
Supplementary Information 

 

Supplementary Note 1: Mapping forest extent  

 

We generated a preliminary base map of global forest extent for the start of 2019 at 30 m 

resolution by subtracting annual Tree Cover Loss 2001-2018 (with exceptions noted in the 

next paragraph) from the Global Tree Cover 2000 product 1 using a canopy cover threshold 

of 20%. This is one of the most widely used tree cover datasets globally, so it has been 

widely tested in many settings and its strengths and constraints are well understood. It has 

many advantages, including its high resolution, high accuracy, global coverage, annual time 

series of tree cover loss and good prospects of sustainability in the coming years. The 

definition of forest in the source dataset is all woody vegetation taller than 5 m and hence 

includes naturally regenerated forests as well as tree crops, planted forests, wooded 

agroforests and urban tree cover. No globally consistent dataset was available that allowed 

natural and planted tree cover to be consistently distinguished in this study. Therefore, we 

should be mindful of the many differences between planted and natural tree cover (e.g.2). 

 

More than 70% of the tree cover loss shown by the Hansen et al. 1 products has been found to 

be in 10 km pixels where the dominant loss driver is temporary and so tree cover is expected 

to return above the forest definition threshold within a short period 3. It is important to take 

account of this issue as treating all such areas as permanent loss would severely under-

estimate current forest cover in many regions. However, no global map of forest cover gain 

exists for the study period other than the 2000-2012 gain product from Hansen et al. 1, so we 

developed an alternative approach. When removing annual loss shown by the Global Tree 

Cover Loss product cited above we elected not to remove any loss that was in a 10 km pixel 



categorized by Curtis et al. 3 as dominated by temporary loss under the categories of fire, 

shifting cultivation or rotational forestry. This resulted in the adjusted preliminary forest base 

map. The balance of evidence is that the great majority of such areas would have begun to 

regenerate and hence qualify as forest by our definition again by 2019 or soon after 3. The 

anthropogenically disturbed nature of many of these areas of temporary tree cover loss and 

recovery is reflected in scoring within the index, because temporary tree cover loss in the 

categories of shifting cultivation or rotational forestry is treated as an observed pressure. We 

do not treat tree cover loss through fire as an observed pressure, because fires are often part 

of natural processes, especially in the boreal zone. This makes our global index conservative 

as a measure of degradation in these zones, because in some locations fires are anthropogenic 

in nature.    

 

The adjusted preliminary base map was then resampled to a final base map for 2019 at 300m 

resolution using a pyramid-by-mode decision rule, with the resulting pixels simply classified 

as forest or non-forest based on a majority rule. The FLII was calculated for every forest 

pixel but not for non-forest pixels. GEE performs calculations in WGS84. Supplementary 

analyses outside GEE were applied using a Mollweide equal-area projection.  

 

Supplementary Note 2: Mapping potential forest configuration  

 

Potential connectivity (PC) is calculated from an estimate of the potential extent of the forest 

zone taken from Laestadius et al. 4, treating areas below 25% crown cover (this was the 

nearest class to the threshold used in our tree cover dataset of 20%) as non-forest and 

resampling to 300 m resolution. To minimize false instances of lost connectivity and ensure 

measures of forest modification are conservative we masked from this data layer areas which 



we believe to include a significant proportion of naturally unforested land using selected 

land-cover categories in ESA (5; see Supplementary Table 1). Because these natural non-

forest patches are shown in the Hansen et al. 1 dataset but not Laestadius et al. 4, not 

excluding such classes would result in an inflated estimate of the loss of connectivity and 

hence the level of degradation. We have elected to remain conservative in our estimate of 

modification. 

 

Supplementary Note 3: Mapping observed human pressure 

 

Several recent analyses have developed composite, multi-criteria indices of human pressure 

to provide assessments of ecosystem condition for the USA 6 or globally 7-9. Thompson et al. 

10 set out a framework specific to forest ecosystems that could indicate modification through 

a balanced mix of available pressure and state variables. We adapted the methodology of 

Venter et al. 8, informed by the other studies cited, to generate measures of (i) the 

modification of forest associated with observed human pressure from infrastructure, 

agriculture and deforestation and (ii) the more diffuse inferred modification effects (e.g. edge 

effects) whose presence is inferred from proximity to these focal areas of human activity. 

Edge effects resulting entirely from natural processes are excluded, because they do not 

represent modification by our definition, although, like many other natural factors, they do 

also have a role in determining ecosystem benefits. 

 

Infrastructure 

 

We generated the infrastructure (I’) data layer by rasterizing the OpenStreetMap data 11 from 

Feb 2018, using weights for each type of infrastructure as noted in Supplementary Table 3. 



The weights were derived from authors’ expert opinion and experimentation with weights 

according to their relative impact on forest condition.   

 

Agriculture 

 

For agriculture (A’) we made a global binary composite of the croplands datasets produced 

by the USGS (Supplementary Table 1) at 30 m resolution, and weighted each cropped pixel 

at this resolution by the likely intensity of cropping using the global irrigation dataset at 1km 

resolution (Teluguntla et al, 12), with values of Irrigation Major = 2, Irrigation Minor = 1.5,  

Rainfed = 1. The average cropping intensity (including uncropped areas, which score zero) 

was then calculated across the whole of each 300 m pixel of our final basemap. 

 

Deforestation 

 

For deforestation (H’) we made a binary composite of tree cover loss 2001-2018 at 30 m 

resolution 1, masked out 30 m pixels already classified as agriculture in the preceding step to 

avoid double-counting, and excluded loss predicted by Curtis et al. 3 to be most likely caused 

by fires, to give a conservative data layer of recent permanent and temporary tree cover loss 

indicative of human activity in the immediate vicinity. We excluded small clusters of 6 or 

fewer pixels (0.54 ha) because they may have been natural tree cover loss (e.g. small 

windthrows) or classification errors. Each 30 m pixel was then weighted by its year of loss, 

giving higher weight to the most recent loss (2001 = 1, 2002 = 2, etc.). The average 

‘recentness’ of deforestation (including areas not deforested, which score zero) was then 

calculated across the whole of each 300 m pixel of our base map. 

 



Transformations 

 

The exponential transformations described in the main text were used to convert I’, A’ and H’ 

to the variables I, A and H respectively. 

 

Supplementary Note 4: Modelling inferred pressures using proximity to observed 

pressures 

 

Each cell also experiences modification as a result of pressures originating from nearby cells 

that have observed human pressures, largely through the family of processes known as edge 

effects 13. Edge effects are partly a result of the changes relating to biophysical factors (such 

as humidity, wind, temperature and the increased presence of non-forest species) that 

accompany the creation of new edges in formerly continuous forest (as exemplified by the 

carefully controlled studies in tropical forests summarized by Laurance et al. 14). They also 

result in part from the increased pressure associated with human activities within tropical 

forest near to edges such as logging 15, anthropogenic fire 16, hunting 17, livestock grazing, 

pollution, visual and auditory disturbances, etc. These multiple factors are synergistic and so 

we model them together, notwithstanding regional and local variations in the relative 

intensity of each one. 

 

We model the inferred effect caused by each nearby source cell as a function of (a) the 

observed human pressure observed in that source cell and (b) a decline in the intensity of 

edge effects with distance from the source cell, based on a review of the literature. We then 

determine the total inferred effect on a given cell by summing the individual effects from all 

source cells within a certain range. 



 

Two complementary types of inferred effect are modelled and added together. One relates to 

the diverse, strong, relatively short-range edge effects which decay to near zero over a few 

kilometers and have the potential to affect most biophysical features of a forest to a greater or 

lesser extent. The other relates to weaker, longer-range effects such as over-hunting of high-

value animals that affect fewer biophysical features of a forest (and so have a much smaller 

maximum effect on overall integrity) but can nonetheless have detectable effects in locations 

more than 10 km from the nearest permanent human presence.  

 

The literature on the spatial influence of short-term effects uses a variety of mathematical 

descriptors, in two broad categories – continuous variables and distance belts. As we wish to 

model edge effects as a continuous variable we concentrated on studies that have taken a 

similar approach, and used distance-belt studies as ancillary data. 

 

Chaplin-Kramer et al. 18 is a good example of a continuous variable approach, estimating 

detailed biomass loss curves near tropical forest edges. Because they analyze a key forest 

condition variable with a very large pantropical dataset we hypothesize that the exponential 

declines in degradation with distance that they find are likely to be a common pattern and so 

we use a similar framework for our more general model of degradation. We consider that a 

model of exponential decay is also a sufficient approximation to the evidence presented by 

some authors as graphs without an associated mathematical model (e.g., 16,19) or analyzed 

using logistic regression (e.g., 20). In our model we set the exponential decay constant to be 

broadly consistent with these four studies, resulting in degradation at 1 km inside a forest that 

is approximately 37% of that at the forest edge, declining to 14% at 2 km and near zero at 3 

km. We truncate the distribution at 5 km to minimize computational demands. 



 

Distance-belt studies define the width of a belt within which edge effects are considered to 

occur, and beyond which forests are considered to be free of edge effect. Belts of 1 km are 

commonly used (e.g., 13) but smaller distances may be used for specific parameters (e.g. 300 

m for biomass reduction near edges in DRC’s primary forests; 21). Our continuous variable 

approach is broadly consistent with these studies, with the majority of our modelled 

degradation within a 1 km belt and little extending beyond 2 km. While most individual edge 

effects reported in the literature penetrate less than 100-300 m (e.g., 14,22) most of the effects 

reported on in these studies relate to the changed natural factors mentioned in an earlier 

paragraph, and are likely to be dwarfed in both intensity and extent by edge effects relating to 

spillovers of human activity, so our model emphasizes the spatial distribution of the latter 

(e.g., 16). We consider our model of the levels of modification to be conservative. 

 

For the weaker, more widespread long-range effects we use recent large-scale studies of 

defaunation, which is one of the key long-range pressures and also acts as a proxy for other 

threats including harvest of high value plants (such as eaglewood Aquilaria spp. in tropical 

Asia), occasional remote fires, pollution associated with artisanal mining, etc. We adopt a 

simplified version of the distribution used by Peres et al. 17 to model hunting around 

settlements in the Amazon, which sets 2σ=12 km; this is likely conservative compared to 

evidence for hunting-related declines in forest elephants in central Africa up to 60 km from 

roads 23 and the extensive declines in large-bodied quarry species in remote areas in many 

regions modelled by Benitez-Lopez et al. 24.  

 

Supplementary Note 5: Exploring limitations in data with an example with 

infrastructure data in British Columbia, Canada 



 

OpenStreetMap (OSM) represents the most detailed publicly available relevant global dataset 

but is nonetheless noted to be incomplete, even for one of the most heavily used categories of 

infrastructure, paved roads 25. No global assessment is available for the completeness of other 

categories in the dataset. One of the key categories for forest integrity, unpaved roads used 

for resource extraction, has been shown to be incomplete over much of insular South-east 

Asia 26. In Canada, for example, roads and other linear corridors used to explore, access and 

extract natural resources (e.g., logging, oil and gas, and minerals) are sometimes missing. 

Government data for the province of British Columbia (available at  

https://catalogue.data.gov.bc.ca/dataset/digital-road-atlas-dra-master-partially-attributed-

roads) demonstrates, for example, the larger extent and density of regional roads as compared 

to OSM (Supplementary Figure 1).  

 

Supplementary Note 6: Classification of Forest Landscape Integrity Index scores 

 

In this paper, three illustrative classes were defined, mapped and summarized to give an 

overview of broad patterns of degradation in the world’s forests. Three categories were 

defined as set out in the Materials and Methods. To determine the approximate levels of the 

FLII associated with these three categories, benchmark locations were selected in sites that 

could unambiguously be assigned to one of the categories using the authors’ personal 

knowledge. At each site a single example pixel was selected within a part of the area with 

relatively uniform scores. The sample points are summarized in Supplementary Table 4; they 

are widely spread across the world to ensure that the results are not only applicable to a 

limited region. The scores at these points suggest the following category boundaries: 

 



• High FLII – 9.6-10 

• Medium FLII – 6-9.6 

• Low FLII – 0-6  

 

Supplementary Note 7: Sensitivity of Forest Landscape Integrity Index scores 

 

To undertake a sensitivity analysis of FLII, we randomly identified 16 000 points dispersed 

across Earth; from this we found that 1368 points were within forest, which we used for this 

analysis. For the sensitivity analysis we focused on the infrastructure data given that it is the 

only variable that that had variable weightings (see Supplementary Table 3). To run the 

sensitivity analysis we compared the FLII with the following weighting changes applied to 

the infrastructure data: 1) all infrastructure types were given equal weighting of 10, 2) halved 

the weightings originally used, and 3) doubled the weightings originally used. We found that 

there were small changes in the mean FLII and others statistics when the weightings were 

changed. There was a decrease in the mean when equally weighted or when doubled, and an 

increase when weightings halved. These changes are quite minor varying a maximum of 0.17, 

suggesting that adjusting the weightings produced only minor changes in the overall FLII 

score and the metric is quite robust. 

 

Supplementary Note 8: Verification of Forest Landscape Integrity Index  

 

We anticipate that the FLII is correlated with a broad range of measures related to forest 

integrity and anthropogenic pressures. These may include metrics related to forest condition 

(e.g. canopy height, biomass, structural complexity), forest ecosystem state (e.g. species 

diversity and abundance), and intensity of anthropogenic pressures (e.g. land conversion, 



hunting and harvesting, and pollution). The anticipated benefit of FLII is that it provides a 

single, simple measure that could be used to inform management and policy planning without 

having to attempt to quantify the full spectrum of metrics related to forest integrity. While it 

may be possible to do this in some areas, we argue it is infeasible to do so at a global extent 

and high resolution because of information bias (some areas are much more intensively 

studied and monitored than others). A strength of FLII is that it is quantified consistently 

globally, thereby facilitating comparisons among regions and jurisdictions. Moreover, it 

provides a framework to be adapted for local use where data are available.  

 

Here, we present an example of a validation exercise demonstrating how FLII is correlated 

with field measurements of forest condition (specifically, canopy height and above-ground 

biomass) in two countries. In the future, further comparisons of FLII with other measures of 

forest integrity and in other locations will be made to evaluate the merit of FLII more 

broadly. We conducted validation analyses across two countries where relevant data were 

available: Democratic Republic of Congo (DRC), and Myanmar. These countries have 

recently developed high resolution ecosystem maps to stratify different forest types, and also 

have appropriate data to test key forest integrity attributes  (e.g. canopy height, above ground 

biomass) 27. The ecosystem maps used were Shapiro et al. 28 for DRC and Murray et al. 29 for 

Myanmar. For DRC we correlated FLII with ~415,000 samples of mean canopy height and 

estimated above ground biomass, based on field samples and lidar data from Xu et al. 30. We 

analysed these samples at the country level, and also stratified samples by forest ecosystem 

type. For Myanmar we generated 5000 random points for each forest ecosystem, and then 

extracted FLII, tree canopy height and tree canopy cover for each point using data from 

Potapov et al. 31. We then analysed data at the country level, and used the hierarchical nature 

of the Myanmar ecosystem data to assess forest ecosystems individually, and also grouped 



ecosystems into five broader functional groups see Murray et al. 32. For all analyses we 

measured correlation using Kendall’s T coefficient, because our data did not satisfy the 

assumption of normality required to conduct a Pearson correlation test. Kendall’s T 

coefficient ranges from -1 – 1, where ±1 indicates a perfect degree of correlation, and 0 

indicates no correlation.  

 

For DRC as a whole we found a positive and significant  correlation (p < 0.05) between FLII 

and both above ground biomass and mean canopy height (Supplementary Figure 3). We also 

found a positive and significant correlation (p < 0.05) between FLII and above ground 

biomass for 31 of 37 ecosystem types (Supplementary Figure 4), and the same result for 

mean tree canopy height (Supplementary Figure 5). For Myanmar as a whole we found a 

positive and significant correlation (p < 0.05) between FLII and both tree canopy height and 

tree canopy cover (Supplementary Figure 6). We also found a positive and significant 

correlation (p < 0.05) between FLII and tree canopy height across 29 of 30 ecosystem types 

(Supplementary Figure 7), and the same result for tree canopy cover (Supplementary Figure 

8). For all ecosystem functional groups (n=5) in Myanmar we found similar trends to 

ecosystems, with strong positive correlations between FLII and tree canopy height  and tree 

canopy cover for every group (Supplementary Figure 9-11). Overall, we found a positive and 

significant correlation (p<0.05) across 134 out of 148 tests.  

 

  



Supplementary Table 1. The datasets used to develop the Forest Landscape Integrity Index. 

The factor column indicates the component of the index the dataset was used in. 

 
Dataset Factor Sources Spatial 

resolution 
Time 
period 

Tree cover 

and tree 

cover loss  

Forest 

extent, 

connectivity

, observed 

and  inferred 

pressures 

Global Forest Cover datasets; Hansen et 

al. 1; updates to 2018 available on-line 

from: 

http://earthenginepartners.appspot.com/sci

ence-2013-global-forest.  

30m 2000-2018 

Major tree 

cover loss 

driver 

Forest 

extent, 

observed 

and inferred 

pressures, 

connectivity 

Curtis et al. 3 10km 2000-
2018 

Landover 

and ocean 

extent 

Forest 

extent 

Lamarche et al. 33 150m 2000-
2012 

Potential 

forest cover 

Connectivity Laestadius et al. 4 1km 2010 

Natural 

non-forest 

areas within 

extent of 

potential 

forest 

Connectivity ESA-CCI Land Cover dataset; ESA 5 300m 2015 

Infrastructu

re 

Observed 

and inferred 

pressures 

Open Street Map (selected elements) as of 

2018; OpenStreetMap contributors 11  

300m 
(Derived 
from 
vectors) 

2004-
2018 

Cropland Observed 

and inferred 

pressures 

GFSAD 2015 Cropland Extent; Gumma et 

al. 34, Massey et al. 35, Oliphant et al. 36, 

Phalke et al. 37, Teluguntla et al. 38, Xiong 

et al. 39 and Zhong et al. 40 

30m 2015 

Cropping 

intensity 

(irrigation) 

Observed 

and inferred 

pressures 

GFSAD 2010 Cropland Mask;  Teluguntla 

et al. 12 

1km 2010 

Water 

surface  

Observed 

and inferred 

pressures 

JRC Global Surface Water Occurrence (all 

classes with >75% occurrence); Pekel et 

al. 41 

30m 1984-
2019 

  

http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest


Supplementary Table 2. Classes in ESA-CCI dataset excluded from our potential forest 

cover layer because they overlap extensively with potential forest cover mapped by 

Laestadius et al. 4 but contain significant areas of natural non forest 

 
 

Legend 

code 

Class name 

60 Treecover, broadleaved, deciduous, closed to open, >15% 

100 Mosaic tree and shrub (>50%]/ Herbaceous cover (<50%) 

120 Shrubland 

121 Evergreen shrubland 

122 Deciduous shrubland 

130 Grassland 

140 Lichens and mosses 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 

152 Sparse shrub (<15%) 

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water 

200 Bare areas 

201 Consolidated bare areas 

202 Unconsolidated bare areas 

220 Permanent snow and ice 

 

  



Supplementary Table 3. Weightings used for Open Street Map (OSM) to combine into the 

Infrastructure data layer. 

 
 

OSM Category OSM Subcategory Weighting applied for FPI 

Aeroway Apron / Helipad / Runway / Taxiway 8 

 Hangar / Terminal 4 

 Aerodrome / Heliport / Spaceport 3 

Amenity / Landuse / 

Man-made object 

Fuel station / Gasometer / Petroleum well / Pipeline / Adit / 

Mineshaft / Quarry / Landfill / Sanitary dump station / Wastewater 

plant 

15 

 Chimney 10 

 Industrial 8 

 Basin / Covered Reservoir / Pumping station / Water tower / Water 

well / Water works / Watermill 

7 

 Silo / Storage tank / Works 6 

 Aerialway / Beacon / Lighthouse / Breakwater / Dyke / 

Embankment / Groyne / Pier / Communications tower / Mast / 

Observatory / Tower / Telescope 

5 

 Salt pond 4 

 Alpine hut / Beach resort / Camp site / Cemetery / Golf course / 

Marina / Pitch / Village green / Wilderness hut 

3 

Barrier City wall / Retaining wall / Wall 5 

 Ditch / Snow fence / Snow net 3 

 Hedge 2 

Road Motorway / Motorway link / Raceway 15 

 Trunk / Trunk link 11 

 Primary / Primary link 9 

 Secondary / Secondary link 7 

 Tertiary / Tertiary link 6 

 Bus guideway / Service 5 

 Living street / Mini roundabout / Residential / Turning circle / 

Unclassified / Unknown/ Elevator / Rest area 

4 

 Escape / Track 3 

 Bridleway / Cycleway/ Footway / Path / Pedestrian / Steps 2 

Military Nuclear explosion site 30 

 Danger area / Range / Trench 15 

 Ammunition / Barracks / Bunker / Checkpoint 7 

 Airfield / Military-owned land / Naval base / Training area 3 

Power Plant/generator - coal 20 

 Plant/generator - oil 15 

 Plant/generator – gas/ Plant/generator - bio / waste 10 

 Plant/generator – hydro; nuclear; other / Line, Substation 7 

 Plant/generator - solar / Heliostat / wind / Windmill 5 

 Cable 3 

Railway Funicular / Preserved / Rail / Monorail / Subway 10 

 Light rail / Miniature / Narrow gauge/ Tram 7 

 Station 5 

 Halt / Platform 4 

 Abandoned / Disused 2 

Waterway Dam / Lock gate 20 

 Canal 13 

 Ditch/ Drain / Weir 3 

 

  



Supplementary Table 4. Points assessed to determine category boundaries for classifying 

the FHI into high, medium and low classes. 

 
 

Category Code Point description Country Point 

Score 

High 103 Interior of Lopé National Park Gabon 10.000 

High 106 Interior of Taï National Park Cote d'Ivoire 10.000 

High 108 Interior of Pacaya-Samiria National Reserve Peru 10.000 

High 109 Interior of Central Suriname Nature Reserve Suriname 10.000 

High 116 Interior of Liard River area Canada 10.000 

High 101 Interior of Okapi Faunal Reserve DRC 9.997 

High 104 Interior of Nyungwe National Park Rwanda 9.992 

High 111 Interior of Rio Platano Biosphere Reserve Honduras 9.990 

High 102 Interior of Odzala National Park RoC 9.974 

High 117 Interior of Wells Gray Provincial Park Canada 9.972 

High 119 Interior of Øvre Pasvik National Park Norway 9.944 

High 115 Interior of Tasmania Wilderness World Heritage Area Australia 9.918 

High 107 Interior of Marojejy National Park Madagascar 9.910 

High 112 Interior of Khao Yai National Park Thailand 9.908 

High 105 Interior of Niassa Special Reserve Mozambiuque 9.819 

High 110 Interior of Maya Biosphere Reserve Guatemala 9.798 

High 114 Interior of Batang Ai National Park Malaysia 9.756 

High 118 Interior of Quetico Provincial Park Canada 9.750 

High 113 Interior of Sundarbans National Park Bangladesh 9.606 

Medium 215 Interior of Bialowieża National Park Poland 9.086 

Medium 208 Interior of Mabira Central Forest Reserve Uganda 9.067 

Medium 211 Area of selective logging Gabon 8.840 

Medium 219 Near main tourism corridor, Mt Myohyang National Park DPR Korea 8.762 

Medium 203 Interior of Phnom Kulen Wildlife Sanctuary Cambodia 8.710 

Medium 210 Area of selective logging Guyana 8.364 

Medium 202 Interior of Dong Hua Sao National Protected Area Lao PDR 8.078 

Medium 212 Area of selective logging DRC 7.981 

Medium 206 Interior of Manga Forest Reserve Tanzania 7.960 

Medium 207 Near margin of Nyungwe National Park Rwanda 7.938 

Medium 204 South part of Nagarahole National Park India 7.759 

Medium 213 Area of selective logging Cameroon 7.379 

Medium 201 Tat Leuk, Phou Khaokhoay National Protected Area Lao PDR 7.251 

Medium 216 Interior of Loch Garten Nature Reserve UK 7.146 

Medium 209 Area of selective logging Congo 6.734 

Medium 217 Tourism area, Lamington National Park Australia 6.729 

Medium 214 Lowlands of Guanacaste National Park Costa Rica 6.719 

Medium 218 Near margin of Sepilok Forest Reserve Malaysia 6.353 

Medium 205 Interior of Similajau National Park Malaysia 6.130 

Low 305 Dong Nathat Lao PDR 5.638 

Low 317 Foothills of Mt Makiling Philippines 5.395 

Low 310 Suburban woodlot, Dobbs Ferry USA 4.710 

Low 309 Jozani Forest Reserve Tanzania 4.680 

Low 316 Foothills of Mt Canlaon Philippines 4.597 

Low 320 Forest fragment near Paramaribo Suriname 4.566 

Low 302 Central Park, New York USA 3.575 

Low 301 Bagley Wood, Oxford UK 3.525 

Low 307 Boeng Yeak Lom Protected Area Cambodia 3.323 

Low 304 Angkor Thom Cambodia 3.122 

Low 315 Forest in rural complex, Mambasa area DRC 2.689 

Low 312 Woodland in Beaumont area USA 2.581 

Low 318 Swidden near Andoung Kraloeng village Cambodia 2.304 



Low 319 Forest mosaic near Kaev Seima village Cambodia 2.187 

Low 303 Thetford Forest UK 2.082 

Low 313 Woodland in Augusta area USA 0.686 

Low 314 Woodland in Emporia area USA 0.589 

Low 311 River Park, Chicago USA 0.566 

Low 306 Houei Nhang Forest Reserve Lao PDR 0.000 

Low 308 Pugu Forest Reserve Tanzania 0.000 

 

  



Supplementary Table 5. Mean Forest Landscape Integrity Index scores and areas for forest 

integrity categories by country. 

 

Country Mean 

FLII 

Low 

integrity 

(km2) 

Medium 

integrity (km2) 

High integrity 

(km2) 

Total forest 

area (km2) 

Afghanistan 8.85 90 1,475 977 2,542 

Albania 6.77 2,426 5,256 122 7,805 

Algeria 5.22 7,418 6,044 81 13,543 

Andorra 4.45 170 49 0 219 

Angola 8.35 105,487 284,054 315,895 705,436 

Antigua and Barbuda 4.72 114 92 0 206 

Argentina 7.21 98,249 189,966 72,557 360,772 

Armenia 5.46 1,894 1,681 3 3,577 

Australia 7.22 117,672 239,624 103,852 461,148 

Austria 3.55 36,666 12,422 21 49,109 

Azerbaijan 6.55 4,820 7,189 1,534 13,543 

Bahamas 7.35 741 1,935 399 3,075 

Bangladesh 5.45 10,013 7,251 1,947 19,211 

Belarus 3.63 77,870 20,847 91 98,808 

Belgium 1.36 8,803 297 0 9,099 

Belize 6.15 7,004 7,957 2,744 17,705 

Benin 5.86 4,724 3,698 1,769 10,191 

Bhutan 8.85 1,620 16,769 10,140 28,529 

Bolivia 8.47 78,745 280,532 272,007 631,284 

Bosnia and 

Herzegovina 

5.99 13,387 17,031 574 30,993 

Botswana 9.13 13 187 372 572 

Brazil 7.52 1,374,902 1,354,961 2,338,101 5,067,963 

Brunei Darussalam 7.71 1,102 2,842 1,498 5,442 

Bulgaria 6.09 18,884 26,325 847 46,057 

Burundi 4.5 6,882 3,841 46 10,769 

Cabo Verde 6.37 27 38 0 65 

Cambodia 6.31 30,143 31,939 16,349 78,431 

Cameroon 8 66,191 181,336 119,263 366,789 

Canada 8.99 480,206 1,027,386 2,968,268 4,475,860 

Central African 

Republic 

9.28 30,161 139,350 379,097 548,608 

Chad 6.18 5,261 6,016 1,910 13,187 

Chile 7.37 56,849 41,971 93,537 192,357 

China 7.14 533,800 974,431 301,051 1,809,282 

Colombia 8.26 150,737 272,442 428,320 851,499 

Comoros 7.69 284 1,149 82 1,515 



Congo 8.89 24,512 124,215 158,184 306,911 

Congo DRC 7.56 533,118 935,508 727,983 2,196,608 

Costa Rica 4.65 27,164 12,838 4,164 44,167 

Cote d'Ivoire 3.64 158,010 41,005 7,288 206,303 

Croatia 4.92 15,732 10,522 379 26,633 

Cuba 5.4 22,605 18,460 1,632 42,697 

Cyprus 7.06 388 1,026 18 1,432 

Czechia 1.71 32,161 1,611 0 33,772 

Denmark 0.5 5,756 31 0 5,787 

Dominica 1.06 531 2 0 533 

Dominican Republic 4.19 19,890 9,364 518 29,772 

Ecuador 7.66 48,822 77,585 73,492 199,900 

Egypt 0.56 4,772 218 69 5,059 

El Salvador 4.05 8,837 2,947 0 11,784 

Equatorial Guinea 7.99 3,982 17,595 5,007 26,585 

Estonia 3.05 24,473 4,832 52 29,358 

Ethiopia 7.16 52,652 84,430 44,397 181,479 

Fiji 8.35 1,753 10,802 3,594 16,148 

Finland 5.08 144,310 83,572 9,294 237,176 

France 4.52 161,987 49,496 74,121 285,604 

Gabon 9.07 11,780 118,348 120,852 250,979 

Gambia 4.56 181 85 0 266 

Georgia 7.79 6,982 17,803 9,784 34,570 

Germany 2.28 122,168 11,307 0 133,475 

Ghana 4.53 57,519 28,901 2,160 88,580 

Greece 6.6 14,548 27,833 1,078 43,459 

Grenada 4.22 221 86 0 308 

Guatemala 3.85 58,572 18,764 5,592 82,928 

Guinea 4.9 81,702 54,877 2,895 139,475 

Guinea-Bissau 5.7 9,274 8,702 855 18,831 

Guyana 9.58 4,162 40,817 147,413 192,391 

Haiti 4.01 7,116 2,831 12 9,959 

Honduras 4.48 57,899 23,802 3,692 85,392 

Hungary 2.25 18,729 2,047 0 20,776 

India 7.09 117,992 254,792 54,428 427,211 

Indonesia 6.6 535,370 509,018 431,973 1,476,361 

Iran 7.67 3,361 12,930 2,162 18,453 

Iraq 3.59 104 9 0 113 

Ireland 0.92 5,283 96 0 5,378 

Israel 4.14 170 85 0 255 

Italy 3.65 79,403 26,858 25 106,286 

Jamaica 5.01 5,362 3,249 158 8,770 



Japan 5.8 135,783 133,480 16,005 285,268 

Jordan 2.79 12 0 0 12 

Kazakhstan 8.23 6,068 18,926 15,294 40,288 

Kenya 4.2 28,427 13,558 4,702 46,686 

Kosovo 5.19 2,628 1,775 47 4,450 

Kyrgyzstan 8.86 329 2,819 2,761 5,909 

Laos 5.59 92,986 80,564 19,252 192,801 

Latvia 2.09 38,164 2,137 0 40,301 

Lebanon 3.76 541 115 0 656 

Lesotho 7.4 1 4 0 5 

Liberia 4.79 51,975 31,162 11,025 94,163 

Libya 4.85 15 2 0 17 

Liechtenstein 4.5 59 42 0 101 

Lithuania 1.62 24,554 930 0 25,484 

Luxembourg 1.12 1,170 0 0 1,170 

Macedonia 7.42 2,034 7,090 459 9,583 

Madagascar 4.63 120,340 66,584 11,922 198,846 

Malawi 5.74 12,514 12,167 2,396 27,078 

Malaysia 5.01 130,825 91,957 21,499 244,281 

Mali 7.16 451 996 140 1,586 

Mauritius 5.46 567 478 0 1,045 

Mexico 6.82 193,908 280,445 121,842 596,195 

Micronesia 7.55 8 35 0 43 

Moldova 2.2 3,113 202 0 3,315 

Mongolia 9.36 520 11,915 27,407 39,841 

Montenegro 6.41 2,949 4,778 82 7,809 

Morocco 6.74 2,260 4,076 451 6,787 

Mozambique 6.93 150,665 189,362 115,379 455,406 

Myanmar 7.18 129,745 220,188 96,924 446,857 

Namibia 8.43 5 13 17 36 

Nepal 7.23 13,785 41,992 3,760 59,538 

Netherlands 0.6 5,250 72 0 5,322 

New Zealand 7.12 34,503 44,155 35,334 113,992 

Nicaragua 3.63 65,356 17,646 4,858 87,860 

Nigeria 6.2 64,621 65,355 24,307 154,283 

North Korea 8.02 8,374 40,156 8,410 56,939 

Norway 6.98 39,343 67,383 16,627 123,352 

Pakistan 7.42 2,090 7,859 1,139 11,088 

Palau 8.09 45 333 9 387 

Panama 6.37 25,420 21,310 14,605 61,336 

Papua New Guinea 8.84 37,294 183,415 216,355 437,064 

Paraguay 6.39 78,538 102,626 29,877 211,041 



Peru 8.86 85,793 190,547 509,720 786,061 

Philippines 5.91 91,820 100,831 8,393 201,044 

Poland 2.24 101,886 7,103 0 108,989 

Portugal 0.82 25,966 553 0 26,519 

Romania 5.95 38,395 48,394 607 87,395 

Russian Federation 9.02 739,484 2,245,281 5,137,079 8,121,843 

Rwanda 3.85 5,665 2,170 619 8,454 

Saint Kitts and Nevis 4.55 95 50 0 145 

Saint Lucia 6.17 235 316 0 551 

Saint Vincent and the 

Grenadines 

6.95 91 221 0 312 

San Marino 0.01 7 0 0 7 

Sao Tome and Principe 6.64 31 140 0 171 

Senegal 7.11 847 2,456 162 3,465 

Serbia 5.29 17,513 14,112 516 32,141 

Seychelles 10 0 0 68 68 

Sierra Leone 2.76 52,512 11,858 640 65,010 

Singapore 1.11 170 2 0 172 

Slovakia 4.34 17,615 8,165 0 25,781 

Slovenia 3.78 11,065 3,791 0 14,856 

Solomon Islands 7.19 6,871 15,310 3,149 25,329 

Somalia 7.16 347 1,384 46 1,777 

South Africa 4.94 45,489 34,968 3,196 83,653 

South Korea 6.02 25,060 32,009 888 57,956 

South Sudan 9.45 5,083 59,389 146,218 210,691 

Spain 4.23 82,770 46,013 133 128,916 

Sri Lanka 5.83 20,541 22,390 1,613 44,544 

Sudan 9.8 1 72 495 569 

Suriname 9.39 6,796 25,031 107,954 139,781 

Swaziland 4.21 5,054 2,501 14 7,569 

Sweden 5.35 174,415 109,779 23,494 307,687 

Switzerland 3.53 13,636 4,412 10 18,058 

Syria 3.64 841 282 0 1,123 

Taiwan 6.38 8,786 14,547 1,453 24,786 

Tajikistan 8.65 34 137 130 301 

Tanzania 7.13 123,997 159,712 122,812 406,521 

Thailand 6 86,276 89,326 33,612 209,214 

Timor-Leste 7.11 1,783 7,008 47 8,838 

Togo 5.88 5,064 4,522 1,076 10,662 

Trinidad and Tobago 6.62 1,478 2,176 418 4,072 

Tunisia 5.14 1,354 987 0 2,340 

Turkey 6.39 43,043 68,243 3,516 114,801 



Turkmenistan 6.31 5 33 0 37 

Uganda 4.36 77,303 36,381 7,507 121,190 

Ukraine 3.3 89,540 20,183 176 109,900 

United Kingdom 1.65 29,149 2,917 35 32,101 

United States 6.65 1,328,079 1,144,693 658,645 3,131,417 

Uruguay 3.61 11,793 3,998 0 15,791 

Uzbekistan 6.77 214 227 199 640 

Vanuatu 8.82 734 5,322 4,448 10,504 

Venezuela 8.78 64,650 170,792 351,112 586,554 

Vietnam 5.35 82,551 75,353 9,588 167,492 

Zambia 7.5 96,969 164,376 110,822 372,167 

Zimbabwe 6.31 9,450 14,417 1,644 25,511 

  



Supplementary Table 6. Mean Forest Landscape Integrity Index (FLII) scores for provinces 

of Democratic Republic of Congo (DRC), Indonesia and Canada.  

 

DRC Indonesia Canada 

Province Mean FLII Province Mean FLII Province Mean FLII 

Lualaba 8.57 Papua 9.34 Northwest 

Territories 

9.90 

Tshuapa 8.55 West Papua 9.00 Yukon 9.86 

Tshopo 8.39 Kalimantan 

Utara 

8.52 Newfoundland 

and Labrador 

9.66 

Bas-Uélé 8.38 Maluku 8.03 Nunavut 9.65 

Équateur 8.37 Maluku Utara 7.41 Manitoba 9.58 

Haut-Lomami 8.29 Nusa Tenggara 

Barat 

6.86 Saskatchewan 9.40 

Tanganyika 8.24 Aceh 6.83 Ontario 8.94 

Nord-Ubangi 8.19 Nusa Tenggara 

Timur 

6.80 Québec 8.80 

Haut-Katanga 8.05 Gorontalo 6.60 Alberta 8.46 

Kwango 7.83 Sulawesi Utara 6.58 British 

Columbia 

8.22 

Maï-Ndombe 7.58 Sulawesi 

Tengah 

6.54 Nova Scotia 6.07 

Haut-Uélé 7.46 Kalimantan 

Timur 

6.42 New Brunswick 5.15 

Maniema 7.44 Sulawesi Barat 6.31 Prince Edward 

Island 

2.74 

Sankuru 7.34 Sumatera Barat 6.20   

Lomami 7.20 Sulawesi 

Tenggara 

5.99   

Kasaï 7.11 Kalimantan 

Tengah 

5.84   

Ituri 6.70 Sulawesi 

Selatan 

5.63   

Mongala 6.23 Banten 4.97   

Nord-Kivu 6.22 Bengkulu 4.94   

Sud-Kivu 6.20 Sumatera Utara 4.89   

Kasaï-Central 5.95 Kalimantan 

Barat 

4.87   

Sud-Ubangi 5.93 Kepulauan 

Riau 

4.86   



Kwilu 5.65 Jawa Barat 4.76   

Kinshasa 4.75 Lampung 4.73   

Kasaï-Oriental 4.13 Jawa Tengah 4.59   

Kongo-Central 3.95 Bali 4.43   

  Jawa Timur 4.40   

  Jambi 4.01   

  Riau 3.92   

  Kalimantan 

Selatan 

3.24   

  Sumatera 

Selatan 

2.86   

  Yogyakarta 2.83   

 

  



Supplementary Table 7. Sensitivity analysis varying the weightings within the infrastructure 

data 

  
Mean 1st quartile Median 3rd quartile Standard 

Deviation 

Original 7.49 5.59 9.04 9.93 3.06 

Equal weighted 7.32 5.26 8.95 9.92 3.20 

Weighting halved 7.64 6.06 9.12 9.94 2.94 

Weighting doubled 7.36 5.30 8.96 9.93 3.17 

 

 

  



 

 
 

Supplementary Figure 1. A map overlaying the Open Street Maps data (blue) and provincial 

government data (green) for roads and other linear infrastructure associated with resource 

access.  

  



 

 

Supplementary Figure 2. A global map of Forest Landscape Integrity for 2019. Highlighted 

regions show A. A remote road in Russia, B. Clearcut logging in Canada, C. Selective 

logging in Borneo, D. Swidden agriculture in Madagascar, E. Forest fragmentation in 

Western Australia, F. Remote settlements in the Brazilian Amazon.  

 

  



 

 

 Supplementary Figure 3. Correlation between Forest Landscape Integrity Index and above 

ground biomass (above) and mean canopy height (below) within Democratic Republic of 

Congo. N = 5000 independent samples for each forest ecosystem. Correlation was measured 

using a two-sided Kendall’s T coefficient (P < 2.2-16 for both above ground biomass and 



mean canopy height). Coloured lines are linear model fits with 95% confidence intervals 

(shaded regions).  

  



 

 

Supplementary Figure 4. Correlation between Forest Landscape Integrity Index and above 

ground biomass for forest ecosystems within the Democratic Republic of Congo. N = 2500 

independent samples for each forest ecosystem. Correlation was measured using a two-sided 

Kendall’s T coefficient. Coloured lines are linear model fits with 95% confidence intervals 

(shaded regions). 

 

 



Supplementary Figure 5. Correlation between Forest Landscape Integrity Index and mean 

canopy height for forest ecosystems in the Democratic Republic of Congo. N = 2500 

independent samples for each forest ecosystem. Correlation was measured using a two-sided 

Kendall’s T coefficient. Coloured lines are linear model fits with 95% confidence intervals 

(shaded regions).. 

 

 



 

 

Supplementary Figure 6. Correlation between Forest Landscape Integrity Index and tree 

canopy height (above) and tree canopy cover (below) within Myanmar. N = 5000 

independent samples. Correlation was measured using a two-sided Kendall’s T coefficient (P 



< 2.2-16 for both above ground biomass and mean canopy height). Coloured lines are linear 

model fits with 95% confidence intervals (shaded regions). 

  



 

 

Supplementary Figure 7. Correlation between Forest Landscape Integrity Index and mean 

canopy height for forest ecosystems in Myanmar. N = 2500 independent samples for each 

forest ecosystem. Correlation was measured using a two-sided Kendall’s T coefficient. 

Coloured lines are linear model fits with 95% confidence intervals (shaded regions). 

 

  



 

Supplementary Figure 8. Correlation between Forest Landscape Integrity Index and tree canopy 

cover for forest ecosystems in Myanmar. N = 2500 independent samples for each forest 

ecosystem. Correlation was measured using a two-sided Kendall’s T coefficient. Coloured lines 

are linear model fits with 95% confidence intervals (shaded regions). 

 



 

Supplementary Figure 9. Correlation between Forest Landscape Integrity Index and mean 

canopy height for forest functional groups in Myanmar. N = 2500 independent samples for each 

forest functional group. Correlation was measured using a two-sided Kendall’s T coefficient. 

Coloured lines are linear model fits with 95% confidence intervals (shaded regions). 

 



 

Supplementary Figure 10. Correlation between Forest Landscape Integrity Index and tree 

canopy cover for forest functional groups in Myanmar. N = 2500 independent samples for each 

forest functional group. Correlation was measured using a two-sided Kendall’s T coefficient. 

Coloured lines are linear model fits with 95% confidence intervals (shaded regions). 
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