Skip to main content

Advertisement

Log in

Impact of TiO2 Nanoparticles on Seed Germination and Growth of Nonabokra Rice, Mortality of Bean Weevil, and Antibacterial and Cytotoxic Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanotechnology has become a newly diversified field due to its potential uses in healthcare, the environment, and agriculture. In this article, we have reported the impacts of shape, size, and phase of three types of TiO2 nanoparticles (anatase, aeroxide p25, and degussa p25) on the germination and seedling growth of Nonabokra rice (Oryza sativa L.) plants, the mortality rate of Callosobruchus chinensis, antimicrobial effectiveness, and cytotoxicity test on brine shrimp (Artemia salina). Phase identification and crystallographic parameters of these TiO2 nanoparticles were evaluated from X-ray diffraction (XRD) patterns. Anatase, aeroxide p25, and degussa p25 TiO2 have crystallite sizes calculated using the Debye-Scherrer formula that are 49.26, 21.11, and 21.01 nm, respectively. Lattice strain and dislocation density are inversely linked to crystallite size. The spherical and agglomeration nanoparticle form morphologies of the corresponding pure and mixed phases of TiO2 were confirmed using field emission scanning electron microscopy (FE-SEM). The impact of TiO2 on germination rates and seedling growth was investigated on Nonabokra rice. The smaller sized (21 nm) agglomerated (aeroxide p25 and degussa p25) TiO2 nanoparticles exhibited better germination rates, reaching almost on average 91.93% of aeroxide p25 TiO2 and 88.32% of degussa p25 in comparison to the large-sized (49.26 nm) spherical anatase TiO2 nanoparticles (germination rate on average 86.76%). According to this study, the aeroxide p25 TiO2 has a greater positive impact on rice seedling growth than its counterpart materials. The maximum fresh weight (FW) and dry weight (DW) of seedlings observed for aeroxide p25 TiO2 were 166.97 and 27.50 g, respectively. Aeroxide p25 TiO2 nanoparticles had a substantial impact on the mortality rate of Callosobruchus chinensis, resulting in 100% death after 14 days of treatment and indicating a potential use for this nanostructured material in the control of insect pests. The antibacterial effectiveness of these three types of TiO2 was investigated against two Gram-positive: S. aureus and E. faecalis and two Gram-negative: E. coli and P. aeruginosa bacteria and observations indicated that TiO2 has no antibacterial capabilities; hence, it cannot prevent bacterial growth. In a cytotoxicity test on brine shrimp, the mixed phase of TiO2 (aeroxide p25) was found to be less toxic than anatase TiO2. We found that TiO2 nanoparticles have a considerable favorable influence on the environment, playing a vital role in getting improved growth effects on rice seedlings and suppressing a major insect pest of pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bai, J., Zhong, X., Jiang, S., Huang, Y., & Duan, X. (2010). Graphene nanomesh. Nature Nanotechnology, 5, 190–194. https://doi.org/10.1038/nnano.2010.8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, E. C., & Wang, A. Z. (2014). Targeted nanoparticles and their applications in biology. Library, 6, 576. https://doi.org/10.1039/c3ib40165k.NANOPARTICLES

    Article  Google Scholar 

  3. Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A., & Kotov, N. A. (2007). Ultrastrong and stiff layered polymer nanocomposites. Science, 318, 80–83. https://doi.org/10.1126/science.1143176

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Vasquez, Y., Henkes, A. E., Chris Bauer, J., & Schaak, R. E. (2008). Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. Journal of Solid State Chemistry, 181, 1509–1523. https://doi.org/10.1016/j.jssc.2008.04.007

    Article  ADS  CAS  Google Scholar 

  5. Mehta, R. J., Zhang, Y., Karthik, C., Singh, B., Siegel, R. W., Borca-Tasciuc, T., & Ramanath, G. (2012). A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Materials, 11, 233–240. https://doi.org/10.1038/nmat3213

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Baughman, R. H., Zakhidov, A. A., & De Heer, W. A. (2002). Carbon nanotubes - The route toward applications. Science, 297, 787–792. https://doi.org/10.1126/science.1060928

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Rizzello, L., & Pompa, P. P. (2014). Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 43, 1501–1518. https://doi.org/10.1039/c3cs60218d

    Article  CAS  PubMed  Google Scholar 

  8. Lang, X., Hirata, A., Fujita, T., & Chen, M. (2011). Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 6, 232–236. https://doi.org/10.1038/nnano.2011.13

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yang, K., & Ma, Y. Q. (2010). Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology, 5, 579–583. https://doi.org/10.1038/nnano.2010.141

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251. https://doi.org/10.1016/j.watres.2009.08.051

    Article  CAS  PubMed  Google Scholar 

  11. Ljubimova, J. Y., & Holler, E. (2012). Biocompatible nanopolymers: The next generation of breast cancer treatment? Nanomedicine, 7, 1467–1470. https://doi.org/10.2217/nnm.12.115

    Article  CAS  PubMed  Google Scholar 

  12. Klančnik, K., Drobne, D., Valant, J., & Dolenc Koce, J. (2011). Use of a modified Allium test with nanoTiO2. Ecotoxicology and Environmental Safety, 74, 85–92. https://doi.org/10.1016/j.ecoenv.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  13. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5–22. https://doi.org/10.1016/j.envpol.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  14. Xing, B., Vecitis, C. D., & Senesi, N. (2016). Engineered nanoparticles and the environment: Biophysicochemical processes and toxicity, Eng. Nanoparticles Environ. Biophys. Process. Toxic (pp. 1–484). https://doi.org/10.1002/9781119275855

    Book  Google Scholar 

  15. Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., de la Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: A review for the biennium 2008-2010. Journal of Hazardous Materials, 186, 1–15. https://doi.org/10.1016/j.jhazmat.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  16. Grieger, K. D., Baun, A., & Owen, R. (2010). Redefining risk research priorities for nanomaterials. Journal of Nanoparticle Research, 12, 383–392. https://doi.org/10.1007/s11051-009-9829-1

    Article  ADS  PubMed  Google Scholar 

  17. Ghoto, K., Simon, M., Shen, Z.-J., Gao, G.-F., Li, P.-F., Li, H., & Zheng, H.-L. (2020). Physiological and root exudation response of maize seedlings to TiO2 and SiO2 nanoparticles exposure. Bionanoscience, 10, 473–485. https://doi.org/10.1007/s12668-020-00724-2

    Article  Google Scholar 

  18. Sazonov, R., Pershina, A., Brikunova, O., Kholodnaya, G., Ponomarev, D., & Zhirkov, I. (2021). Study of the influence of morphology, chemical and phase compositions of zinc oxide-containing silicon and titanium oxide nanomaterials on cytotoxic activity. Bionanoscience, 11, 539–548. https://doi.org/10.1007/s12668-021-00858-x

    Article  Google Scholar 

  19. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75, 850–857. https://doi.org/10.1016/j.chemosphere.2009.01.078

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ruddiman, W. F., Guo, Z., Zhou, X., Wu, H., & Yu, Y. (2008). Early rice farming and anomalous methane trends. Quaternary Science Reviews, 27, 1291–1295. https://doi.org/10.1016/j.quascirev.2008.03.007

    Article  ADS  Google Scholar 

  21. Wang, Y., Deng, C., Rawat, S., Cota-Ruiz, K., Medina-Velo, I., & Gardea-Torresdey, J. L. (2021). Evaluation of the effects of nanomaterials on rice (Oryza sativa L.) responses: Underlining the benefits of nanotechnology for agricultural applications. ACS Agricultural Science & Technology, 1, 44–54. https://doi.org/10.1021/acsagscitech.1c00030

    Article  CAS  Google Scholar 

  22. Deng, C., Wang, Y., Cota-Ruiz, K., Reyes, A., Sun, Y., Peralta-Videa, J., Hernandez-Viezcas, J. A., Turley, R. S., Niu, G., Li, C., & Gardea-Torresdey, J. (2020). Bok choy (Brassica rapa) grown in copper oxide nanoparticles-amended soils exhibits toxicity in a phenotype-dependent manner: Translocation, biodistribution and nutritional disturbance. Journal of Hazardous Materials, 398, 122978. https://doi.org/10.1016/j.jhazmat.2020.122978

    Article  CAS  PubMed  Google Scholar 

  23. Tan, W., Gao, Q., Deng, C., Wang, Y., Lee, W. Y., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Foliar Exposure of Cu(OH)2 Nanopesticide to basil (Ocimum basilicum): Variety-dependent copper translocation and biochemical responses. Journal of Agricultural and Food Chemistry, 66, 3358–3366. https://doi.org/10.1021/acs.jafc.8b00339

    Article  CAS  PubMed  Google Scholar 

  24. Szymańska, R., Kołodziej, K., Ślesak, I., Zimak-Piekarczyk, P., Orzechowska, A., Gabruk, M., Zadło, A., Habina, I., Knap, W., Burda, K., & Kruk, J. (2016). Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environmental Pollution, 213, 957–965. https://doi.org/10.1016/j.envpol.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  25. Lyu, S., Wei, X., Chen, J., Wang, C., Wang, X., & Pan, D. (2017). Titanium as a beneficial element for crop production, Front. Plant Science, 8, 1–19. https://doi.org/10.3389/fpls.2017.00597

    Article  Google Scholar 

  26. Andersen, C. P., King, G., Plocher, M., Storm, M., Pokhrel, L. R., Johnson, M. G., & Rygiewicz, P. T. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry, 35, 2223–2229. https://doi.org/10.1002/etc.3374

    Article  CAS  PubMed  Google Scholar 

  27. Rossi, L., Zhang, W., Lombardini, L., & Ma, X. (2016). The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution, 219, 28–36. https://doi.org/10.1016/j.envpol.2016.09.060

    Article  CAS  PubMed  Google Scholar 

  28. V. Saharan, R. V Kumaraswamy, R.C. Choudhary, S. Kumari, A. Pal, R. Raliya, P. Biswas, Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food, (2016). https://doi.org/10.1021/acs.jafc.6b02239.

  29. Matranga, V., & Corsi, I. (2012). Toxic effects of engineered nanoparticles in the marine environment: Model organisms and molecular approaches. Marine Environmental Research, 76, 32–40. https://doi.org/10.1016/j.marenvres.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  30. Tripathi, D. K., Tripathi, A., Shweta, S., Singh, Y., Singh, K., Vishwakarma, G., Yadav, S., Sharma, V. K., Singh, R. K., Mishra, R. G., Upadhyay, N. K., Dubey, Y., & Lee, D. K. C. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Frontiers in Microbiology, 8, 1–16. https://doi.org/10.3389/fmicb.2017.00007

    Article  CAS  Google Scholar 

  31. Reddy, P. V. L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Lessons learned: Are engineered nanomaterials toxic to terrestrial plants? Science of the Total Environment, 568, 470–479. https://doi.org/10.1016/j.scitotenv.2016.06.042

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43, 9473–9479. https://doi.org/10.1021/es901695c

    Article  ADS  CAS  Google Scholar 

  33. Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value, Front. Plant Science, 7, 1–11. https://doi.org/10.3389/fpls.2016.00090

    Article  Google Scholar 

  34. Majumdar, S., Almeida, I. C., Arigi, E. A., Choi, H., VerBerkmoes, N. C., Trujillo-Reyes, J., Flores-Margez, J. P., White, J. C., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): A proteomic analysis. Environmental Science & Technology, 49, 13283–13293. https://doi.org/10.1021/acs.est.5b03452

    Article  ADS  CAS  Google Scholar 

  35. Tripathi, D. K., Mishra, R. K., Singh, S., Singh, S., Vishwakarma, K., Sharma, S., Singh, V. P., Singh, P. K., Prasad, S. M., Dubey, N. K., Pandey, A. C., Sahi, S., & Chauhan, D. K. (2017). Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: Implication of the ascorbate–glutathione cycle. Frontiers in Plant Science, 8, 1–10. https://doi.org/10.3389/fpls.2017.00001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Handy, R. D., & Shaw, B. J. (2007). Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk & Society, 9, 125–144. https://doi.org/10.1080/13698570701306807

    Article  Google Scholar 

  37. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42, 5580–5585. https://doi.org/10.1021/es800422x

    Article  ADS  CAS  Google Scholar 

  38. Tang, Y. J., Wu, S. G., Huang, L., Head, J., Chen, D., & Kong, I. C. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum & Environmental Biotechnology, 03. https://doi.org/10.4172/2157-7463.1000126

  39. Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93, 906–915. https://doi.org/10.1016/j.chemosphere.2013.05.044

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14. https://doi.org/10.1007/s11051-012-1125-9

  41. Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83–91. https://doi.org/10.1385/bter:104:1:083

    Article  CAS  PubMed  Google Scholar 

  42. Nizamani, B., Agha, M. A., Ali, Q., Hussain, A., Manghwar, H., Kamran, M., Keerio, A. A., Solangi, Z. A., Lashari, M. A., & Soomro, D. M. (2020). Influence of indigenous plant materials on reproductive performance of Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) on chickpea. International Journal of Tropical Insect Science, 40, 1003–1011. https://doi.org/10.1007/s42690-020-00158-z

    Article  Google Scholar 

  43. Bulmer, M. S., Bachelet, I., Raman, R., Rosengaus, R. B., & Sasisekharan, R. (2009). Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proceedings of the National Academy of Sciences of the United States of America, 106, 12652–12657. https://doi.org/10.1073/pnas.0904063106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Ditta, A. (2012). How helpful is nanotechnology in agriculture? Advances in Natural Sciences: Nanoscience and Nanotechnology, 3. https://doi.org/10.1088/2043-6262/3/3/033002

  45. Yadav, S. K. (2010). Pesticide applications-threat to ecosystems. Journal of Human Ecology, 32, 37–45. https://doi.org/10.1080/09709274.2010.11906319

    Article  Google Scholar 

  46. Report from the Commission to the European Parliament and the Council: Evaluation of Regulation (EC) No 1107/2009 on the placing of plant protection products on the market and of Regulation (EC) No 396/2005 on maximum residue levels of pesticides, SWD. (2020). 1-166. https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl8ti11ho7zj

  47. Gurr, J. R., Wang, A. S. S., Chen, C. H., & Jan, K. Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66–73. https://doi.org/10.1016/j.tox.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharya, K., Cramer, H., Albrecht, C., Schins, R., Rahman, Q., Zimmermann, U., & Dopp, E. (2008). Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells. Journal of Toxicology and Environmental Health, Part A , Current Issues, 71, 976–980. https://doi.org/10.1080/15287390801989218

    Article  CAS  Google Scholar 

  49. Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S., & Dhawan, A. (2011). ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicology in Vitro, 25, 231–241. https://doi.org/10.1016/j.tiv.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  50. Singh, G., Joyce, E. M., Beddow, J., & Mason, T. J. (2012). Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. Journal of Microbiology, Biotechnology and Food Sciences, 2, 106–120 http://www.jmbfs.org/wp-content/uploads/2012/07/jmbfs-0117-singh.pdf

    CAS  Google Scholar 

  51. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71, 1308–1316. https://doi.org/10.1016/j.chemosphere.2007.11.047

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Holt, K. B., & Bard, A. J. (2005). Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag. Biochemistry, 44, 13214–13223. https://doi.org/10.1021/bi0508542

    Article  CAS  PubMed  Google Scholar 

  53. Ma, W., Li, J., Liu, Y., Ren, X., Gu, Z. G., Xie, Z., & Liang, J. (2016). Preparation and characterization of excellent antibacterial TiO2/N-halamines nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 284–290. https://doi.org/10.1016/j.colsurfa.2016.06.055

    Article  CAS  Google Scholar 

  54. Markov, S. L., & Vidaković, A. M. (2014). Testing methods for antimicrobial activity of TiO2 photocatalyst. Acta Periodica Technologica, 45, 141–152. https://doi.org/10.2298/APT1445141M

    Article  Google Scholar 

  55. Rajh, T., Dimitrijevic, N. M., Bissonnette, M., Koritarov, T., & Konda, V. (2014). Titanium dioxide in the service of the biomedical revolution. Chemical Reviews, 114, 10177–10216. https://doi.org/10.1021/cr500029g

    Article  CAS  PubMed  Google Scholar 

  56. Kędziora, A., Speruda, M., Krzyżewska, E., Rybka, J., Łukowiak, A., & Bugla-Płoskońska, G. (2018). Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. International Journal of Molecular Sciences, 19. https://doi.org/10.3390/ijms19020444

  57. Kaladhar Reddy, A., Kambalyal, P. B., Shanmugasundaram, K., Rajesh, V., Donthula, S., & Patil, S. R. (2018). Comparative evaluation of antimicrobial efficacy of silver, titanium dioxide and zinc oxide nanoparticles against streptococcus mutans. Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 18, 1–8. https://doi.org/10.4034/PBOCI.2018.181.88

    Article  Google Scholar 

  58. Fatima Urmi, K., Mostafa, S., Begum, G., & Hamid, K. (2013). Comparative brine shrimp lethality bioassay of different plant parts of Bauhinia purpurea L. Journal of Pharmaceutical Sciences and Research, 5, 190–192.

    Google Scholar 

  59. Muhammad, W., Ullah, N., Khans, M., Ahmad, W., Khan, M. Q., & Abbasi, B. H. (2019). Why Brine shrimp (Artemia salina) larvae is used as a screening system for nanomaterials? The science of procedure and nano-toxicology: A review. International Journal of Biosciences, 14, 156–176.

    CAS  Google Scholar 

  60. Chellappa, M., Anjaneyulu, U., Manivasagam, G., & Vijayalakshmi, U. (2015). Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method. International Journal of Nanomedicine, 10, 31–41. https://doi.org/10.2147/IJN.S79978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Supraja, N., Prasad, T. N. V. K. V., Gandhi, A. D., Anbumani, D., Kavitha, P., & Babujanarthanam, R. (2018). Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochemistry and Biophysics Reports, 14, 69–77. https://doi.org/10.1016/j.bbrep.2018.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  62. Murashige, T., Skoog, F., & Murashige. (1962). Revised.Pdf. Physiologia Plantarum, 15(1962), 474–497.

    Google Scholar 

  63. Subramanyam, B., & Roesli, R. (2000). Inert dusts. In Alternatives to Pesticides in Stored-Product IPM (pp. 321–380). https://doi.org/10.1007/978-1-4615-4353-4_12

    Chapter  Google Scholar 

  64. Uma, M., & Sharma, S. N. (1997). Genetics of yield determining factors in spring wheat over environments. Indian Journal of Genetics and Plant Breeding, 57, 235–237.

    Google Scholar 

  65. Adoum, O. A. (2016). Screening of medicinal plants native to Kano and Jigawa States of Northern Nigeria, using Artemia Cysts (Brine Shrimp Test). American Journal of Pharmacological Sciences, 4, 7–10. https://doi.org/10.12691/ajps-4-1-2

    Article  Google Scholar 

  66. Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45, 31–34. https://doi.org/10.1055/s-2007-971236

    Article  CAS  PubMed  Google Scholar 

  67. Tetteh, E. K., Rathilal, S., & Naidoo, D. B. (2020). Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology. Scientific Reports, 10, 8850. https://doi.org/10.1038/s41598-020-65480-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sen, S. K., Paul, T. C., Dutta, S., Hossain, M. N., & Mia, M. N. H. (2020). XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. Journal of Materials Science: Materials in Electronics, 31, 1768–1786. https://doi.org/10.1007/s10854-019-02694-y

    Article  CAS  Google Scholar 

  69. Chithambararaj, A., Winston, B., Sanjini, N. S., Velmathi, S., & Bose, A. C. (2015). Band gap tuning of h -MoO3 nanocrystals for efficient visible light photocatalytic activity against methylene blue dye. Journal of Nanoscience and Nanotechnology, 15, 4913–4919. https://doi.org/10.1166/jnn.2015.9846

    Article  CAS  PubMed  Google Scholar 

  70. Sen, S. K., Noor, M., Al Mamun, M. A., Manir, M. S., Matin, M. A., Hakim, M. A., Nur, S., & Dutta, S. (2019). An investigation of 60Co gamma radiation-induced effects on the properties of nanostructured α-MoO3 for the application in optoelectronic and photonic devices. Optical and Quantum Electronics, 51, 82. https://doi.org/10.1007/s11082-019-1797-9

    Article  CAS  Google Scholar 

  71. Nefzi, C., Beji, N., Souli, M., Mejri, A., Alleg, S., & Kamoun-Turki, N. (2019). Effect of gamma-irradiation on optical, structural and electrical properties of In2O3: F thin films for photocatalysis application. Optics and Laser Technology, 112, 85–92. https://doi.org/10.1016/j.optlastec.2018.11.010

    Article  ADS  CAS  Google Scholar 

  72. Hossain, M. K., Mortuza, A. A., Sen, S. K., Basher, M. K., Ashraf, M. W., Tayyaba, S., Mia, M. N. H., & Uddin, M. J. (2018). A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik, 171, 507–516. https://doi.org/10.1016/j.ijleo.2018.05.032

    Article  ADS  CAS  Google Scholar 

  73. Feizi, H., Kamali, M., Jafari, L., & Rezvani Moghaddam, P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 91, 506–511. https://doi.org/10.1016/j.chemosphere.2012.12.012

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Monica, R. C., & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62, 161–165. https://doi.org/10.1080/00087114.2004.10589681

    Article  Google Scholar 

  75. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70. https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  76. Dehkourdi, E. H., & Mosavi, M. (2013). Effect of anatase nanoparticles (TiO2) on parsley seed germination (petroselinum crispum) in vitro. Biological Trace Element Research, 155, 283–286. https://doi.org/10.1007/s12011-013-9788-3

    Article  CAS  PubMed  Google Scholar 

  77. Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81, 1253–1262. https://doi.org/10.1016/j.chemosphere.2010.09.022

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Stadler, T., Buteler, M., & Weaver, D. K. (2010). Novel use of nanostructured alumina as an insecticide. Pest Management Science, 66, 577–579. https://doi.org/10.1002/ps.1915

    Article  CAS  PubMed  Google Scholar 

  79. Araj, S. E. A., Salem, N. M., Ghabeish, I. H., & Awwad, A. M. (2015). Toxicity of nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/758132

  80. Goussain, M. M., Moraes, J. C., Carvalho, J. G., Nogueira, N. L., & Rossi, M. L. (2002). Effect of silicon application on corn plants upon the biological development of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology, 31, 305–310.

    Article  CAS  Google Scholar 

  81. Al-Barty, A., & Hamba, R. (2015). Larvicidal, antioxidant activities and perturbation of transminases activities of titanium dioxine nanoparticles synthesized using Moringa oleifera leaves extracts against the Red palm weevil (Rhynchophorus ferrugineus). European Journal of Pharmaceutical and Medical Research, 2, 49–54.

    Google Scholar 

  82. Jovanović, B., Cvetković, V. J., & Mitrović, T. L. (2016). Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere, 144, 43–49. https://doi.org/10.1016/j.chemosphere.2015.08.054

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Memarizadeh, N., Ghadamyari, M., Adeli, M., & Talebi, K. (2014). Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicology and Environmental Safety, 107, 77–83. https://doi.org/10.1016/j.ecoenv.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  84. Shaker, A. M., Zaki, A. H., Abdel-Rahim, E. F. M., & Khedr, M. H. (2017). TiO2 nanoparticles as an effective nanopesticide for cotton leaf worm. Agricultural Engineering International: CIGR Journal, 2017, 61–68.

    Google Scholar 

  85. Siddiqi, K. S., ur Rahman, A., Tajuddin, N., & Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13. https://doi.org/10.1186/s11671-018-2532-3

  86. Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028. https://doi.org/10.1021/la104825u

    Article  CAS  PubMed  Google Scholar 

  87. Krishnamoorthy, K., Premanathan, M., Veerapandian, M., & Jae Kim, S. (2014). Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria. Nanotechnology, 25, 315101. https://doi.org/10.1088/0957-4484/25/31/315101

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Azam, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 3527. https://doi.org/10.2147/IJN.S29020

  89. Martínez-Castañón, G. A., Niño-Martínez, N., Martínez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 1343–1348. https://doi.org/10.1007/s11051-008-9428-6

    Article  ADS  CAS  Google Scholar 

  90. Li, H., Cui, Q., Feng, B., Wang, J., Lu, X., & Weng, J. (2013). Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition. Applied Surface Science, 284, 179–183. https://doi.org/10.1016/j.apsusc.2013.07.076

    Article  ADS  CAS  Google Scholar 

  91. Nguyen, V. T., Vu, V. T., Nguyen, T. H., Nguyen, T. A., Tran, V. K., & Nguyen-Tri, P. (2019). Antibacterial activity of TiO2-and zno-decorated with silver nanoparticles. Journal of Composites Science, 3. https://doi.org/10.3390/jcs3020061

  92. Roy, A. S., Parveen, A., Koppalkar, A. R., & Prasad, M. V. N. A. (2010). Effect of nano - titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus Aureus. Journal of Biomaterials and Nanobiotechnology, 01, 37–41. https://doi.org/10.4236/jbnb.2010.11005

    Article  CAS  Google Scholar 

  93. Mu, L., Rutkowski, S., Si, T., Gai, M., Wang, J., Tverdokhlebov, S. I., & Frueh, J. (2021). A reduction of settlement probability of Chlorella vulgaris on photo-chemically active ceramics with hierarchical nano-structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125898. https://doi.org/10.1016/j.colsurfa.2020.125898

    Article  CAS  Google Scholar 

  94. Li, Z., Shen, J., Wang, J. Q., Wang, D., Huang, Y., & Zou, J. (2012). Single crystal titanate-zirconate nanoleaf: Synthesis, growth mechanism and enhanced photocatalytic hydrogen evolution properties. CrystEngComm, 14, 1874–1880. https://doi.org/10.1039/c1ce06088k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Takasaki Advanced Radiation Research Institute, QST, Takasaki, Japan for supporting in the utilization of field emission scanning electron microscopy (FE-SEM) analysis.

Author information

Authors and Affiliations

Authors

Contributions

P. D.: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing — original draft, writing — review and editing, resources, visualization; S. K. S.: conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing — original draft, writing — review and editing, resources, visualization; supervision, project administration; Md. S. I.: resources, investigation, data curation, writing — review and editing; A. A. M.: writing — review and editing, software; M. S. M.: resources, investigation, data curation; Md. L. H.: resources, investigation, data curation, writing — review and editing; N. S. and Md. T. A.: resources, investigation, data curation, writing — review and editing; M. R. H.: data curation; ATM F. I.: resources, investigation; ANK M.: resources, investigation; M. A. H.: resources, investigation.

Corresponding author

Correspondence to Sapan Kumar Sen.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Funding

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Sen, S.K., Manir, M.S. et al. Impact of TiO2 Nanoparticles on Seed Germination and Growth of Nonabokra Rice, Mortality of Bean Weevil, and Antibacterial and Cytotoxic Activity. BioNanoSci. 14, 102–118 (2024). https://doi.org/10.1007/s12668-023-01273-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01273-0

Keywords

Navigation