Cult. 71:85–88; 2002.

    Article  Google Scholar 

  • Martin, K. P. Plant regeneration through somatic embryogenesis on Holostemma ada-kodien, a rare medicinal plant. Plant Cell Tiss. Organ Cult. 72:79–82; 2003.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F.. A revised medium for rapid growth and bioassays for tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nugent, G.; Chandler, S. F.; Whiteman, P.; Stevenson, T. W.. Somatic embryogenesis in Eucalyptus globulus. Plant Cell Tiss. Organ Cult. 67:85–88; 2001.

    Article  CAS  Google Scholar 

  • Park, S-u.; Facchini, P. J. Somatic embryogenesis from embryogenic cell suspension cultures of California poppy, Eschscholzia californica In Vitro Cell. Dev. Biol. Plant 37:35–39; 2001.

    Article  CAS  Google Scholar 

  • Prathanturarug S.; Schaffner, W.; Berger Buter, K.; Pank, F. In vitro propagation of the Thai medicinal plant Andrographis paniculata Nees. Proc. Int. Symp. Breeding Research on Medicinal and Aromatic Plants Quedlinburg, Germany; 1996:304–306.

  • Rai, V. R.; McComb, Direct somatic embryogenesis from mature embryos of sandalwood Plant Cell Tiss. Organ Cult. 69:65–70; 2002.

    Article  CAS  Google Scholar 

  • Rastogi, R. P.; Mehrotra B. N. eds. Compendium of Indian medicinal plants, vol. 3 1980–1984. New Delhi: CDRI and Publication and Information Directorate; 1993:41–42.

    Google Scholar 

  • Sahrawat, A. K.; Chand, S.; Somatic embryogenesis and plant regeneration from root segments of Psoralea corylifolia L. an endangered medicinally important plant. In Vitro Cell. Dev. Biol. Plant. 38:33–38; 2002.

    Article  Google Scholar 

  • Sarasan, V.; Soniya, E. V.; Nair, G. M. Regeneration of Indian Sarsaparilla, Hemidesmus indicus R. Br., through organogenesis and somatic embryogenesis. Indian J. Exp. Biol. 32:284–287; 1994.

    Google Scholar 

  • Sivarajan, V. V.; Balachandran, I. Ayurvedic drugs and their plant sources. New Delhi: Oxford & IBH Publishing; 1994: 243–245.

    Google Scholar 

  • Tawfik, A. A.; Noga, G. Cumin regeneration from seedlings derived embryogenic callus in response to amended kinetin. Plant Cell Tiss. Organ Cult. 69:35–40; 2002.

    Article  CAS  Google Scholar 

  • Tokuhara, K.; Mii, M. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cell. Dev. Biol. Plant 37:457–461; 2001.

    Article  CAS  Google Scholar 

  • Vikrant; Rashid, A. Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum II. Plant Cell Tiss. Organ Cult. 69:71–77; 2002.

    Article  CAS  Google Scholar 

  • Wakhlu, A. K.; Sharma, R. K. Somatic embryogenesis and plant regeneration in Heracleum candicans Wall. Plant Cell Rep. 7:866–869; 1998.

    Article  Google Scholar 

  • Zhang, P.; Phansiri, S.; Puonti-Kaerlas, J. Improvement of cassava shoot organogenesis by the use of silver nitrate in vitro. Plant Cell Tiss. Organ Cult. 67:47–54; 2001.

    Article  CAS  Google Scholar 

  • Zimmerman, J. L. Somatic embryogenesis: a model for carly development in higher plants. Plant Cell 5:1411–1423; 1993.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, K.P. Plant regeneration protocol of medicinally important Andrographis paniculata (Burm. F.) Wallich ex Nees via somatic embryogenesis. In Vitro Cell.Dev.Biol.-Plant 40, 204–209 (2004). https://doi.org/10.1079/IVP2003520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003520

Key words

Navigation