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We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and
AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization.
The electrodynamic response of the BLG electron gas is described in terms of a spatially homogeneous surface
conductivity, and an efficient alternative two-dimensional electrostatic approach is employed to carry out all the
numerical calculations of plasmon resonances. Due to unique electronic band structures, the resonance frequency
of the traditional dipolar plasmonic mode in the AA-stacked BLG nanodisk is roughly doping independent in
the low-doping regime, while the mode is highly damped as the Fermi level approaches the interlayer hopping
energy γ associated with tunneling of electrons between the two layers. In addition to the traditional dipolar
mode, we find that the AB-stacked BLG nanodisk also hosts a new plasmonic mode with energy larger than γ .
This mode can be tuned by either the doping level or structural size, and, furthermore, this mode can dominate
the plasmonic response for realistic structural conditions.

DOI: 10.1103/PhysRevB.93.165407

I. INTRODUCTION

Graphene, a flat two-dimensional (2D) crystal, is made
of a single layer of carbon atoms arranged in a honeycomb
lattice with planar sp2 hybridized orbitals. The remaining
out-of-plane pz orbitals form delocalized π bands. Unlike
two-dimensional electron gases (2DEGs) in traditional semi-
conductors, the quasiparticles in graphene π bands act as
gapless Dirac fermions with high carrier mobility [1,2], leading
to a number of unique optical properties, such as a universal
2.3% linear light absorption in the visible regime [3]. In the
infrared regime, the optical properties of doped graphene
are largely determined by the collective excitations of π

electrons (plasmons), which exhibit distinct features in doped
graphene, including long propagation length, extreme mode
confinement, and field enhancement. In particular, plasmon
resonance frequencies are tunable through chemical doping or
electrostatic gating [4–8]. The so-called graphene plasmons
have already been demonstrated to facilitate quite diverse
light-matter interaction phenomena, such as modified emitter-
radiation dynamics [9], wave propagation [10], energy ab-
sorption [11,12], and possibly also plasmomechanics [13,14].
This opens up a new avenue towards future plasmonic
applications [15], and will stimulate a broad exploration of
plasmonics in 2D systems [16], in which bilayer graphene is
one exciting example [17–22].

Bilayer graphene (BLG) is composed of two layers of
graphene stacked under certain sequences, such as AA stacking
and AB stacking (see Fig. 1). The AA-stacked BLGs are
exactly aligned, and while some theoretical models predict
them to be structurally unstable due to shear layer shift [23],
they have recently nevertheless been produced from thermally
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treated graphite [24]. Because of the predicted instability, the
AA-stacked BLGs have been less intensively studied so far.
However, the AA-stacked BLGs are interesting in their own
right, for instance, being metallic even at zero doping with two
conducting bands crossing at zero energy [19,23]. Differing
from the AA-stacked BLGs, the AB-stacked BLGs can be
thought of as twisted bilayers with respect to AA-stacked
BLGs by rotating 60◦ with respect to the axis of sublattice AA
in each unit cell [25], or very straightforwardly, by shifting one
of the layers by a vector (

√
3,1)a/2, where a ≈ 0.14 nm is the

carbon-carbon bond length. The AB-stacked BLGs are most
commonly studied [26,27] and have potential applications in
electronic and optoelectronic devices owing to the tunability
of the band gap [22,28].

From the tight-binding point of view, the unique electronic
properties of BLGs are determined by the intralayer hopping
energy t and the interlayer hopping energy γ of pz orbitals [29].
Since the interlayer distance d ≈ 3.6 nm is 2.5 times larger
than the carbon-carbon bond length a, γ is naturally much
smaller than t . As such, the interlayer coupling is mainly
perturbing the Dirac dispersion properties associated with the
monolayer graphene (characterized by a fixed t), while the
interlayer coupling γ varies slightly for the different bilayers.
Usually γ is a little smaller in AA-stacked BLGs than in
AB-stacked BLGs, which is also one of the reasons why
AB-stacked BLGs are more stable. In the continuum limit
we consider the momentum in the vicinity of the K point
of the Brillouin zone (where the Dirac equation captures the
dynamics of the π electrons [1]), and the interlayer coupling
leads to four low energy electronic bands. As for monolayer
graphene, also here the energy levels and associated wave
functions form the starting point for calculations of optical
excitations based on linear response theory [30,31], from
which the macroscopic surface conductivity is derived—a
quantity that forms a starting point for subsequent explorations
of optical properties [19,32]. In this way, plasmons in mono-
layer graphene have been widely explored [7,8]. However,
plasmon phenomena in BLG nanostructures are still far to
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FIG. 1. Schematic diagrams for bilayer graphene disks, showing
both a side view (a) and a top view (b) with two typical stacking
sequences: exactly aligned (AA stacked) and relatively translated
(AB stacked).

be investigated. Clearly, ideal infinite BLG sheets are already
interesting [19,21,33], while finite and artificially structured
flakes constitute an unexplored territory.

In this paper we investigate the localized plasmon excita-
tions in AA-stacked BLG, AB-stacked BLG, and also double
monolayer graphene (MLG) nanodisks as a comparison.
We adopt here the double MLG being similar to BLG
shown in Fig. 1(a), but without tunneling between layers.
The light-matter interactions are treated at the macroscopic
level, where graphene is characterized by a homogeneous
surface conductivity. As is common practice [7,8], we em-
ploy the conductivities of infinite graphene sheets derived
from the framework of the random-phase approximation
(RPA) [30,31,34], where the quantum nature of electrons and
nonlocal effects in finite systems are ignored as we focus on
the structures with feature sizes of tens of nanometers [35–38].
Likewise, substrate phonons and nonlinear effects are ignored
as well [39,40]. In practice, the surface conductivities are
taken to be frequency-dependent functions, including the
contributions from both intraband and interband transitions,
and the temperature is set to zero. An efficient numerical
approach employing a two-dimensional finite-element method
was developed in our previous work [41], and here it is
employed with bilayer conductivity expressions to perform
all the calculations. We report both optical absorption spectra
of the three structures and the extracted band diagrams, which
illustrate the different plasmonic behaviors as a function of
Fermi levels. We also find that while plasmonic resonance
frequencies usually exhibit a simple square-root dependence,
the dispersion is more complicated in both AA-stacked and
AB-stacked BLG nanodisks. The complexity originates from
the existence of two further branches in the electronic band
structure, and thus more transition processes contribute to the
surface conductivities (see Fig. 2). We find that the AA-stacked
BLG nanodisks support localized plasmon excitations even

FIG. 2. Schematic electronic band structures ε(k) (left column)
and electronic density of states g(ε) (middle and right columns) of
AA-stacked, monolayer graphene, and AB-stacked bilayer graphene.
The arrows indicate possible and prohibited (dashed style arrow)
single-particle interband transitions (vertical transitions) as well as
intraband plasmonic excitations near the Fermi level εF .

at zero doping. The plasmonic frequency decreases when
the doping level increases up to γ , and the plasmons will
be damped out when exceeding γ . In the AB-stacked BLG
nanodisks, a new plasmon mode at higher frequency will
arise as the doping level exceeds γ . Quite interestingly, this
mode will dominate when the Fermi level exceeds 2γ . These
interesting phenomena have no counterparts in monolayers
and stem from the additional single-particle intraband and
interband transitions involving the two new branches in the
electronic band structure. Especially in AA-stacked BLGs,
interband transitions turn out to play an important role.

II. SURFACE CONDUCTIVITIES OF BLGs

The optical response of graphene is dominated by the
single-particle transitions among low energy bands (π and
π∗ bands), as indicated by the vertical arrows in Fig. 2. In AA-
stacked BLGs there are two Dirac cones crossing at ε = 0, each
being shifted up/down in energy by γ . As a consequence of the
symmetry requirement, the single-particle transitions between
different Dirac cones in AA-stacked BLGs are prohibited [19],
and thus the surface conductivity is composed from the
two independent cones. Thus, the surface conductivities of
AA-stacked BLGs remain relatively simple. For instance, if the
surface conductivities of MLGs are σ (ω,|εF |) as demonstrated
recently [30,31,42], then the surface conductivities of the
AA-stacked BLGs will be proportional to σ (ω,|εF + γ |) +
σ (ω,|εF − γ |). As an example, for AA-stacked bilayers the
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complex-valued conductivity is [43]

σAA(ω̃) = ie2

2π�

[ |εF + γ |
�ω̃

+ 1

4
ln

2|εF + γ | − �ω̃

2|εF + γ | + �ω̃

]

+ ie2

2π�

[ |εF − γ |
�ω̃

+ 1

4
ln

2|εF − γ | − �ω̃

2|εF − γ | + �ω̃

]
, (1)

where ω̃ = ω + iτ−1 is the complex frequency including an
imaginary part associated with a phenomenological relaxation
time τ . The first term in the brackets is the intraband Drude
term, while the second term accounts for the interband
transitions. In passing, we note a quite interesting observation
for the Drude model with σ (ω,|εF |): If |εF | < γ , then the
surface conductivity of the AA-stacked case in Fig. 2 does not
depend on the particular εF . Including interband transitions as
discussed below, we return to a doping-dependent expression
and as a result both the resonance frequency and the resonance
linewidth depend on doping.

The surface conductivity of AB-stacked BLGs can be
derived by using a similar approach as employed for MLGs,
but additional single-particle transitions should be included in
the calculations. For simplicity, the infrared active phonon at
0.2 eV, intensively studied by Low et al. [21], is not included in
our studies. Figure 2 illustrates additional allowed transitions
between the different band branches. We notice that there
are two branches touching at the charge-neutrality point, so
that there are no free carriers that can contribute to intraband
plasmon excitations. Furthermore, the dispersion relations
deviate from the linear relationship commonly associated with
graphene. This is due to the small, yet finite, probability
for interlayer tunneling of electrons. The band gap between
the two positive energy branches is γ . Thus if |εF | > γ ,
the upper branch will offer new intraband transitions (see the
lower, rightmost panel in Fig. 2), leading to a new intraband
plasmon mode at higher energy. The surface conductivity of
the AB-stacked BLGs should include these new intraband
transitions, and fortunately their analytical expressions have
already been obtained [17,32,44]. Here, we reproduce the
expressions given by Eqs. (4)–(6) in Ref. [33],

Im[σAB(ω)]

= e2

2π�
{f (�ω,2εF ) + g(�ω,εF ,γ ) + h+(�ω,εF ,γ )

+	(γ − εF )[f (�ω,2γ ) + f (�ω,γ )(γ /�ω)2

+ g(�ω,γ,−γ ) + (γ /�ω)] + 	(εF − γ )[f (�ω,2εF )

+ f (�ω,2εF − γ ) + g(�ω,εF ,−γ ) + h−(�ω,εF ,γ )]},
(2)

where 	(· · · ) is the Heaviside function, while the other
dimensionless functions are given by

f (x,y) = 1

2
ln

∣∣∣∣x − y

x + y

∣∣∣∣,

g(x,y,z) = z

2(x2 − z2)

[
x ln

|x2 − 4y2|
|2y + z|2 + z ln

∣∣∣∣x + 2y

x − 2y

∣∣∣∣
]
,

h±(x,y,z) = 2y ± z

x
+ xz

x2 − z2
ln

2y ± z

z
.

Although this expression appears complex, numerical imple-
mentations are straightforward, and the corresponding real part
of the conductivity Re[σAB(ω)] can be obtained through the
Kramers-Kronig relation.

III. NUMERICAL METHOD

Using the surface conductivities of BLGs, we now calculate
the localized plasmon resonances associated with finite BLG
flakes. In MLG structures, it has been common practice to
model the 2D graphene sheet as a very thin three-dimensional
(3D) film with the artificial thickness tg associated with the ef-
fective bulk permittivity through ε(ω) = ε0 + iσ (ω)/ωtg [45].
While this approach is intuitive for implementation in existing
3D electrodynamics solvers, it requires tremendous compu-
tational resources in terms of memory and time. However,
such an approach would numerically become even more
challenging in BLGs because the artificial thickness tg should
be chosen to be much smaller than the layer separation of
0.36 nm. Instead, we follow our previous work [41], where
all evaluations are restricted to the conducting plane (assumed
infinitely thin), where the potential φ(r) and the charge density
ρ(r) are related by

φ(r) = φext(r) + 1

4πεs

∫
2D

d r ′ ρ(r ′)
|r − r ′| , (3a)

ρ(r) = iσ (ω)

ω
∇2

2Dφ(r). (3b)

Equations (3a) and (3b) are self-consistent equations,
where

∫
2D and ∇2

2D are two-dimensional integral and Laplace
operators, respectively, εs denotes the average dielectric
constant of the surrounding medium, and φext(r) is the external
potential. Setting φext(r) = 0, Eqs. (3a) and (3b) can be
cast into an eigenvalue problem, and the eigenvalues and
eigenvectors obtained represent the frequencies and induced
charge densities of the plasmonic eigenmodes [41]. There are
some obvious advantages of such a method. First, all modes
are obtained at once. Furthermore, the calculation provides
us with both bright and dark modes. In this paper, we focus
on dipolar plasmonic modes, by investigating the absorption
spectra under a plane-wave illumination. The BLG nanodisks
lie in the xy plane at z = 0, and the plane wave Eexte

ik0z−iωt x̂

is incident normally, where k0 = ω/c, the wave vector in
vacuum. Based on Eqs. (3a) and (3b), one can calculate
the induced charge density ρ(r) for the external excitations
φext(r) = −xEext (please refer to Ref. [41] for more details of
the numerical procedure), and then the dipole polarizabilities
α(ω) = ∫

2D xρ(r)d r/Eext. The normalized absorption coeffi-
cient is given by

σabs = k0

ε0S
Im{α(ω)}, (4)

which is the absorption cross section normalized by the surface
area S. For simplicity, but without loss of generality, we
choose εs = ε0 (structures embedded in vacuum) and for the
relaxation loss we use �τ−1 = 6 meV throughout this work.
In order to enable faster convergence of the calculations, the
triangular meshes in both layers have been made to be exactly
identical. Technically, we create triangular meshes in one layer
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FIG. 3. Absorption spectra for varying Fermi levels for (a) double MLG nanodisks, (b) AA-stacked BLG nanodisks, and (c) AB-stacked
BLG nanodisks. The inset in (b) shows the magnification of absorption for zero doping (black line), and εF = 0.1 and 0.2 eV. The disk radius
is R = 50 nm and the relaxation loss is �τ−1 = 6 meV.

and then copy all the meshes to the second layer. Due to the
symmetry, a high accuracy can be achieved using a relatively
lower mesh density, for example, 3000 triangles in each layer
for disks of radius R = 50 nm.

IV. RESULTS AND DISCUSSIONS

In Fig. 3, we show the absorption coefficient σabs for
nanodisks with stacking of the three kinds considered in
Fig. 2. In double MLG nanodisks, the plasmonic frequency
increases gradually as we increase the Fermi levels. Because
of a very tiny separation between layers, there are very strong
electromagnetic interactions despite no electronic coupling. A
clear evidence is the plasmonic frequency shift relative to MLG
nanodisks. Taking a Fermi level εF = 0.5 eV and R = 50 nm
as an example, the dipolar plasmonic mode ωp = 0.173 eV
in MLG nanodisks and ωp = 0.241 eV in double MLG
nanodisks. While we focus our attention on bright plasmonic
modes, we note that for dark plasmonic modes (dipoles in
the two layers aligned antiparallel) can be easily be studied
using the same plasmonic eigenmode approach [41]. As has
been pointed out previously [46], the interband transitions will
decrease the plasmonic frequency ωp, and the contribution
from interband transitions will be larger for a larger ωp at a
given Fermi level. Thus, in double MLGs the deviation from
the square root is more apparent.

Another very interesting phenomenon is the variation of
plasmonic frequency in AA-stacked BLG nanodisks. It can
be seen in Fig. 3(b) that there is a well-defined plasmonic
peak even when εF = 0 and that it almost coincides with the
plasmonic peak when the doping is changed to εF = 0.1 eV
(see the blue line). This is a unique property of AA-stacked
BLGs, while both double MLGs and AB-stacked BLGs do not
host plasmonic resonances at zero doping. Moreover, while
the doping level is relatively small, for instance, much smaller
than γ = 0.4 eV, the plasmonic frequency hardly changes
with doping. At small doping levels, the intraband transitions
dominate and as a result the surface conductivity exhibits a
Drude-like behavior. In numerical calculations, we show this
behavior persists until εF � 0.1 eV. As discussed above, the
larger plasmonic frequency will also lead to a larger interband
contribution, so it is clear that this behavior will eventually
break down as we turn to smaller nanodisks. By increasing
the doping levels beyond 0.1 eV, the plasmonic mode will

exhibit a distinct frequency redshift along with a broadening
of the peak. In Fig. 2, it is indicated that due to different band
fillings, the two Dirac cones will not contribute equally to the
interband transitions, and when the Fermi level approaches the
Dirac point of the upper cone, the upper cone plays a major
role. Thereby, both the frequency shift and peak broadening are
determined by the upper cone. Especially when εF = γ , the
upper cone will only have interband transitions, which leads
to very large damping in the plasmonic resonances. However,
based on this point of view, it is difficult to understand the
different dampings at εF = 0.3 eV and εF = 0.5 eV since
they are completely symmetrical relative to the Dirac point.
Again, this originates from the larger plasmonic frequency
at εF = 0.5 eV. By increasing the doping level further, the
plasmonic frequency increases gradually, which is similar to
that observed in double MLG nanodisks.

In AB-stacked BLG nanodisks, there are no free carriers to
support a plasmonic resonance in the absence of doping. With
a finite doping, a pronounced plasmonic peak shows up and,
similar to the case for double MLG nanodisks, its frequency
increases with the increasing of the Fermi level. However,
different from double MLG and AA-stacked BLG nanodisks,
an extra plasmonic mode appears at a higher energy, typically
when its frequency ωp > γ . Turning to Fig. 2, the upper-
branch plasmonic mode in AB-stacked structures (lower,
rightmost panel) arises from the intraband transitions involving
the highest branch in the electronic band structure. In Fig. 3(c),
we notice that at a low Fermi level (εF < γ = 0.4 eV),
the traditional dipole resonance dominates in the absorption
spectra. However, the intensity of the upper-branch mode
increases dramatically at higher Fermi levels (εF > γ ). In our
calculations shown in Fig. 3(c), the onset of the upper-branch
plasmon mode is clearly seen in the εF = 0.5 eV curve (shown
in magenta), where the resonance appears at a photon energy
of �ω � 270 meV. The strength of the upper-branch plasmon
mode is comparable to the intensity of the traditional one when
εF > γ , and the strength can even be larger when increasing
the doping to εF = 0.7 and 0.8 eV. In fact, the frequency can
be elevated further, for example, by applying a bias voltage to
open a gap at ε = 0. In addition to modulating the Fermi levels
and band structures, there is also the possibility for geometrical
size tuning of the resonance. While it is a commonly used
method to shift spectra, we note that it can also alter the
superposition of eigenstates to the excited. We will discuss this
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in more detail below. The peculiar property of the upper-branch
mode could be used to extend the plasmonic frequency region
in graphene-based plasmonic devices.

As discussed above, plasmonic frequencies in graphene
nanostructures depend on the structural size, and this holds
even within the electrostatic approximation, which is different
from the physics of dipole resonances in three-dimensional
metal particles [47]. In metals, the electrostatic approximation
will lead to a constant plasmonic frequency for the same
geometrical structure, but with different sizes. However, in
graphene, plasmonic frequencies show a typical dependence
on the size, ωp ∝

√
R−1, which can be easily explored in

nanodisks [48]. In two-dimensional disks, the whispering-
gallery modes traveling along the perimeter follow a simple
relationship

nλp = 2πR, n = 1,2,3, . . . , (5)

where n is the number of standing waves and λp is the
plasmonic wavelength. While there might be additional phase
shifts contributing to the round-trip phase of the whispering-
gallery modes, we have for simplicity neglected such effects.
For the anomalous reflection phase occurring at the graphene
edges we refer to Ref. [49]. From this equation, we see that
the wave vector is kp = 2πλ−1

p = nR−1, where n = 1 for
the dipolar plasmonic mode. Thus, one can reconstruct the
dispersion band diagram using, e.g., resonance energies for
the dipolar plasmonic mode in differently sized disks (for use
in analyzing experiments, see, e.g., Ref. [39]). In practice,
we calculate a set of absorption coefficients for the nanodisks
with varying radius, and then organize all the data to create an
absorption-intensity color map.

Figure 4 illustrates the plasmonic dispersion band diagrams.
One can see that the plasmonic mode in double MLG
nanodisks is always well defined in the calculated regime,
but by increasing the wave vector (corresponding to reduce the
radius), the intensity decreases slightly. However, the behavior
is qualitatively different in AA-stacked BLG nanodisks. As the
wave vector gets larger than 0.2 × 108 m−1 (equivalent to the
radius being smaller than 50 nm), the plasmonic mode is nearly
damped out. The difference here can be understood in the
following way. The interband transitions result in plasmonic
damping, and the quantity depends on the ratio between the
plasmonic frequency ωp and twice the Fermi energy 2εF . In
double MLG nanodisks, the ratio increases with increasing the
wave vector and is roughly up to 2/3 at kp = 0.6 × 108 m−1.
In AA-stacked BLG nanodisks when εF = 0.3 eV, the upper
Dirac cone (see Fig. 2) will have an effective Fermi level
|γ − εF | = 0.1 eV, and thereby the ratio could be larger
than 1, where the damping from interband transitions is
strong enough to disrupt the coherence of the collective
excitations. This is the mechanism where the plasmons fade
out when kp > 0.2 × 10−8 m−1. The damping mechanism in
AB-stacked BLG nanodisks is quite different. When εF < γ ,
it is easy to find that (see Fig. 2) there is a new damping
path from the interband transition between the two upper band
branches. The strength of this damping is determined by a
new ratio ωp/γ , and it dominates when γ < 2εF . This can be
used to explain the larger loss in AB-stacked BLG nanodisks
than in double MLG nanodisks at εF = 0.3 eV. Apart from

FIG. 4. The extracted plasmonic dispersion band diagrams at
εF = 0.3 eV of (a) double MLG nanodisks, (b) AA-stacked BLG
nanodisks, (c) AB-stacked nanodisks, and (d) AB-stacked nanodisks
for εF = 0.5 eV.

the damping route, there is a new plasmonic dispersion band
above the energy γ [see Fig. 4(c)], but it is too weak. To
make use of this new mode, one needs to enhance the strength
of its resonance. As discussed above, increasing the doping
level is a possible way, where this mode will dominate when
εF � 0.8 eV. This doping level probably is too high to be
reached. As we know, the intraband transitions are required
for the collective plasmonic excitations. Thus it is very natural
to aim for a Fermi energy εF > γ , where the upper branch in
the band structure is populated. As shown in Fig. 4(d) at an
experimentally accessible Fermi energy εF = 0.5 eV, the new
upper-branch plasmonic mode can be enhanced by reducing
the radius of the nanodisks. In reality, one should balance the
two aspects to optimize the performance.

To conclude, we have studied the plasmonic properties in
AA-stacked BLG nanodisks and AB-stacked BLG nanodisks.
We have found that their plasmonic excitations show qualita-
tively different behavior. In AA-stacked BLG nanodisks, there
is a well-defined plasmonic resonance even without doping,
and the plasmonic frequency does not change at small doping
levels. However, as the doping approaches the energy γ , there
is a very strong damping through interband transitions. This
effect would be much stronger at smaller nanodisks where
the plasmonic frequency is quite large. In AB-stacked BLG
nanodisks, a new plasmonic mode will emerge at an energy
larger than γ , and the strength of the mode can be tuned by
either the doping level or the structural size. Comparing to
the traditional plasmonic mode, this mode can dominate the
absorption spectrum when increasing the doping level and
shrinking the structural size. Here, we focused on single disks,
but graphene dimers [41,50,51] naturally constitute another
interesting direction for bilayer graphene plasmonics.
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(2011).
[34] G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).
[35] N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I.

Bozhevolnyi, Nat. Commun. 5, 3809 (2014).
[36] A. Manjavacas and F. J. Garcı́a de Abajo, Nat. Commun. 5, 3548

(2014).
[37] S. Thongrattanasiri, A. Manjavacas, and F. J. Garcı́a de Abajo,

ACS Nano 6, 1766 (2012).
[38] T. Christensen, W. Wang, A.-P. Jauho, M. Wubs, and N. A.

Mortensen, Phys. Rev. B 90, 241414(R) (2014).
[39] X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G.

Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, Nano Lett. 14,
2907 (2014).

[40] T. Christensen, W. Yan, A.-P. Jauho, M. Wubs, and N. A.
Mortensen, Phys. Rev. B 92, 121407 (2015).

[41] W. Wang, T. Christensen, A.-P. Jauho, K. S. Thygesen, M. Wubs,
and N. A. Mortensen, Sci. Rep. 5, 9535 (2015).

[42] M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435
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