ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Sensitive and Bidirectional Detection of Urine Telomerase Based on the Four Detection-Color States of Difunctional Gold Nanoparticle Probe

View Author Information
Key Laboratory for Large-Format Battery Materials and Systems, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
Cite this: Anal. Chem. 2014, 86, 19, 9781–9785
Publication Date (Web):August 28, 2014
https://doi.org/10.1021/ac5024364
Copyright © 2014 American Chemical Society

    Article Views

    1950

    Altmetric

    -

    Citations

    73
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Telomerase, a valuable biomarker, is highly correlated with the development of most of human cancers. Here, we develop a bidirectional strategy for telomerase activity detection and bladder cancer diagnosis based on four detection-color states of difunctional gold nanoparticle (GNP) probes such as blue, purple, red, and precipitate. Specifically, we define the red GNP probe as origin, which represents urine extracts with inactive telomerase and implies normal individuals. The forward direction is corresponding to the detection of a relatively high concentration of active telomerase, in which system GNP probes assemble obviously and precipitate, predicting bladder cancer samples. The negative direction is corresponding to extracts with a relatively low concentration (purple) and without any telomerase (blue), which can be differentiated by naked eyes or UV–vis spectrum, indicating bladder cancer and normal individuals, respectively. More importantly, this noninvasive strategy shows great sensitivity and selectivity when tested by 18 urine specimens from bladder cancer patients, inflammation, and normal individuals.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and analytical data are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 73 publications.

    1. Xiao Feng Yang, Wei He, Yuan Fang Li, Peng Fei Gao, Cheng Zhi Huang. Telomerase Activity Assay via 3,3′,5,5′-Tetramethylbenzidine Dilation Etching of Gold Nanorods. ACS Applied Nano Materials 2022, 5 (1) , 1484-1490. https://doi.org/10.1021/acsanm.1c04049
    2. Yuhong Lin, Yuqing Huang, Yuling Yang, Lili Jiang, Chao Xing, Jingying Li, Chunhua Lu, Huanghao Yang. Functional Self-Assembled DNA Nanohydrogels for Specific Telomerase Activity Imaging and Telomerase-Activated Antitumor Gene Therapy. Analytical Chemistry 2020, 92 (22) , 15179-15186. https://doi.org/10.1021/acs.analchem.0c03746
    3. Yan Zhou, Jia Liu, Tingting Zheng, Yang Tian. Label-Free SERS Strategy for In Situ Monitoring and Real-Time Imaging of Aβ Aggregation Process in Live Neurons and Brain Tissues. Analytical Chemistry 2020, 92 (8) , 5910-5920. https://doi.org/10.1021/acs.analchem.9b05837
    4. Yingqian Wang, Zhihao Li, Qiaosong Lin, Yurong Wei, Jie Wang, Yingxue Li, Ronghua Yang, Quan Yuan. Highly Sensitive Detection of Bladder Cancer-Related miRNA in Urine Using Time-Gated Luminescent Biochip. ACS Sensors 2019, 4 (8) , 2124-2130. https://doi.org/10.1021/acssensors.9b00927
    5. Enduo Feng, Tingting Zheng, Yang Tian. Dual-Mode Au Nanoprobe Based on Surface Enhancement Raman Scattering and Colorimetry for Sensitive Determination of Telomerase Activity Both in Cell Extracts and in the Urine of Patients. ACS Sensors 2019, 4 (1) , 211-217. https://doi.org/10.1021/acssensors.8b01244
    6. Xueli Zhu, Hongyan Ye, Jin-Wen Liu, Ru-Qin Yu, Jian-Hui Jiang. Multivalent Self-Assembled DNA Polymer for Tumor-Targeted Delivery and Live Cell Imaging of Telomerase Activity. Analytical Chemistry 2018, 90 (22) , 13188-13192. https://doi.org/10.1021/acs.analchem.8b04631
    7. Xiaowen Xu, Lei Wang, Kan Li, Qihong Huang, Wei Jiang. A Smart DNA Tweezer for Detection of Human Telomerase Activity. Analytical Chemistry 2018, 90 (5) , 3521-3530. https://doi.org/10.1021/acs.analchem.7b05373
    8. Ruixue Duan, Zhenyu Zhang, Fuxin Zheng, Longwang Wang, Ju Guo, Tianchi Zhang, Xiaomeng Dai, Shengwei Zhang, Dong Yang, Renrui Kuang, Gongxian Wang, Chaohong He, Abdul Hakeem, Chang Shu, Ping Yin, Xiaoding Lou, Fuqing Zeng, Huageng Liang, and Fan Xia . Combining Protein and miRNA Quantification for Bladder Cancer Analysis. ACS Applied Materials & Interfaces 2017, 9 (28) , 23420-23427. https://doi.org/10.1021/acsami.7b05639
    9. Hidenobu Yaku, Yoshio Yoshida, Hidehiko Okazawa, Yasushi Kiyono, Yuko Fujita, and Daisuke Miyoshi . Highly Sensitive Telomerase Assay Insusceptible to Telomerase and Polymerase Chain Reaction Inhibitors for Cervical Cancer Screening Using Scraped Cells. Analytical Chemistry 2017, 89 (13) , 6948-6953. https://doi.org/10.1021/acs.analchem.6b04777
    10. Xiaolin Huang, Yijing Liu, Bryant Yung, Yonghua Xiong, and Xiaoyuan Chen . Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017, 11 (6) , 5238-5292. https://doi.org/10.1021/acsnano.7b02618
    11. Xue-Jiao Yang, Kai Zhang, Ting-Ting Zhang, Jing-Juan Xu, and Hong-Yuan Chen . Reliable Förster Resonance Energy Transfer Probe Based on Structure-Switching DNA for Ratiometric Sensing of Telomerase in Living Cells. Analytical Chemistry 2017, 89 (7) , 4216-4222. https://doi.org/10.1021/acs.analchem.7b00267
    12. Yuan Zhuang, Chunli Shang, Xiaoding Lou, and Fan Xia . Construction of AIEgens-Based Bioprobe with Two Fluorescent Signals for Enhanced Monitor of Extracellular and Intracellular Telomerase Activity. Analytical Chemistry 2017, 89 (3) , 2073-2079. https://doi.org/10.1021/acs.analchem.6b04696
    13. Pinghua Ling, Jianping Lei, and Huangxian Ju . Nanoscaled Porphyrinic Metal–Organic Frameworks for Electrochemical Detection of Telomerase Activity via Telomerase Triggered Conformation Switch. Analytical Chemistry 2016, 88 (21) , 10680-10686. https://doi.org/10.1021/acs.analchem.6b03131
    14. Xiaowen Xu, Lei Wang, Yongqi Huang, Wushuang Gao, Kan Li, and Wei Jiang . Model-Guided Interface Probe Arrangement for Sensitive Protein Detection. Analytical Chemistry 2016, 88 (20) , 9885-9889. https://doi.org/10.1021/acs.analchem.6b02972
    15. Xu Liu, Min Wei, Yuanjian Liu, Bingjing Lv, Wei Wei, Yuanjian Zhang, and Songqin Liu . Label-Free Detection of Telomerase Activity in Urine Using Telomerase-Responsive Porous Anodic Alumina Nanochannels. Analytical Chemistry 2016, 88 (16) , 8107-8114. https://doi.org/10.1021/acs.analchem.6b01817
    16. Yanfang Gao, Jing Xu, Baoxin Li, and Yan Jin . Nanoparticle-Aided Amplification of Fluorescence Polarization for Ultrasensitively Monitoring Activity of Telomerase. ACS Applied Materials & Interfaces 2016, 8 (22) , 13707-13713. https://doi.org/10.1021/acsami.6b02271
    17. Yuan Zhuang, Qi Xu, Fujian Huang, Pengcheng Gao, Zujin Zhao, Xiaoding Lou, and Fan Xia . Ratiometric Fluorescent Bioprobe for Highly Reproducible Detection of Telomerase in Bloody Urines of Bladder Cancer Patients. ACS Sensors 2016, 1 (5) , 572-578. https://doi.org/10.1021/acssensors.6b00076
    18. Yuan Zhuang, Fujian Huang, Qi Xu, Mengshi Zhang, Xiaoding Lou, and Fan Xia . Facile, Fast-Responsive, and Photostable Imaging of Telomerase Activity in Living Cells with a Fluorescence Turn-On Manner. Analytical Chemistry 2016, 88 (6) , 3289-3294. https://doi.org/10.1021/acs.analchem.5b04756
    19. Yuan Zhuang, Mengshi Zhang, Bin Chen, Ruixue Duan, Xuehong Min, Zhenyu Zhang, Fuxin Zheng, Huageng Liang, Zujin Zhao, Xiaoding Lou, and Fan Xia . Quencher Group Induced High Specificity Detection of Telomerase in Clear and Bloody Urines by AIEgens. Analytical Chemistry 2015, 87 (18) , 9487-9493. https://doi.org/10.1021/acs.analchem.5b02699
    20. Xuehong Min, Yuan Zhuang, Zhenyu Zhang, Yongmei Jia, Abdul Hakeem, Fuxin Zheng, Yong Cheng, Ben Zhong Tang, Xiaoding Lou, and Fan Xia . Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens. ACS Applied Materials & Interfaces 2015, 7 (30) , 16813-16818. https://doi.org/10.1021/acsami.5b04821
    21. Xiaoding Lou, Yuan Zhuang, Xiaolei Zuo, Yongmei Jia, Yuning Hong, Xuehong Min, Zhenyu Zhang, Xuemei Xu, Nannan Liu, Fan Xia, and Ben Zhong Tang . Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AIEgens. Analytical Chemistry 2015, 87 (13) , 6822-6827. https://doi.org/10.1021/acs.analchem.5b01099
    22. Honghong Wang, Shuhui Wang, Hui Wang, Yuanwen Liang, Zhengping Li. Sensitive and amplification-free detection of telomerase activity by self-extension of telomerase and trans-cleavage of CRISPR/Cas12a. Talanta 2023, 253 , 123999. https://doi.org/10.1016/j.talanta.2022.123999
    23. Shubham Arunrao Chinchulkar, Paloma Patra, Dheeraj Dehariya, Tejaswini Appidi, Aravind Kumar Rengan. Gold nanoparticle–based biosensing applications and fundamentals of sensor technology: principles and novel designs. 2023, 669-723. https://doi.org/10.1016/B978-0-323-88431-0.00014-4
    24. Sheng-Hann Wang, Chia-Wen Kuo, Shu-Cheng Lo, Wing Kiu Yeung, Ting-Wei Chang, Pei-Kuen Wei. Spectral image contrast-based flow digital nanoplasmon-metry for ultrasensitive antibody detection. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-021-01188-6
    25. Siyu Luo, Lin Ma, Fei Tian, Yingqiu Gu, Jingjing Li, Peng Zhang, Guohai Yang, Haitao Li, Lu-Lu Qu. Fluorescence and surface-enhanced Raman scattering dual-mode nanoprobe for monitoring telomerase activity in living cells. Microchemical Journal 2022, 175 , 107171. https://doi.org/10.1016/j.microc.2021.107171
    26. Yajun Zhang, Shen Yan, Zhaoxin Chen, Xin Jiang, Shuang Rao, Zhuoran Jiang, Shanshan Qin, Xiang Zhou, Yuhao Du. Visually Intracellular Detection of Telomerase Activity Based on DNA Strand Displacement Reaction and Gold Nanoparticle Labeling. Chinese Journal of Chemistry 2022, 40 (6) , 693-698. https://doi.org/10.1002/cjoc.202100594
    27. Yanqiu Zhao, Wenjing Hu, Jizhen Kang, Xiaoning Lin, Benmei Wei, Juntao Zhang, Chengzhi Xu, Haibo Wang. Monitoring fiber-like aggregation of collagen using gold nanoparticles as probes. Chemical Papers 2022, 76 (3) , 1377-1384. https://doi.org/10.1007/s11696-021-01935-x
    28. Ruixue Zhang, Ruiyuan Zhang, Chunyan Zhao, Xiaowen Xu. A DNA tetrahedron docking assembly for imaging telomerase activity in cancerous cells. Analytica Chimica Acta 2022, 1193 , 339395. https://doi.org/10.1016/j.aca.2021.339395
    29. Honghong Wang, Shuhui Wang, Hui Wang, Yuanwen Liang, Zhengping Li. Sensitive and Amplification-Free Detection of Telomerase Activity by Self-Extension of Telomerase and Trans-Cleavage of CRISPR/Cas12a. SSRN Electronic Journal 2022, 266 https://doi.org/10.2139/ssrn.4197046
    30. Lifang Gao, Xu Zhang, Runlin Yang, Zhongwei Lv, Wenge Yang, Yonghong Hu, Bin Zhou. Time-resolved fluorescence determination of albumin using ZnGeO:Mn luminescence nanorods modified with polydopamine nanoparticles. Microchimica Acta 2021, 188 (12) https://doi.org/10.1007/s00604-021-05097-1
    31. Maria António, Rui Vitorino, Ana L. Daniel-da-Silva. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021, 230 , 122345. https://doi.org/10.1016/j.talanta.2021.122345
    32. Ruiguan Wang, Jiangbo Li, Rui Jin, Qinong Ye, Long Cheng, Rong Liu. Nonradioactive direct telomerase activity detection using biotin‐labeled primers. Journal of Clinical Laboratory Analysis 2021, 35 (6) https://doi.org/10.1002/jcla.23800
    33. Zhengze Yu, Fan Jiang, Chenchen Hu, Bo Tang. Functionalized nanoprobes for in situ detection of telomerase. Chemical Communications 2021, 57 (31) , 3736-3748. https://doi.org/10.1039/D0CC08412C
    34. Xiaolong Chen, Gaihua Cao, Jiajin Zhang, Yuanyi Deng, Xiaogang Luo, Mei Yang, Danqun Huo, Changjun Hou. An ultrasensitive and point-of-care strategy for enzymes activity detection based on enzyme extends activators to unlock the ssDNase activity of CRISPR/Cas12a (EdU-CRISPR/Cas12a). Sensors and Actuators B: Chemical 2021, 333 , 129553. https://doi.org/10.1016/j.snb.2021.129553
    35. Ruiyuan Zhang, Ruixue Zhang, Wei Jiang, Xiaowen Xu. A multicolor DNA tetrahedron nanoprobe for analyzing human telomerase in living cells. Chemical Communications 2021, 57 (17) , 2188-2191. https://doi.org/10.1039/D0CC07893J
    36. Xiaolong Chen, Yuanyi Deng, Gaihua Cao, Xinyi Liu, Tao Gu, Ruoyang Feng, Danqun Huo, Faliang Xu, Changjun Hou. An ultrasensitive and point-of-care sensor for the telomerase activity detection. Analytica Chimica Acta 2021, 1146 , 61-69. https://doi.org/10.1016/j.aca.2020.11.037
    37. Danni Wang, Wanyi Xue, Xiuyan Ren, Zhangrun Xu. A review on sensing mechanisms and strategies for telomerase activity detection. TrAC Trends in Analytical Chemistry 2021, 134 , 116115. https://doi.org/10.1016/j.trac.2020.116115
    38. Bei Zhang, Lu Shi, Wei Liu, Baoxin Li, Yan Jin. Sensitive detection of intracellular telomerase activity via double signal amplification and ratiometric fluorescence resonance energy transfer. The Analyst 2020, 145 (21) , 6992-6999. https://doi.org/10.1039/D0AN01291B
    39. Yingxin Ma, Guobin Mao, Guoqiang Wu, Zhike He, Weiren Huang. Magnetic bead-enzyme assemble for triple-parameter telomerase detection at single-cell level. Analytical and Bioanalytical Chemistry 2020, 412 (22) , 5283-5289. https://doi.org/10.1007/s00216-020-02741-2
    40. Chao Wang, Jinghai Zhang, Yong Cui. Facile detection of Pb2+ based on gold nanoparticles functionalized by specific receptor proteins. Journal of Nanoparticle Research 2020, 22 (9) https://doi.org/10.1007/s11051-020-05000-8
    41. Xinmin Yue, Yanqi Qiao, Dening Gu, Zixuan Wu, Wenhui Zhao, Xiaoyu Li, Yongmei Yin, Wei Zhao, Deming Kong, Rimo Xi, Meng Meng. Reliable FRET-ON imaging of telomerase in living cells by a tetrahedral DNA nanoprobe integrated with structure-switchable molecular beacon. Sensors and Actuators B: Chemical 2020, 312 , 127943. https://doi.org/10.1016/j.snb.2020.127943
    42. Tohid Mahmoudi, Abbas Pirpour Tazehkand, Mohammad Pourhassan-Moghaddam, Mohammadreza Alizadeh-Ghodsi, Lin Ding, Behzad Baradaran, Sajad Razavi Bazaz, Dayong Jin, Majid Ebrahimi Warkiani. PCR-free paper-based nanobiosensing platform for visual detection of telomerase activity via gold enhancement. Microchemical Journal 2020, 154 , 104594. https://doi.org/10.1016/j.microc.2020.104594
    43. Maria Blanco-Formoso, Ramon A. Alvarez-Puebla. Cancer Diagnosis through SERS and Other Related Techniques. International Journal of Molecular Sciences 2020, 21 (6) , 2253. https://doi.org/10.3390/ijms21062253
    44. Yingxin Ma, Guobin Mao, Guoqiang Wu, Jing Fan, Zhike He, Weiren Huang. A novel nano-beacon based on DNA functionalized QDs for intracellular telomerase activity monitoring. Sensors and Actuators B: Chemical 2020, 304 , 127385. https://doi.org/10.1016/j.snb.2019.127385
    45. Lei Wang, Tianjiao Meng, Dan Zhao, Huixian Jia, Siying An, Xinjian Yang, Huan Wang, Yufan Zhang. An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity. Biosensors and Bioelectronics 2020, 148 , 111834. https://doi.org/10.1016/j.bios.2019.111834
    46. Jinlong Li, Jiehua Ma, Yongchen Zhang, Zhaoli Zhang, Kai Hu. Highly sensitive electrochemical analysis of telomerase activity based on magnetic bead separation and exonuclease III-aided target recycling amplification. Bioelectrochemistry 2019, 130 , 107341. https://doi.org/10.1016/j.bioelechem.2019.107341
    47. Pravin Shende, Bala Prabhakar, Amar Patil. Color changing sensors: A multimodal system for integrated screening. TrAC Trends in Analytical Chemistry 2019, 121 , 115687. https://doi.org/10.1016/j.trac.2019.115687
    48. Tingting Li, Li Zou, Ji Zhang, Gongke Li, Liansheng Ling. Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering. Analytica Chimica Acta 2019, 1065 , 90-97. https://doi.org/10.1016/j.aca.2019.03.039
    49. Jing Wang, Ji Zhang, Tingting Li, Ruidi Shen, Gongke Li, Liansheng Ling. Strand displacement amplification-coupled dynamic light scattering method to detect urinary telomerase for non-invasive detection of bladder cancer. Biosensors and Bioelectronics 2019, 131 , 143-148. https://doi.org/10.1016/j.bios.2019.02.014
    50. Bing Yang, Lu Shi, Jing Lei, Baoxin Li, Yan Jin. Advances in optical assays for detecting telomerase activity. Luminescence 2019, 34 (2) , 136-152. https://doi.org/10.1002/bio.3595
    51. Lei Wang, Tianjiao Meng, Guangshun Yu, Shasha Wu, Jingjing Sun, Huixian Jia, Huan Wang, Xinjian Yang, Yufan Zhang. A label-free electrochemical biosensor for ultra-sensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by Au nanorods. Biosensors and Bioelectronics 2019, 124-125 , 53-58. https://doi.org/10.1016/j.bios.2018.09.098
    52. Danni Wang, Rui Guo, Yunyun Wei, Yingzhi Zhang, Xiayu Zhao, Zhangrun Xu. Sensitive multicolor visual detection of telomerase activity based on catalytic hairpin assembly and etching of Au nanorods. Biosensors and Bioelectronics 2018, 122 , 247-253. https://doi.org/10.1016/j.bios.2018.09.064
    53. Hai Shi, Tao Gao, Liu Shi, Tianshu Chen, Yang Xiang, Yuanyang Li, Genxi Li. Molecular imaging of telomerase and the enzyme activity-triggered drug release by using a conformation-switchable nanoprobe in cancerous cells. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-34670-7
    54. Shihua Luo, Ye Zhang, Bo Situ, Lei Zheng. Fluorescence sensing telomerase activity: From extracellular detection to in situ imaging. Sensors and Actuators B: Chemical 2018, 273 , 853-861. https://doi.org/10.1016/j.snb.2018.06.088
    55. Xin-yue Chen, Run-tian Ma, Wei Ha, Yan-ping Shi. Direct colorimetric detection of aspartic acid in rat brain based on oriented aggregation of Janus gold nanoparticle. Sensors and Actuators B: Chemical 2018, 274 , 668-675. https://doi.org/10.1016/j.snb.2018.08.008
    56. Chunlei Wang, Haitang Yang, Shuangshuang Wu, Yuanjian Liu, Wei Wei, Yuanjian Zhang, Min Wei, Songqin Liu. Manifold methods for telomerase activity detection based on various unique probes. TrAC Trends in Analytical Chemistry 2018, 105 , 404-412. https://doi.org/10.1016/j.trac.2018.06.002
    57. Hua Zhang, Zhen Lei, Rongrong Tian, Zhenxin Wang. Polyamidoamine starburst dendrimer-activated chromatography paper-based assay for sensitive detection of telomerase activity. Talanta 2018, 178 , 116-121. https://doi.org/10.1016/j.talanta.2017.09.034
    58. Wenjing Chen, Lei Wang, Rong He, Xiaowen Xu, Wei Jiang. Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta 2018, 178 , 458-463. https://doi.org/10.1016/j.talanta.2017.09.057
    59. Mena Aioub, Lauren A. Austin, Mostafa A. El-Sayed. Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy. 2018, 41-91. https://doi.org/10.1016/B978-0-12-813661-4.00002-X
    60. Xuehong Min, Lei Xia, Yuan Zhuang, Xudong Wang, Jie Du, Xiaojin Zhang, Xiaoding Lou, Fan Xia. An AIEgens and exonuclease III aided quadratic amplification assay for detecting and cellular imaging of telomerase activity. Science Bulletin 2017, 62 (14) , 997-1003. https://doi.org/10.1016/j.scib.2017.06.008
    61. Xu Liu, Min Wei, Ensheng Xu, Haitang Yang, Wei Wei, Yuanjian Zhang, Songqin Liu. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization. Biosensors and Bioelectronics 2017, 91 , 347-353. https://doi.org/10.1016/j.bios.2016.12.054
    62. Xiaolin Xu, Min Wei, Yuanjian Liu, Xu Liu, Wei Wei, Yuanjian Zhang, Songqin Liu. A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates. Biosensors and Bioelectronics 2017, 87 , 600-606. https://doi.org/10.1016/j.bios.2016.09.005
    63. Yaocai Wang, Luzhu Yang, Yanjun Wang, Wei Liu, Baoxin Li, Yan Jin. An ultra-sensitive colorimetric assay for reliable visual detection of telomerase activity. The Analyst 2017, 142 (17) , 3235-3240. https://doi.org/10.1039/C7AN00950J
    64. Yue Lin, Linlin Yang, Guiyin Yue, Lifen Chen, Bin Qiu, Longhua Guo, Zhenyu Lin, Guonan Chen. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 2+. Analytical and Bioanalytical Chemistry 2016, 408 (25) , 7105-7111. https://doi.org/10.1007/s00216-016-9561-5
    65. Yanfang Gao, Jing Xu, Baoxin Li, Yan Jin. PCR-free and label-free fluorescent detection of telomerase activity at single-cell level based on triple amplification. Biosensors and Bioelectronics 2016, 81 , 415-422. https://doi.org/10.1016/j.bios.2016.03.022
    66. Wanli Zheng, Jun Teng, Lin Cheng, Yingwang Ye, Daodong Pan, Jingjing Wu, Feng Xue, Guodong Liu, Wei Chen. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor. Biosensors and Bioelectronics 2016, 80 , 574-581. https://doi.org/10.1016/j.bios.2016.01.091
    67. Lei Zhang, Sijin Zhang, Wei Pan, Qingcheng Liang, Xingyu Song. Exonuclease I manipulating primer-modified gold nanoparticles for colorimetric telomerase activity assay. Biosensors and Bioelectronics 2016, 77 , 144-148. https://doi.org/10.1016/j.bios.2015.08.045
    68. Muling Shi, Jing Zheng, Changhui Liu, Guixiang Tan, Zhihe Qing, Sheng Yang, Jinfeng Yang, Yongjun Tan, Ronghua Yang. SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosensors and Bioelectronics 2016, 77 , 673-680. https://doi.org/10.1016/j.bios.2015.10.029
    69. Yuanjian Liu, Min Wei, Xu Liu, Wei Wei, Hongyu Zhao, Yuanjian Zhang, Songqin Liu. Label-free ultrasensitive detection of telomerase activity via multiple telomeric hemin/G-quadruplex triggered polyaniline deposition and a DNA tetrahedron-structure regulated signal. Chemical Communications 2016, 52 (9) , 1796-1799. https://doi.org/10.1039/C5CC09800A
    70. Ruixue Duan, Xiaoding Lou, Fan Xia. The development of nanostructure assisted isothermal amplification in biosensors. Chemical Society Reviews 2016, 45 (6) , 1738-1749. https://doi.org/10.1039/C5CS00819K
    71. Faming Wang, Wen Li, Jiasi Wang, Jinsong Ren, Xiaogang Qu. Detection of telomerase on upconversion nanoparticle modified cellulose paper. Chemical Communications 2015, 51 (58) , 11630-11633. https://doi.org/10.1039/C5CC03902A
    72. Guichi Zhu, Kun Yang, Chun-yang Zhang. A single quantum dot-based biosensor for telomerase assay. Chemical Communications 2015, 51 (31) , 6808-6811. https://doi.org/10.1039/C5CC01600B
    73. Shuhei Shinohara, Daisuke Tanaka, Koichi Okamoto, Kaoru Tamada. Colorimetric plasmon sensors with multilayered metallic nanoparticle sheets. Physical Chemistry Chemical Physics 2015, 17 (28) , 18606-18612. https://doi.org/10.1039/C5CP02564H

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect