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Figure S1. An AFM image of an Al/AlOx gate stack. The stack was obtained by

evaporating Al on an SiO2 substrate. The surface roughness (RMS) is 1.52 nm.
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Figure S2. A large area scanning electron microscopy (SEM) image (in false colors) of

two nanogaps. The initial Au source and drain contacts (yellow) were fabricated with

a resolution of ∼ 1 µm. The nanogaps were created by evaporating a thin layer of Au

(red) under an angle of 15◦ with respect to the perpendicular axis of the sample/image

(inclined towards the bottom part of the image).
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Figure S3. An AFM image of several exfoliated MoS2 FETs, out of which one is from

Fig. 2. The height profile along the section A-A’ is shown below the image. The section

is taken across the MoS2 flake and the height is calculated with respect to point A.
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Figure S4. Tilted SEM images of a gap between the source (thick Au) and drain (thin

Au). (a) Tilted image of the gap reveals oblique sidewalls of the contacts, as sketched

in the inset. Such sidewalls are a consequence of the directional metal deposition by

e-beam evaporation used to create the contacts. The thick contacts are obtained by

depositing metal through a developed part of a resist, which initially creates vertical

sidewalls of the contacts. However, as the deposition of the metal continues, the metal

deposited at the top part of the resist tends to laterally expand [1,2] thereby reducing

the effective size of the opening in the resist. Consequently, the width of the contacts

reduces with height, creating oblique profile observed in the thick contacts. Similarly,

the shadow evaporation leads to the oblique profile of the thin contacts due to the

deposition of the metal on top of the thick contacts (although this is not pronounced

due to the small thickness of the thin contacts). Therefore, the actual gate length is

probably slightly shorter compared to what was observed in the standard (top-view)

SEM images shown in the main text. (b) Tilted SEM image showing the local Al/AlOx

back gate (bottom right), thick contact (left), and thin contact (upper right).
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Figure S5. SEM image of a very narrow gap (5 nm) which cannot be cleared by

thermal annealing.
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Figure S6. The influence of thermal annealing on the transistor properties of ultra-

scaled MoS2 FETs. (a) The transfer curves of a FET before annealing. (b) The output

curves of the same FET before annealing. (a) The transfer curves of the same FET

after annealing. (a) The output curves of the same FET after annealing.
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Figure S7. Drain (blue) and gate (red) currents corresponding to the highest drain

current shown in Fig. 2(d) in the main text. The onset of the (reversible) gate oxide

breakdown can be observed in the gate current for VDS > 2.25 V due to a very large

gate bias (VGS = 2.7 V). However, the gate current is still ∼ 5 orders of magnitude

smaller than the drain current in this regime. The gate oxide irreversibly breaks at

∼ 2.9 V.
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Figure S8. A multilayer MoS2 flake smoothens out the roughness of the gate allowing

a 10-nm separation between the source and drain contacts fabricated on top of the flake.
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Figure S9. SEM images of gaps between source and drain contacts in two different

CVD monolayer MoS2 FETs.
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Figure S10. Ultra-scaled FETs fabricated on a 100 mm wafer. On one part (blue)

of the wafer, the FETs were fabricated directly on the SiO2/Si substrate, while on the

other part (gray) they were fabricated on the Al/AlOx gate. The numbers in bright

rectangles indicate the gate length in nm (the length of the gap between the source

and drain) at the location of the rectangles. The SEM images show the gap for some

of the selected locations on the wafer. All SEM images are in the same scale, which is

given in the bottom right image. Some distances on the wafer are also marked. The

gap size uniformity is better on SiO2/Si due to smaller surface roughness.
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Figure S11. Drain (blue) and gate (red) currents in the subthreshold regime of the

CVD MoS2 FET shown in Fig. 3 in the main text. Both up (solid line) and down

(dotted line) sweeps are shown (the sweep directions are also indicated by the arrows).

The same subthreshold swing Sth = 120 mV/dec was obtained both in the up and

down sweep. The drain current ID exhibits the obtained subthreshold swing in the

range from 2.4 · 10−5 to 4.5 · 10−4 A/m (down sweep) and from 6 · 10−6 to 10−4 A/m

(up sweep). At the same time, the gate current is almost constant (down sweep) or

exhibits ∼ 24 times smaller change at ∼ 480 mV/dec (up sweep). This indicates that

the gate leakage current does not have an influence on the subthreshold regime of the

FET. However, the drain current is almost constant for VGS < −1 V (down sweep)

due to the influence of the gate leakage current.
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Figure S12. Static voltage transfer characteristic of a 10-nm inverter in a depletion-

load technology on which the digital waveforms shown in Fig. 4(c) were measured.
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Figure S13. The extrinsic cutoff frequency fT of a 10-nm MoS2 FET as a function

of the ratio between the overlap length Lov and gate length L = 10 nm. The overlap

length is the length of the gate below one of the contacts (source or drain). The total

device capacitance is therefore C = CoxW (L+ 2Lov), where Cox = 1.4 µF/cm2 [3, 4].

This gives for the cutoff frequency fT = gm/(2πC) = (gm/W2πCoxL)/(1 + 2Lov/L).

For gm/W = 662 S/m (as in the main text) and L = 10 nm, this leads to

fT = 752 GHz/(1 + 2Lov/L), i.e., fT = 752 GHz for Lov = 0 nm (no overlap) and

3.7 GHz for realistic Lov = 1 µm. The reason for a large discrepancy between fT and

the clock rate of 2 kHz in Fig. 4(c) is due to different biasing. The cutoff frequency

is measured in a single transistor circuit in which an FET is biased to be as highly

conductive as possible (i.e., to operate at the highest possible drain current). However,

the load FET in the inverter in Fig. 4 has VGS = 0 V which cannot be changed due to

the circuit layout. As n-type MoS2 FETs do not conduct very well at VGS = 0 V, the

load FET behaves as a very large resistor which limits the bandwidth of the circuit.

It would be necessary to operate the load FET with VGS ∼ 2.5 V (as in Fig. 2(d)) to

get the high clock rate of the inverter.
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