Skip to main content

Advertisement

Log in

Two-Dimensional Mesoporous Materials for Energy Storage and Conversion: Current Status, Chemical Synthesis and Challenging Perspectives

  • Review Article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) mesoporous materials (2DMMs), defined as 2D nanosheets with randomly dispersed or orderly aligned mesopores of 2–50 nm, can synergistically combine the fascinating merits of 2D materials and mesoporous materials, while overcoming their intrinsic shortcomings, e.g., easy self-stacking of 2D materials and long ion transport paths in bulk mesoporous materials. These unique features enable fast ion diffusion, large specific surface area, and enriched adsorption/reaction sites, thus offering a promising solution for designing high-performance electrode/catalyst materials for next-generation energy storage and conversion devices (ESCDs). Herein, we review recent advances of state-of-the-art 2DMMs for high-efficiency ESCDs, focusing on two different configurations of in-plane mesoporous nanosheets and sandwich-like mesoporous heterostructures. Firstly, a brief introduction is given to highlighting the structural advantages (e.g., tailored chemical composition, sheet configuration, and mesopore geometry) and key roles (e.g., active materials and functional additives) of 2DMMs for high-performance ESCDs. Secondly, the chemical synthesis strategies of 2DMMs are summarized, including template-free, 2D-template, mesopore-template, and 2D mesopore dual-template methods. Thirdly, the wide applications of 2DMMs in advanced supercapacitors, rechargeable batteries, and electrocatalysis are discussed, enlightening their intrinsic structure–property relationships. Finally, the future challenges and perspectives of 2DMMs in energy-related fields are presented.

Graphical Abstract

In this review, the recent advances of 2DMMs (including in-plane mesoporous nanosheets and sandwich-like mesoporous heterostructures) for energy storage and conversion are systematically summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [49]. Copyright © 2015, American Chemical Society. c SEM image, and d TEM image of UM-LTONS under a calcination temperature of 600 °C. Reproduced with permission from Ref. [50]. Copyright © 2019, The Royal Society of Chemistry. e Scheme for the fabrication, f SEM image, g TEM image, and h photocatalysis mechanism of porous few-layered C3N4. Reproduced with permission from Ref. [51]. Copyright © 2019, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [39]. Copyright © 2016, The Royal Society of Chemistry. e Scheme for the formation, f TEM image, and g HRTEM image of p-MXene flakes. Reproduced with permission from Ref. [54]. Copyright © 2016, Wiley–VCH

Fig. 4

Reproduced with permission from Ref. [41]. Copyright © 2017, Springer Nature. d Scheme for the fabrication, e TEM image, and f HRTEM image of m-MnO2 nanosheets. Reproduced with permission from Ref. [60]. Copyright © 2019, Elsevier

Fig. 5

Reproduced with permission from Ref. [63]. Copyright © 2014, Wiley–VCH. d Schematic diagram of the fabrication of M-CMPs-T nanosheets, and e pore size distributions of M-CMPs-T nanosheets with different precursors and a pyrolysis temperature of 800 °C. Reproduced with permission from Ref. [64]. Copyright © 2016, Wiley–VCH

Fig. 6

Reproduced with permission from Ref. [70]. Copyright © 2010, Springer Nature. e Schematic diagram of the formation process, f SEM image, and g TEM image of single-layered mesoporous TiO2 nanosheets. Reproduced with permission from Ref. [42]. Copyright © 2018, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [56]. Copyright 2016, Wiley–VCH. d Schematic illustration of the fabrication procedures of SOMMs. Reproduced with permission from Ref. [43]. Copyright © 2020, Wiley–VCH

Fig. 8

Reproduced with permission from Ref. [75]. Copyright © 2015, Wiley–VCH. b Schematic diagram of the formation process for 2D mesoporous heterostructured materials, c, d SEM images of MXene@F127/MF nanosheets, and e, f TEM images of MXene@C nanosheets. Reproduced with permission from Ref. [45]. Copyright © 2020, Wiley–VCH

Fig. 9

Reproduced with permission from Ref. [100]. Copyright © 2014, Springer Nature. d Specific capacitance comparisons, and e schematic diagram showing the ion diffusion pathway for HGP and non-holey GP based EDLCs. Reproduced with permission from Ref. [101]. Copyright © 2015, American Chemical Society. f CV curves of OMC/GA-2 obtained at varying scan rates, g specific capacitance versus current density for different samples in a 6 M (1 M = 1 mol L−1) KOH electrolyte with a three-electrode system, h CV curves obtained at 100 mV s−1, and i capacitance comparisons for EDLCs based on OMC/GAs, OMC and GA. Reproduced with permission from Ref. [75]. Copyright © 2015, Wiley–VCH

Fig. 10

Reproduced with permission from Ref. [83]. Copyright © 2013, Elsevier. d SEM image of mPANI/MoS2-1, e SEM image of mPANI/MoS2-3, and f specific capacitance comparisons for various mPANI/MoS2, pure PANI and MoS2 samples. Reproduced with permission from Ref. [90]. Copyright © 2017, American Chemical Society. g Diagram of an mPPy-Fe2O3@rGO nanosheet, h GCD profiles for mPPy-Fe2O3@rGO-1 with smaller mesopores, and i specific capacitance comparisons for mPPy-Fe2O3@rGO with varying mesopore sizes, PPy-Fe2O3@rGO, and PPy@rGO. Reproduced with permission from Ref. [105]. Copyright © 2018, Wiley–VCH

Fig. 11

Reproduced with permission from Ref. [116]. Copyright © 2018, Wiley–VCH. e Schematic diagram of lithographical microfabrication of interdigital microelectrodes, f cross-sectional SEM image of a microelectrode film, g areal and volumetric capacitance as a function of scan rate, and h Ragone plot of volumetric power density and energy density for PANI-G based MSCs. Reproduced with permission from Ref. [119]. Copyright © 2017, Wiley–VCH. i Photograph of a microelectrode under bending state, and j GCD profiles at 0.3 mA cm−2 for four serially connected linear tandem MSCs. Reproduced with permission from Ref. [125]. Copyright © 2017, Wiley–VCH. k Scheme of DM-PG nanosheets for a planar MSC-sensor integrated system, l Ragone plot of DM-PG based MSC, and m NH3 response curves of a MSC-driven sensor at 10–40 ppm (1 ppm = 1 mL m−3). Reproduced with permission from Ref. [130]. Copyright © 2020, Wiley–VCH

Fig. 12

Reproduced with permission from Ref. [41]. Copyright © 2017, Springer Nature. d Sketch model of mFeP-NM, e GCD profiles of mFeP-NM at varying current densities, and f cycling stability at 200 mA g−1 for mFeP-NM and a blank sample. Reproduced with permission from Ref. [58]. Copyright © 2020, Wiley–VCH. g Rate capability of 2D mesoporous-carbon/MoS2 heterostructures and pure MoS2 nanosheets. Reproduced with permission from Ref. [89]. Copyright © 2016, Wiley–VCH. h Cycle life at 200 mA g−1, and i rate capacity at different current densities for C/Si–rGO–Si/C and Si@C–rGO–Si@C electrodes. Reproduced with permission from Ref. [138]. Copyright © 2017, American Chemical Society

Fig. 13

Reproduced with permission from Ref. [79]. Copyright © 2016, Wiley–VCH. d Diagram of TiO2@NFG HPHNSs, e long-term cycling stability of TiO2@NFG HPHNSs and m-TiO2 (synthesized in air) electrodes at 2 C, and f rate capability comparisons of TiO2@NFG HPHNSs and other reported TiO2-based electrodes. Reproduced with permission from Ref. [61]. Copyright © 2018, Wiley–VCH. g Separation of the capacitive and diffusion currents, h contribution ratio of the capacitive and diffusion-controlled charge under different scan rates, and i mechanism model of charge storage and charge transfer in the meso-hetero. Reproduced with permission from Ref. [91]. Copyright © 2019, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [151]. Copyright © 2020, American Chemical Society. c Illustration showing the Li-ion redistribution in holey metal oxide nanosheets for a Li metal anode, and d long-term cycling stability of symmetrical cells with holey MgO-protected Li and bare Li electrodes. Reproduced with permission from Ref. [155]. Copyright © 2020, Wiley–VCH. e Structure and composition of MXene-mSiO2 containing a solid polymer electrolyte, f digital picture of MXene-mSiO2 containing a solid polymer electrolyte, and g cycling stability for full cells with MXene-mSiO2 containing electrolyte, mSiO2 containing electrolyte and an ePPO solid polymer electrolyte. Reproduced with permission from Ref. [88]. Copyright © 2020, Wiley–VCH

Fig. 15

Reproduced with permission from Ref. [156]. Copyright © 2021, Springer Nature

Fig. 16

Reproduced with permission from Ref. [165]. Copyright © 2020, Royal Society of Chemistry. e Schematic illustration of the synthesis route for mNC-Mo2C@rGO nanosheets, f polarization curves, and g Tafel slopes of Pt/C and mNC-Mo2C@rGO with different Mo2C contents. Reproduced with permission from Ref. [168]. Copyright © 2018, American Chemical Society

Fig. 17

Reproduced with permission from Ref. [64]. Copyright © 2016, Wiley–VCH. c STEM image of rGO@PN/C-2 nanosheets, and d linear sweep voltammetry (LSV) curves of rGO@PN/C-x, rGO@N/C, and Pt/C catalysts at 1 600 rpm (1 rpm = 1 r min−1). Reproduced with permission from Ref. [172]. Copyright © 2020, American Chemical Society. e Diagram of a NDCN nanosheet, f TEM image of an NDCN-22 nanosheet, g enlarged TEM image of the square region in (f), and h LSV curves of NDCN-22, NDCN-7, NDCN-2 and NDCN nanosheets at 1 600 rpm. Reproduced with permission from Ref. [85]. Copyright © 2014, Wiley–VCH. i TEM image of mNC-Fe3O4@rGO-1; j LSV curves, k Tafel plots, and l stability comparison of mNC-Fe3O4@rGO and commercial Pt/C catalysts [the inset of (l): the chronoamperometric responses with the introduction of 2% methanol at 300 s]. Reproduced with permission from Ref. [105]. Copyright © 2018, Wiley–VCH

Fig. 18

Reproduced with permission from Ref. [71]. Copyright © 2020, Elsevier. d Sketch of 2D D-RuO2/G heterostructures, and overpotential comparisons at 10 mA cm−2 for 2D D-RuO2/G and other reported excellent OER catalysts in e acidic and f alkaline electrolytes. Reproduced with permission from Ref. [175]. Copyright © 2020, Elsevier. g TEM image of CoCo-LDH nanomesh (the inset: the pore size distribution), h polarization curves, and i overpotentials at 10 mA cm−2 for CoCo-LDH nanomesh and counterparts. Reproduced with permission from Ref. [73]. Copyright © 2019, Wiley–VCH

Fig. 19

Reproduced with permission from Ref. [181]. Copyright © 2017, Wiley–VCH. d TEM image of as-mSnO2 NTs, e LSV curves, and f Faradaic efficiencies of HCOOH for mSnO2 NTs-350, as-mSnO2 NPs and as-mSnO2 NTs catalysts. Reproduced with permission from Ref. [59]. Copyright © 2020, Wiley–VCH. g Polarization curves, h Faradaic efficiencies of HCOO, H2, and CO for mpBi nanosheets and commercial Bi nanopowders in N2- or CO2-saturated 0.5 M NaHCO3, and i voltage change during a 3 h solar-driven CO2RR/OER electrolysis (the inset: schematic diagram of the solar-driven full-cell electrolysis). Reproduced with permission from Ref. [184]. Copyright © 2018, Wiley–VCH

Fig. 20

Similar content being viewed by others

References

  1. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Mahlia, T.M.I., Saktisahdan, T.J., Jannifar, A., et al.: A review of available methods and development on energy storage; technology update. Renew. Sustain. Energy Rev. 33, 532–545 (2014). https://doi.org/10.1016/j.rser.2014.01.068

    Article  Google Scholar 

  3. Aricò, A.S., Bruce, P., Scrosati, B., et al.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). https://doi.org/10.1038/nmat1368

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Sutherland, B.R.: Charging up stationary energy storage. Joule 3, 1–3 (2019). https://doi.org/10.1016/j.joule.2018.12.022

    Article  Google Scholar 

  5. Wang, G.P., Zhang, L., Zhang, J.J.: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J.H., Li, F., Zhu, F., et al.: Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3, 1800367 (2018). https://doi.org/10.1002/smtd.201800367

  7. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Wang, Y.R., Chen, R.P., Chen, T., et al.: Emerging non-lithium ion batteries. Energy Storage Mater. 4, 103–129 (2016). https://doi.org/10.1016/j.ensm.2016.04.001

    Article  ADS  Google Scholar 

  9. Zhang, Y.K., Lin, Y.X., Duan, T., et al.: Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater. Today 48, 115–134 (2021). https://doi.org/10.1016/j.mattod.2021.02.004

    Article  CAS  Google Scholar 

  10. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010). https://doi.org/10.1021/cr900070d

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, Y.W., Murali, S., Cai, W.W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  13. ten Elshof, J.E., Yuan, H.Y., Gonzalez Rodriguez, P.: Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage. Adv. Energy Mater. 6, 1600355 (2016). https://doi.org/10.1002/aenm.201600355

    Article  CAS  Google Scholar 

  14. Xiao, X., Song, H.B., Lin, S.Z., et al.: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016). https://doi.org/10.1038/ncomms11296

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Manzeli, S., Ovchinnikov, D., Pasquier, D., et al.: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33

    Article  CAS  ADS  Google Scholar 

  16. Lukatskaya, M.R., Mashtalir, O., Ren, C.E., et al.: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Ghidiu, M., Lukatskaya, M.R., Zhao, M.Q., et al.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  ADS  Google Scholar 

  19. Batmunkh, M., Bat-Erdene, M., Shapter, J.G.: Phosphorene and phosphorene-based materials: prospects for future applications. Adv. Mater. 28, 8586–8617 (2016). https://doi.org/10.1002/adma.201602254

    Article  CAS  PubMed  Google Scholar 

  20. Pang, J.B., Bachmatiuk, A., Yin, Y., et al.: Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv. Energy Mater. 8, 1702093 (2018). https://doi.org/10.1002/aenm.201702093

    Article  CAS  Google Scholar 

  21. Nakhanivej, P., Yu, X., Park, S.K., et al.: Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 18, 156–162 (2019). https://doi.org/10.1038/s41563-018-0230-2

    Article  CAS  PubMed  Google Scholar 

  22. Pakdel, A., Bando, Y., Golberg, D.: Nano boron nitride flatland. Chem. Soc. Rev. 43, 934–959 (2014). https://doi.org/10.1039/c3cs60260e

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J., Tan, B.Y., Zhang, X., et al.: Atomically thin hexagonal boron nitride and its heterostructures. Adv. Mater. 33, 2000769 (2021). https://doi.org/10.1002/adma.202000769

    Article  CAS  Google Scholar 

  24. Xiong, M.Y., Rong, Q.M., Meng, H.M., et al.: Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosens. Bioelectron. 89, 212–223 (2017). https://doi.org/10.1016/j.bios.2016.03.043

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y.H., Liu, L.Z., Ma, T.Y., et al.: 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 31, 2102540 (2021). https://doi.org/10.1002/adfm.202102540

    Article  CAS  Google Scholar 

  26. Zhang, H.: Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X.Y., Hou, L.L., Ciesielski, A., et al.: 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6, 1600671 (2016). https://doi.org/10.1002/aenm.201600671

    Article  CAS  Google Scholar 

  28. Zhang, H., Cheng, H.M., Ye, P.D.: 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47, 6009–6012 (2018). https://doi.org/10.1039/c8cs90084a

    Article  CAS  PubMed  Google Scholar 

  29. Tan, C.L., Cao, X.H., Wu, X.J., et al.: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  PubMed  Google Scholar 

  30. Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016). https://doi.org/10.1038/natrevmats.2016.23

    Article  CAS  ADS  Google Scholar 

  31. Zou, Y.D., Zhou, X.R., Ma, J.H., et al.: Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem. Soc. Rev. 49, 1173–1208 (2020). https://doi.org/10.1039/c9cs00334g

    Article  CAS  PubMed  Google Scholar 

  32. Zu, L.H., Zhang, W., Qu, L.B., et al.: Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 10, 2002152 (2020). https://doi.org/10.1002/aenm.202002152

    Article  CAS  Google Scholar 

  33. Ai, Y., Li, W., Zhao, D.Y.: 2D mesoporous materials. Natl. Sci. Rev. 9, nwab108 (2022). https://doi.org/10.1093/nsr/nwab108

  34. Huang, H.B., Shi, H.D., Das, P., et al.: The chemistry and promising applications of graphene and porous graphene materials. Adv. Funct. Mater. 30, 1909035 (2020). https://doi.org/10.1002/adfm.201909035

    Article  CAS  Google Scholar 

  35. Han, S., Wu, D.Q., Li, S., et al.: Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 26, 849–864 (2014). https://doi.org/10.1002/adma.201303115

    Article  CAS  PubMed  Google Scholar 

  36. Bu, F.X., Zagho, M.M., Ibrahim, Y., et al.: Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2020). https://doi.org/10.1016/j.nantod.2019.100803

    Article  CAS  Google Scholar 

  37. He, Y.F., Zhuang, X.D., Lei, C.J., et al.: Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today 24, 103–119 (2019). https://doi.org/10.1016/j.nantod.2018.12.004

    Article  CAS  Google Scholar 

  38. Fang, Y., Lv, Y.Y., Che, R.C., et al.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135, 1524–1530 (2013). https://doi.org/10.1021/ja310849c

    Article  CAS  PubMed  Google Scholar 

  39. Kim, H.-K., Bak, S.-M., Lee, S.W., et al.: Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy Environ. Sci. 9, 1270–1281 (2016). https://doi.org/10.1039/C5EE03580E

    Article  CAS  Google Scholar 

  40. Xi, X., Wu, D.Q., Han, L., et al.: Highly uniform carbon sheets with orientation-adjustable ordered mesopores. ACS Nano 12, 5436–5444 (2018). https://doi.org/10.1021/acsnano.8b00576

    Article  CAS  PubMed  Google Scholar 

  41. Peng, L.L., Xiong, P., Ma, L., et al.: Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 8, 15139 (2017). https://doi.org/10.1038/ncomms15139

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  42. Lan, K., Liu, Y., Zhang, W., et al.: Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140, 4135–4143 (2018). https://doi.org/10.1021/jacs.8b00909

    Article  CAS  PubMed  Google Scholar 

  43. Liu, L.L., Yang, X.Y., Xie, Y.J., et al.: A universal lab-on-salt-particle approach to 2D single-layer ordered mesoporous materials. Adv. Mater. 32, 1906653 (2020). https://doi.org/10.1002/adma.201906653

    Article  CAS  Google Scholar 

  44. Das, P., Fu, Q., Bao, X.H., et al.: Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. J. Mater. Chem. A 6, 21747–21784 (2018). https://doi.org/10.1039/c8ta04618b

    Article  CAS  Google Scholar 

  45. Wang, J., Chang, Z., Ding, B., et al.: Universal access to two-dimensional mesoporous heterostructures by micelle-directed interfacial assembly. Angew. Chem. Int. Ed. 59, 19570–19575 (2020). https://doi.org/10.1002/anie.202007063

    Article  CAS  Google Scholar 

  46. Yang, S.B., Feng, X.L., Wang, L., et al.: Graphene-based nanosheets with a sandwich structure. Angew. Chem. 122, 4905–4909 (2010). https://doi.org/10.1002/ange.201001634

    Article  ADS  Google Scholar 

  47. Yang, S.B., Feng, X.L., Wang, X.C., et al.: Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 50, 5339–5343 (2011). https://doi.org/10.1002/anie.201100170

    Article  CAS  Google Scholar 

  48. Huang, L., Hu, Z.M., Jin, H.R., et al.: Salt-assisted synthesis of 2D materials. Adv. Funct. Mater. 30, 1908486 (2020). https://doi.org/10.1002/adfm.201908486

    Article  CAS  Google Scholar 

  49. Fuertes, A.B., Sevilla, M.: Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4344–4353 (2015). https://doi.org/10.1021/am508794f

    Article  CAS  PubMed  Google Scholar 

  50. Wang, D.D., Shan, Z.Q., Tian, J.H., et al.: Understanding the formation of ultrathin mesoporous Li4Ti5O12 nanosheets and their application in high-rate, long-life lithium-ion anodes. Nanoscale 11, 520–531 (2019). https://doi.org/10.1039/c8nr07249c

    Article  CAS  PubMed  Google Scholar 

  51. Xiao, Y.T., Tian, G.H., Li, W., et al.: Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 141, 2508–2515 (2019). https://doi.org/10.1021/jacs.8b12428

    Article  CAS  PubMed  Google Scholar 

  52. Tao, Y., Sui, Z.Y., Han, B.H.: Advanced porous graphene materials: from in-plane pore generation to energy storage applications. J. Mater. Chem. A 8, 6125–6143 (2020). https://doi.org/10.1039/d0ta00154f

    Article  CAS  Google Scholar 

  53. Zheng, X.Y., Luo, J.Y., Lv, W., et al.: Two-dimensional porous carbon: synthesis and ion-transport properties. Adv. Mater. 27, 5388–5395 (2015). https://doi.org/10.1002/adma.201501452

    Article  CAS  PubMed  Google Scholar 

  54. Ren, C.E., Zhao, M.Q., Makaryan, T., et al.: Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3, 689–693 (2016). https://doi.org/10.1002/celc.201600059

    Article  CAS  Google Scholar 

  55. AbdelHamid, A.A., Yu, Y., Yang, J.H., et al.: Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29, 1701427 (2017). https://doi.org/10.1002/adma.201701427

    Article  CAS  Google Scholar 

  56. Liu, S.H., Wang, F.X., Dong, R.H., et al.: Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size. Adv. Mater. 28, 8365–8370 (2016). https://doi.org/10.1002/adma.201603036

    Article  CAS  PubMed  Google Scholar 

  57. Liu, S.H., Zhang, J., Dong, R.H., et al.: Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Ed. 55, 12516–12521 (2016). https://doi.org/10.1002/anie.201606988

    Article  CAS  Google Scholar 

  58. Ai, Y., Han, Z.L., Jiang, X.L., et al.: General construction of 2D ordered mesoporous iron-based metal-organic nanomeshes. Small 16, 2002701 (2020). https://doi.org/10.1002/smll.202002701

    Article  CAS  Google Scholar 

  59. Wei, F.C., Wang, T.T., Jiang, X.L., et al.: Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv. Funct. Mater. 30, 2002092 (2020). https://doi.org/10.1002/adfm.202002092

    Article  CAS  Google Scholar 

  60. Qin, J.Q., Wang, S., Zhou, F., et al.: 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. Energy Storage Mater. 18, 397–404 (2019). https://doi.org/10.1016/j.ensm.2018.12.022

    Article  Google Scholar 

  61. Li, B.S., Xi, B.J., Feng, Z.Y., et al.: Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 30, 1705788 (2018). https://doi.org/10.1002/adma.201705788

    Article  CAS  Google Scholar 

  62. Fan, Z.J., Liu, Y., Yan, J., et al.: Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2, 419–424 (2012). https://doi.org/10.1002/aenm.201100654

    Article  CAS  Google Scholar 

  63. Zhuang, X.D., Zhang, F., Wu, D.Q., et al.: Graphene coupled Schiff-base porous polymers: towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Adv. Mater. 26, 3081–3086 (2014). https://doi.org/10.1002/adma.201305040

    Article  CAS  PubMed  Google Scholar 

  64. Yuan, K., Zhuang, X.D., Fu, H.Y., et al.: Two-dimensional core-shelled porous hybrids as highly efficient catalysts for the oxygen reduction reaction. Angew. Chem. 128, 6972–6977 (2016). https://doi.org/10.1002/ange.201600850

    Article  ADS  Google Scholar 

  65. Wang, Q., Yan, J., Fan, Z.J.: Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors. Electrochim. Acta 146, 548–555 (2014). https://doi.org/10.1016/j.electacta.2014.09.036

    Article  CAS  Google Scholar 

  66. Wei, J., Hu, Y.X., Liang, Y., et al.: Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25, 5768–5777 (2015). https://doi.org/10.1002/adfm.201502311

    Article  CAS  Google Scholar 

  67. Wu, Z., Zhang, X.B.: N,O-codoped porous carbon nanosheets for capacitors with ultra-high capacitance. Sci. China Mater. 59, 547–557 (2016). https://doi.org/10.1007/s40843-016-5067-4

    Article  CAS  Google Scholar 

  68. Liang, Y.R., Xiong, X., Xu, Z.J., et al.: Ultrathin 2D mesoporous TiO2/rGO heterostructure for high-performance lithium storage. Small 16, 2000030 (2020). https://doi.org/10.1002/smll.202000030

    Article  CAS  Google Scholar 

  69. Tong, Z.Q., Liu, S.K., Zhou, Y., et al.: Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 (2018). https://doi.org/10.1016/j.ensm.2017.12.005

    Article  Google Scholar 

  70. Bai, J.W., Zhong, X., Jiang, S., et al.: Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010). https://doi.org/10.1038/nnano.2010.8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Jiang, B., Guo, Y.N., Kim, J., et al.: Mesoporous metallic iridium nanosheets. J. Am. Chem. Soc. 140, 12434–12441 (2018). https://doi.org/10.1021/jacs.8b05206

    Article  CAS  PubMed  Google Scholar 

  72. Jiang, B., Kim, J., Guo, Y.N., et al.: Efficient oxygen evolution on mesoporous IrOx nanosheets. Catal. Sci. Technol. 9, 3697–3702 (2019). https://doi.org/10.1039/c9cy00302a

    Article  CAS  Google Scholar 

  73. Qin, M.L., Li, S.M., Zhao, Y.Z., et al.: Unprecedented synthesis of holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution. Adv. Energy Mater. 9, 1803060 (2019). https://doi.org/10.1002/aenm.201803060

    Article  CAS  Google Scholar 

  74. Li, Y.Q., Liu, Y.W., Li, J., et al.: A centimeter scale self-standing two-dimensional ultra-thin mesoporous platinum nanosheet. Mater. Horiz. 7, 489–494 (2020). https://doi.org/10.1039/c9mh01142k

    Article  CAS  Google Scholar 

  75. Liu, R.L., Wan, L., Liu, S.Q., et al.: An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. Adv. Funct. Mater. 25, 526–533 (2015). https://doi.org/10.1002/adfm.201403280

    Article  CAS  Google Scholar 

  76. Yang, S.B., Feng, X.L., Müllen, K.: Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 23, 3575–3579 (2011). https://doi.org/10.1002/adma.201101599

    Article  CAS  PubMed  Google Scholar 

  77. Lan, K., Xia, Y., Wang, R.C., et al.: Confined interfacial monomicelle assembly for precisely controlled coating of single-layered titania mesopores. Matter 1, 527–538 (2019). https://doi.org/10.1016/j.matt.2019.03.003

    Article  ADS  Google Scholar 

  78. Yang, S., Yue, W.B., Zhu, J., et al.: Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 23, 3570–3576 (2013). https://doi.org/10.1002/adfm.201203286

    Article  CAS  Google Scholar 

  79. Wang, L., Bi, X.F., Yang, S.B.: Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 28, 7672–7679 (2016). https://doi.org/10.1002/adma.201601723

    Article  CAS  PubMed  Google Scholar 

  80. Liu, S.H., Gordiichuk, P., Wu, Z.S., et al.: Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 6, 8817 (2015). https://doi.org/10.1038/ncomms9817

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Tian, H., Qin, J.Q., Hou, D., et al.: General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene. Angew. Chem. 131, 10279–10284 (2019). https://doi.org/10.1002/ange.201903684

    Article  ADS  Google Scholar 

  82. Shi, H.D., Qin, J.Q., Huang, K., et al.: A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 132, 12245–12251 (2020). https://doi.org/10.1002/ange.202004284

    Article  ADS  Google Scholar 

  83. Wang, Q., Yan, J., Fan, Z.J., et al.: Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors. J. Power Sources 247, 197–203 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.076

    Article  CAS  ADS  Google Scholar 

  84. Liu, Z.Y., Liu, S.H., Dong, R.H., et al.: High power in-plane micro-supercapacitors based on mesoporous polyaniline patterned graphene. Small 13, 1603388 (2017). https://doi.org/10.1002/smll.201603388

    Article  CAS  Google Scholar 

  85. Wei, W., Liang, H.W., Parvez, K., et al.: Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 1570–1574 (2014). https://doi.org/10.1002/anie.201307319

    Article  CAS  Google Scholar 

  86. Wang, N., Tian, H., Zhu, S.Y., et al.: Two-dimensional nitrogen-doped mesoporous carbon/graphene nanocomposites from the self-assembly of block copolymer micelles in solution. Chin. J. Polym. Sci. 36, 266–272 (2018). https://doi.org/10.1007/s10118-018-2091-1

    Article  CAS  Google Scholar 

  87. Zhang, L.L., Wang, T., Gao, T.N., et al.: Multistage self-assembly strategy: designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance. CCS Chem. 3, 870–881 (2021). https://doi.org/10.31635/ccschem.020.202000233

  88. Shi, Y.Z., Li, B., Zhu, Q., et al.: MXene-based mesoporous nanosheets toward superior lithium ion conductors. Adv. Energy Mater. 10, 1903534 (2020). https://doi.org/10.1002/aenm.201903534

    Article  CAS  Google Scholar 

  89. Fang, Y., Lv, Y.Y., Gong, F., et al.: Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv. Mater. 28, 9385–9390 (2016). https://doi.org/10.1002/adma.201602210

    Article  CAS  PubMed  Google Scholar 

  90. Tian, H., Zhu, S.Y., Xu, F.G., et al.: Growth of 2D mesoporous polyaniline with controlled pore structures on ultrathin MoS2 nanosheets by block copolymer self-assembly in solution. ACS Appl. Mater. Interfaces 9, 43975–43982 (2017). https://doi.org/10.1021/acsami.7b13666

    Article  CAS  PubMed  Google Scholar 

  91. Lan, K., Wei, Q.L., Wang, R.C., et al.: Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly. J. Am. Chem. Soc. 141, 16755–16762 (2019). https://doi.org/10.1021/jacs.9b06962

    Article  CAS  PubMed  Google Scholar 

  92. Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  ADS  Google Scholar 

  93. Xiao, Z.B., Li, Z.L., Meng, X.P., et al.: MXene-engineered lithium–sulfur batteries. J. Mater. Chem. A 7, 22730–22743 (2019). https://doi.org/10.1039/c9ta08600e

    Article  CAS  Google Scholar 

  94. Zhang, C.F., Cui, L.F., Abdolhosseinzadeh, S., et al.: Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2, 613–638 (2020). https://doi.org/10.1002/inf2.12080

    Article  CAS  Google Scholar 

  95. Wang, Y.G., Song, Y.F., Xia, Y.Y.: Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016). https://doi.org/10.1039/c5cs00580a

    Article  CAS  PubMed  Google Scholar 

  96. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Simon, P., Gogotsi, Y.: Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z

    Article  CAS  PubMed  ADS  Google Scholar 

  98. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  99. Wei, L., Yushin, G.: Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1, 552–565 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002

    Article  CAS  Google Scholar 

  100. Xu, Y.X., Lin, Z.Y., Zhong, X., et al.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554

    Article  CAS  PubMed  ADS  Google Scholar 

  101. Xu, Y.X., Chen, C.Y., Zhao, Z.P., et al.: Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605–4610 (2015). https://doi.org/10.1021/acs.nanolett.5b01212

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Chodankar, N.R., Pham, H.D., Nanjundan, A.K., et al.: True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16, 2002806 (2020). https://doi.org/10.1002/smll.202002806

    Article  CAS  Google Scholar 

  103. Mathis, T.S., Kurra, N., Wang, X.H., et al.: Energy storage data reporting in perspective: guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019). https://doi.org/10.1002/aenm.201902007

    Article  CAS  Google Scholar 

  104. Zhang, P.F., Qiao, Z.A., Zhang, Z.Y., et al.: Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support. J. Mater. Chem. A 2, 12262–12269 (2014). https://doi.org/10.1039/c4ta02307b

    Article  CAS  Google Scholar 

  105. Zhu, S.Y., Tian, H., Wang, N., et al.: Patterning graphene surfaces with iron-oxide-embedded mesoporous polypyrrole and derived N-doped carbon of tunable pore size. Small 14, 1702755 (2018). https://doi.org/10.1002/smll.201702755

    Article  CAS  Google Scholar 

  106. Qin, J.Q., Zhou, F., Xiao, H., et al.: Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 61, 233–242 (2018). https://doi.org/10.1007/s40843-017-9132-8

    Article  CAS  Google Scholar 

  107. Shown, I., Ganguly, A., Chen, L.C., et al.: Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 3, 2–26 (2015). https://doi.org/10.1002/ese3.50

    Article  CAS  Google Scholar 

  108. Wang, Y.Q., Ding, Y., Guo, X.L., et al.: Conductive polymers for stretchable supercapacitors. Nano Res. 12, 1978–1987 (2019). https://doi.org/10.1007/s12274-019-2296-9

    Article  CAS  Google Scholar 

  109. Zheng, S.H., Tang, X.Y., Wu, Z.S., et al.: Arbitrary-shaped graphene-based planar sandwich supercapacitors on one substrate with enhanced flexibility and integration. ACS Nano 11, 2171–2179 (2017). https://doi.org/10.1021/acsnano.6b08435

    Article  CAS  PubMed  Google Scholar 

  110. Das, P., Shi, X.Y., Fu, Q., et al.: Substrate-free and shapeless planar micro-supercapacitors. Adv. Funct. Mater. 30, 1908758 (2020). https://doi.org/10.1002/adfm.201908758

    Article  CAS  Google Scholar 

  111. Liu, C.F., Liu, Y.C., Yi, T., et al.: Carbon materials for high-voltage supercapacitors. Carbon 145, 529–548 (2019). https://doi.org/10.1016/j.carbon.2018.12.009

    Article  CAS  Google Scholar 

  112. Shi, X.Y., Zheng, S.H., Wu, Z.S., et al.: Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 27, 25–42 (2018). https://doi.org/10.1016/j.jechem.2017.09.034

    Article  Google Scholar 

  113. Qin, J.Q., Das, P., Zheng, S.H., et al.: A perspective on two-dimensional materials for planar micro-supercapacitors. APL Mater. 7, 090902 (2019). https://doi.org/10.1063/1.5113940

    Article  CAS  ADS  Google Scholar 

  114. Zhang, P.P., Wang, F.X., Yu, M.H., et al.: Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c

    Article  CAS  PubMed  Google Scholar 

  115. Sumboja, A., Liu, J.W., Zheng, W.G., et al.: Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47, 5919–5945 (2018). https://doi.org/10.1039/C8CS00237A

    Article  CAS  PubMed  Google Scholar 

  116. Yao, L., Wu, Q., Zhang, P.X., et al.: Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018). https://doi.org/10.1002/adma.201706054

    Article  CAS  Google Scholar 

  117. Qi, D.P., Liu, Y., Liu, Z.Y., et al.: Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv. Mater. 29, 1602802 (2017). https://doi.org/10.1002/adma.201602802

    Article  CAS  Google Scholar 

  118. Zheng, S.H., Shi, X.Y., Das, P., et al.: The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31, 1900583 (2019). https://doi.org/10.1002/adma.201900583

    Article  CAS  Google Scholar 

  119. Wu, Z.S., Parvez, K., Li, S., et al.: Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 27, 4054–4061 (2015). https://doi.org/10.1002/adma.201501643

    Article  CAS  PubMed  Google Scholar 

  120. Zheng, S.H., Wu, Z.S., Wang, S., et al.: Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 6, 70–97 (2017). https://doi.org/10.1016/j.ensm.2016.10.003

    Article  Google Scholar 

  121. Shi, X.Y., Pei, S.F., Zhou, F., et al.: Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy Environ. Sci. 12, 1534–1541 (2019). https://doi.org/10.1039/c8ee02924e

    Article  CAS  Google Scholar 

  122. Nomura, K., Nishihara, H., Kobayashi, N., et al.: 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 12, 1542–1549 (2019). https://doi.org/10.1039/c8ee03184c

  123. Zhong, C., Deng, Y.D., Hu, W.B., et al.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015). https://doi.org/10.1039/c5cs00303b

    Article  CAS  PubMed  Google Scholar 

  124. Zang, X.N., Shen, C.W., Sanghadasa, M., et al.: High-voltage supercapacitors based on aqueous electrolytes. ChemElectroChem 6, 976–988 (2019). https://doi.org/10.1002/celc.201801225

    Article  CAS  Google Scholar 

  125. Shi, X.Y., Wu, Z.S., Qin, J.Q., et al.: Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv. Mater. 29, 1703034 (2017). https://doi.org/10.1002/adma.201703034

    Article  CAS  Google Scholar 

  126. Gao, J.M., Qin, J.Q., Chang, J.Y., et al.: NH3 sensor based on 2D wormlike polypyrrole/graphene heterostructures for a self-powered integrated system. ACS Appl. Mater. Interfaces 12, 38674–38681 (2020). https://doi.org/10.1021/acsami.0c10794

    Article  CAS  PubMed  Google Scholar 

  127. Shi, X.Y., Wu, Z.S., Bao, X.H.: Recent advancements and perspective of high-performance printed power sources with multiple form factors. Electrochem. Energy Rev. 3, 581–612 (2020). https://doi.org/10.1007/s41918-020-00071-6

    Article  CAS  Google Scholar 

  128. Zheng, S.H., Wang, H., Das, P., et al.: Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 33, 2005449 (2021). https://doi.org/10.1002/adma.202005449

    Article  CAS  Google Scholar 

  129. Ma, J.X., Zheng, S.H., Cao, Y.X., et al.: Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 11, 2100746 (2021). https://doi.org/10.1002/aenm.202100746

    Article  CAS  Google Scholar 

  130. Qin, J.Q., Gao, J.M., Shi, X.Y., et al.: Hierarchical ordered dual-mesoporous polypyrrole/graphene nanosheets as bi-functional active materials for high-performance planar integrated system of micro-supercapacitor and gas sensor. Adv. Funct. Mater. 30, 1909756 (2020). https://doi.org/10.1002/adfm.201909756

    Article  CAS  Google Scholar 

  131. Etacheri, V., Marom, R., Elazari, R., et al.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b

    Article  CAS  Google Scholar 

  132. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  ADS  Google Scholar 

  133. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  134. Bruce, P., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  135. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  136. Zuo, X.X., Zhu, J., Müller-Buschbaum, P., et al.: Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  137. Eftekhari, A.: Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157–180 (2017). https://doi.org/10.1016/j.ensm.2017.01.009

    Article  Google Scholar 

  138. Yao, W.Q., Chen, J., Zhan, L., et al.: Two-dimensional porous sandwich-like C/Si-graphene-Si/C nanosheets for superior lithium storage. ACS Appl. Mater. Interfaces 9, 39371–39379 (2017). https://doi.org/10.1021/acsami.7b11721

    Article  CAS  PubMed  Google Scholar 

  139. Palomares, V., Serras, P., Villaluenga, I., et al.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012). https://doi.org/10.1039/c2ee02781j

    Article  CAS  Google Scholar 

  140. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  141. Muñoz-Márquez, M.Á., Saurel, D., Gómez-Cámer, J.L., et al.: Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 7, 1700463 (2017). https://doi.org/10.1002/aenm.201700463

    Article  CAS  Google Scholar 

  142. Wu, Y., Yu, Y.: 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Mater. 16, 323–343 (2019). https://doi.org/10.1016/j.ensm.2018.05.026

    Article  Google Scholar 

  143. Zhang, W., Tian, Y., He, H.L., et al.: Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 7, 1702–1725 (2020). https://doi.org/10.1093/nsr/nwaa021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115

    Article  CAS  PubMed  Google Scholar 

  145. Li, S., Jiang, M.W., Xie, Y., et al.: Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress. Adv. Mater. 30, 1706375 (2018). https://doi.org/10.1002/adma.201706375

    Article  CAS  Google Scholar 

  146. Yang, H.J., Guo, C., Naveed, A., et al.: Recent progress and perspective on lithium metal anode protection. Energy Storage Mater. 14, 199–221 (2018). https://doi.org/10.1016/j.ensm.2018.03.001

    Article  Google Scholar 

  147. Guo, W., Fu, Y.Z.: A perspective on energy densities of rechargeable Li–S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater. 1, 20–27 (2018). https://doi.org/10.1002/eem2.12003

    Article  CAS  ADS  Google Scholar 

  148. Seh, Z.W., Sun, Y.M., Zhang, Q.F., et al.: Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a

    Article  CAS  PubMed  Google Scholar 

  149. Liu, X., Huang, J.Q., Zhang, Q., et al.: Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 29, 1601759 (2017). https://doi.org/10.1002/adma.201601759

    Article  CAS  Google Scholar 

  150. Peng, H.J., Huang, J.Q., Cheng, X.B., et al.: Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260

    Article  CAS  Google Scholar 

  151. Qiu, P.P., Yao, Y., Li, W., et al.: Sub-nanometric manganous oxide clusters in nitrogen doped mesoporous carbon nanosheets for high-performance lithium–sulfur batteries. Nano Lett. 21, 700–708 (2020). https://doi.org/10.1021/acs.nanolett.0c04322

    Article  CAS  PubMed  ADS  Google Scholar 

  152. Zhang, C.Y., Wang, A.X., Zhang, J.H., et al.: 2D materials for lithium/sodium metal anodes. Adv. Energy Mater. 8, 1802833 (2018). https://doi.org/10.1002/aenm.201802833

    Article  CAS  Google Scholar 

  153. Li, G.X., Liu, Z., Huang, Q.Q., et al.: Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018). https://doi.org/10.1038/s41560-018-0276-z

    Article  CAS  ADS  Google Scholar 

  154. Liu, W., Lin, D.C., Pei, A., et al.: Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443–15450 (2016). https://doi.org/10.1021/jacs.6b08730

    Article  CAS  PubMed  Google Scholar 

  155. Zhou, Y.G., Zhang, X., Ding, Y., et al.: Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv. Mater. 32, 2003920 (2020). https://doi.org/10.1002/adma.202003920

    Article  CAS  Google Scholar 

  156. Qin, J.Q., Shi, H.D., Huang, K., et al.: Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 12, 5786 (2021). https://doi.org/10.1038/s41467-021-26032-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  157. Chen, R.J., Qu, W.J., Guo, X., et al.: The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3, 487–516 (2016). https://doi.org/10.1039/c6mh00218h

    Article  CAS  Google Scholar 

  158. Jiang, C., Li, H.Q., Wang, C.L.: Recent progress in solid-state electrolytes for alkali-ion batteries. Sci. Bull. 62, 1473–1490 (2017). https://doi.org/10.1016/j.scib.2017.10.011

    Article  CAS  Google Scholar 

  159. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  ADS  Google Scholar 

  160. Li, M.T., Zhu, W.S., Zhang, P.F., et al.: Graphene-analogues boron nitride nanosheets confining ionic liquids: a high-performance quasi-liquid solid electrolyte. Small 12, 3535–3542 (2016). https://doi.org/10.1002/smll.201600358

    Article  CAS  PubMed  Google Scholar 

  161. Tang, C., Titirici, M.M., Zhang, Q.: A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J. Energy Chem. 26, 1077–1093 (2017). https://doi.org/10.1016/j.jechem.2017.08.008

    Article  Google Scholar 

  162. Chia, X.Y., Pumera, M.: Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909–921 (2018). https://doi.org/10.1038/s41929-018-0181-7

    Article  CAS  Google Scholar 

  163. Tian, X.Y., Zhao, P.C., Sheng, W.C.: Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31, 1808066 (2019). https://doi.org/10.1002/adma.201808066

    Article  CAS  Google Scholar 

  164. Yao, J.D., Huang, W.J., Fang, W., et al.: Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: effects of electric field, magnetic field, strain, and light. Small Methods 4, 2000494 (2020). https://doi.org/10.1002/smtd.202000494

    Article  CAS  Google Scholar 

  165. Mohiuddin, M., Zavabeti, A., Haque, F., et al.: Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. J. Mater. Chem. A 8, 2789–2797 (2020). https://doi.org/10.1039/c9ta11945k

    Article  CAS  Google Scholar 

  166. Chen, W.F., Muckerman, J.T., Fujita, E.: Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013). https://doi.org/10.1039/c3cc44076a

    Article  CAS  Google Scholar 

  167. Miao, M., Pan, J., He, T., et al.: Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction. Chem. A Eur. J. 23, 10947–10961 (2017). https://doi.org/10.1002/chem.201701064

    Article  CAS  Google Scholar 

  168. Hou, D., Zhu, S.Y., Tian, H., et al.: Two-dimensional sandwich-structured mesoporous Mo2C/carbon/graphene nanohybrids for efficient hydrogen production electrocatalysts. ACS Appl. Mater. Interfaces 10, 40800–40807 (2018). https://doi.org/10.1021/acsami.8b15250

    Article  CAS  PubMed  Google Scholar 

  169. Guo, S.J., Zhang, S., Sun, S.H.: Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 8526–8544 (2013). https://doi.org/10.1002/anie.201207186

    Article  CAS  Google Scholar 

  170. Jiang, R.Y., Tung, S.O., Tang, Z., et al.: A review of core–shell nanostructured electrocatalysts for oxygen reduction reaction. Energy Storage Mater. 12, 260–276 (2018). https://doi.org/10.1016/j.ensm.2017.11.005

    Article  Google Scholar 

  171. Liu, X., Zhang, G.Y., Wang, L., et al.: Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn−air battery. Small 17, 2006766 (2021). https://doi.org/10.1002/smll.202006766

    Article  CAS  Google Scholar 

  172. Tan, H.B., Zhao, Y.J., Xia, W., et al.: Phosphorus- and nitrogen-doped carbon nanosheets constructed with monolayered mesoporous architectures. Chem. Mater. 32, 4248–4256 (2020). https://doi.org/10.1021/acs.chemmater.0c00731

    Article  CAS  Google Scholar 

  173. Song, F., Bai, L.C., Moysiadou, A., et al.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546

    Article  CAS  PubMed  Google Scholar 

  174. Shi, Z.P., Wang, X., Ge, J.J., et al.: Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. Nanoscale 12, 13249–13275 (2020). https://doi.org/10.1039/d0nr02410d

    Article  CAS  PubMed  Google Scholar 

  175. Li, Y.G., Wang, Y., Lu, J.M., et al.: 2D intrinsically defective RuO2/graphene heterostructures as all-pH efficient oxygen evolving electrocatalysts with unprecedented activity. Nano Energy 78, 105185 (2020). https://doi.org/10.1016/j.nanoen.2020.105185

    Article  CAS  Google Scholar 

  176. Wu, Z.P., Lu, X.F., Zang, S.Q., et al.: Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 30, 1910274 (2020). https://doi.org/10.1002/adfm.201910274

    Article  CAS  Google Scholar 

  177. Wang, Z.L., Li, C.L., Yamauchi, Y.: Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 11, 373–391 (2016). https://doi.org/10.1016/j.nantod.2016.05.007

    Article  CAS  Google Scholar 

  178. Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al.: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  CAS  ADS  Google Scholar 

  179. Zhang, Y., Li, L.B., Guo, S.X., et al.: Two-dimensional electrocatalysts for efficient reduction of carbon dioxide. ChemSusChem 13, 59–77 (2020). https://doi.org/10.1002/cssc.201901794

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, J.C., Cai, W.Z., Hu, F.X., et al.: Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chem. Sci. 12, 6800–6819 (2021). https://doi.org/10.1039/d1sc01375k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, F.W., Chen, L., Knowles, G.P., et al.: Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56, 505–509 (2017). https://doi.org/10.1002/anie.201608279

    Article  CAS  Google Scholar 

  182. Han, N., Wang, Y.Y., Deng, J., et al.: Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J. Mater. Chem. A 7, 1267–1272 (2019). https://doi.org/10.1039/c8ta10959a

    Article  CAS  Google Scholar 

  183. Zhao, S.L., Qin, Y., Guo, T., et al.: SnS nanoparticles grown on Sn-atom-modified N,S-codoped mesoporous carbon nanosheets as electrocatalysts for CO2 reduction to formate. ACS Appl. Nano Mater. 4, 2257–2264 (2021). https://doi.org/10.1021/acsanm.0c03361

    Article  CAS  Google Scholar 

  184. Yang, H., Han, N., Deng, J., et al.: Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 8, 1801536 (2018). https://doi.org/10.1002/aenm.201801536

    Article  CAS  Google Scholar 

  185. Sun, H.T., Mei, L., Liang, J.F., et al.: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852

    Article  CAS  PubMed  ADS  Google Scholar 

  186. Li, W., Li, M., Wang, X.Q., et al.: An in situ TEM microreactor for real-time nanomorphology & physicochemical parameters interrelated characterization. Nano Today 35, 100932 (2020). https://doi.org/10.1016/j.nantod.2020.100932

    Article  CAS  Google Scholar 

  187. Li, H.Y., Guo, S.H., Zhou, H.S.: In-situ/operando characterization techniques in lithium-ion batteries and beyond. J. Energy Chem. 59, 191–211 (2021). https://doi.org/10.1016/j.jechem.2020.11.020

    Article  CAS  Google Scholar 

  188. Su, X.L., Ye, J.L., Zhu, Y.W.: Advances in in situ characterizations of electrode materials for better supercapacitors. J. Energy Chem. 54, 242–253 (2021). https://doi.org/10.1016/j.jechem.2020.05.055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jieqiong Qin, Zhi Yang, and Feifei Xing contributed equally to this work. The authors acknowledge the National Natural Science Foundation of China (Nos. 22125903, 51872283, 22109040), Dalian Innovation Support Plan for High Level Talents (2019RT09), DICP (ZZBS201802 and I202032), Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL201912 and DNL201915, DNL202016, DNL202019), Top-Notch Talent Program of Henan Agricultural University (30500947), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, 2021009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Shuai Wu.

Ethics declarations

Ethics Statement

The study does not involve human or animal subjects and/or tissue.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Yang, Z., Xing, F. et al. Two-Dimensional Mesoporous Materials for Energy Storage and Conversion: Current Status, Chemical Synthesis and Challenging Perspectives. Electrochem. Energy Rev. 6, 9 (2023). https://doi.org/10.1007/s41918-022-00177-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00177-z

Keywords

Navigation