ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Root Uptake and Phytotoxicity of ZnO Nanoparticles

View Author Information
Department of Environmental Science, Zhejiang University, Hangzhou, 310028, China, and Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, Massachusetts 01003
* Corresponding author phone.: (413) 545-5212; fax: (413) 545-3958; e-mail: [email protected]
†Zhejiang University.
‡University of Massachusetts.
Cite this: Environ. Sci. Technol. 2008, 42, 15, 5580–5585
Publication Date (Web):June 25, 2008
https://doi.org/10.1021/es800422x
Copyright © 2008 American Chemical Society

    Article Views

    10593

    Altmetric

    -

    Citations

    914
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Increasing application of nanotechnology highlights the need to clarify nanotoxicity. However, few researches have focused on phytotoxicity of nanomaterials; it is unknown whether plants can uptake and transport nanoparticles. This study was to examine cell internalization and upward translocation of ZnO nanoparticles by Lolium perenne (ryegrass). The dissolution of ZnO nanoparticles and its contribution to the toxicity on ryegrass were also investigated. Zn2+ ions were used to compare and verify the root uptake and phytotoxicity of ZnO nanoparticles in a hydroponic culture system. The root uptake and phytotoxicity were visualized by light, scanning electron, and transmission electron microscopies. In the presence of ZnO nanoparticles, ryegrass biomass significantly reduced, root tips shrank, and root epidermal and cortical cells highly vacuolated or collapsed. Zn2+ ion concentrations in bulk nutrient solutions with ZnO nanoparticles were lower than the toxicity threshold of Zn2+ to the ryegrass; shoot Zn contents under ZnO nanoparticle treatments were much lower than that under Zn2+ treatments. Therefore, the phytotoxicity of ZnO nanoparticles was not directly from their limited dissolution in the bulk nutrient solution or rhizosphere. ZnO nanoparticles greatly adhered onto the root surface. Individual ZnO nanoparticles were observed present in apoplast and protoplast of the root endodermis and stele. However, translocation factors of Zn from root to shoot remained very low under ZnO nanoparticle treatments, and were much lower than that under Zn2+ treatments, implying that little (if any) ZnO nanoparticles could translocate up in the ryegrass in this study.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Size distribution of ZnO nanoparticles (Figure S1); Photo of ZnO nanoparticles in nutrient solutions (Figure S2); Zn concentrations in the supernatants of ZnO suspensions (Figure S3); Photos of ZnO/Zn2+ treated ryegrass seedlings (Figure S4); LM images of ryegrass roots (Figure S5); SEM images of the ryegrass roots (Figure S6); TEM images of ryegrass root cells (Figure S7); Schematic diagram of plant cell internalization and transport of ZnO nanoparticles (Figure S8). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 914 publications.

    1. Busra Eren, Meliha Koldemir Gunduz, Gullu Kaymak, Derya Berikten, Zehra Banu Bahsi. Therapeutic Potential of Sol–Gel ZnO Nanocrystals: Anticancer, Antioxidant, and Antimicrobial Tri-Action. ACS Omega 2024, 9 (13) , 14818-14829. https://doi.org/10.1021/acsomega.3c07191
    2. Yuxin Guo, Yuanyuan Lu, Kamel Mohamed Eltohamy, Chunlong Liu, Yunying Fang, Yajing Guan, Boyi Liu, Jiao Yang, Xinqiang Liang. Contribution of Biogas Slurry-Derived Colloids to Plant P Uptake and Phosphatase Activities: Spatiotemporal Response. Environmental Science & Technology 2023, 57 (43) , 16564-16574. https://doi.org/10.1021/acs.est.3c05108
    3. Ziqian Li, Wende Yan, Yong Li, Yunmu Xiao, Yang Shi, Xuyuan Zhang, Junjie Lei, Ke Min, Yuliang Pan, Xiaoyong Chen, Qian Liu, Guibin Jiang. Particle Size Determines the Phytotoxicity of ZnO Nanoparticles in Rice (Oryza sativa L.) Revealed by Spatial Imaging Techniques. Environmental Science & Technology 2023, 57 (36) , 13356-13365. https://doi.org/10.1021/acs.est.3c03821
    4. Lin Liu, Olga V. Tsyusko, Jason M. Unrine, Shuang Liu, Yidan Liu, Lulu Guo, Gehong Wei, Chun Chen. Pristine and Sulfidized Zinc Oxide Nanoparticles Promote the Release and Decomposition of Organic Carbon in the Legume Rhizosphere. Environmental Science & Technology 2023, 57 (24) , 8943-8953. https://doi.org/10.1021/acs.est.3c02071
    5. Lei Xu, Xiaoxuan Wang, Honglan Shi, Bin Hua, Joel Gerald Burken, Xingmao Ma, Hu Yang, John J. Yang. Uptake of Engineered Metallic Nanoparticles in Soil by Lettuce in Single and Binary Nanoparticle Systems. ACS Sustainable Chemistry & Engineering 2022, 10 (50) , 16692-16700. https://doi.org/10.1021/acssuschemeng.2c04748
    6. Yuxin Lin, Jingyi Chen, Yuhan Mai, Liyun Chen, Zheng Chen, Guodong Wang, Lina Deng, Peng Xu, Cai Yuan, Longguang Jiang, Mingdong Huang. Double-Grafted PET Fiber Material to Remove Airborne Bacteria with High Efficiency. ACS Applied Materials & Interfaces 2022, 14 (41) , 47003-47013. https://doi.org/10.1021/acsami.2c13358
    7. Eban A. Hanna, Omar E. Mendez Lopez, Fallon Salinas, Carlos E. Astete, Carlos Tamez, Yi Wang, Haoran Wu, Brian D. Eitzer, Wade H. Elmer, Stacey Louie, Jason C. White, Cristina M. Sabliov. Zein Nanoparticles for Enhanced Translocation of Pesticide in Soybean (Glycine max). ACS Agricultural Science & Technology 2022, 2 (5) , 1013-1022. https://doi.org/10.1021/acsagscitech.2c00160
    8. Shipeng Dong, Xueping Jing, Sijie Lin, Kun Lu, Wenfei Li, Jiajun Lu, Muzi Li, Shixiang Gao, Shan Lu, Dongmei Zhou, Chunying Chen, Baoshan Xing, Liang Mao. Root Hair Apex is the Key Site for Symplastic Delivery of Graphene into Plants. Environmental Science & Technology 2022, 56 (17) , 12179-12189. https://doi.org/10.1021/acs.est.2c01926
    9. Yanan Zhang, GeYuan Qi, Lu Yao, Luqi Huang, Juan Wang, Wenyuan Gao. Effects of Metal Nanoparticles and Other Preparative Materials in the Environment on Plants: From the Perspective of Improving Secondary Metabolites. Journal of Agricultural and Food Chemistry 2022, 70 (4) , 916-933. https://doi.org/10.1021/acs.jafc.1c05152
    10. Mala Thapa, Tapodhara Datta Majumdar, Chandan Kumar Ghosh, Abhishek Mukherjee, Prasanta Kumar Biswas. Application of Zinc Sulfide Nanoparticles to Augment the Nutritional Status of the Mungbean [Vigna radiata (L.) R. Wilczek] Plant. ACS Food Science & Technology 2021, 1 (9) , 1595-1604. https://doi.org/10.1021/acsfoodscitech.1c00116
    11. Xiaoxuan Wang, Liwei Liu, Weilan Zhang, Xingmao Ma. Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine Learning. Environmental Science & Technology 2021, 55 (11) , 7491-7500. https://doi.org/10.1021/acs.est.1c01603
    12. Yi Wang, Chaoyi Deng, Swati Rawat, Keni Cota-Ruiz, Illya Medina-Velo, Jorge L. Gardea-Torresdey. Evaluation of the Effects of Nanomaterials on Rice (Oryza sativa L.) Responses: Underlining the Benefits of Nanotechnology for Agricultural Applications. ACS Agricultural Science & Technology 2021, 1 (2) , 44-54. https://doi.org/10.1021/acsagscitech.1c00030
    13. Bouchra Belhaj Abdallah, Irene Andreu, Abdelwaheb Chatti, Ahmed Landoulsi, Byron D. Gates. Size Fractionation of Titania Nanoparticles in Wild Dittrichia viscosa Grown in a Native Environment. Environmental Science & Technology 2020, 54 (14) , 8649-8657. https://doi.org/10.1021/acs.est.9b07267
    14. Yiming Su, Vanessa E. T. M. Ashworth, Nicholas K. Geitner, Mark R. Wiesner, Nichole Ginnan, Philippe Rolshausen, Caroline Roper, David Jassby. Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS Nano 2020, 14 (3) , 2966-2981. https://doi.org/10.1021/acsnano.9b07733
    15. Guangbo Qu, Tian Xia, Wenhua Zhou, Xue Zhang, Haiyan Zhang, Ligang Hu, Jianbo Shi, Xue-Feng Yu, Guibin Jiang. Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews 2020, 120 (4) , 2288-2346. https://doi.org/10.1021/acs.chemrev.9b00445
    16. Ping Wu, Peixin Cui, Huan Du, Marcelo E. Alves, Cun Liu, Dongmei Zhou, Yujun Wang. Dissolution and Transformation of ZnO Nano- and Microparticles in Soil Mineral Suspensions. ACS Earth and Space Chemistry 2019, 3 (4) , 495-502. https://doi.org/10.1021/acsearthspacechem.8b00165
    17. Jinpeng Wan, Ruting Wang, Ruling Wang, Qiong Ju, Yibo Wang, Jin Xu. Comparative Physiological and Transcriptomic Analyses Reveal the Toxic Effects of ZnO Nanoparticles on Plant Growth. Environmental Science & Technology 2019, 53 (8) , 4235-4244. https://doi.org/10.1021/acs.est.8b06641
    18. Li-Xia Su, Xing-Li Ma, Kun-Kun Zhao, Cheng-Long Shen, Qing Lou, Dong-Mei Yin, Chong-Xin Shan. Carbon Nanodots for Enhancing the Stress Resistance of Peanut Plants. ACS Omega 2018, 3 (12) , 17770-17777. https://doi.org/10.1021/acsomega.8b02604
    19. Vinay Kumar, Divya Sachdev, Renu Pasricha, Priyanka H. Maheshwari, Neetu Kumra Taneja. Zinc-Supported Multiwalled Carbon Nanotube Nanocomposite: A Synergism to Micronutrient Release and a Smart Distributor To Promote the Growth of Onion Seeds in Arid Conditions. ACS Applied Materials & Interfaces 2018, 10 (43) , 36733-36745. https://doi.org/10.1021/acsami.8b13464
    20. Hao Li, Jian Huang, Fang Lu, Yang Liu, Yuxiang Song, Yuhui Sun, Jun Zhong, Hui Huang, Yong Wang, Shuiming Li, Yeshayahu Lifshitz, Shuit-Tong Lee, Zhenhui Kang. Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials 2018, 1 (3) , 663-672. https://doi.org/10.1021/acsabm.8b00345
    21. Amarendra Dhar Dwivedi, Hakwon Yoon, Jitendra Pal Singh, Keun Hwa Chae, Sang-chul Rho, Dong Soo Hwang, Yoon-Seok Chang. Uptake, Distribution, and Transformation of Zerovalent Iron Nanoparticles in the Edible Plant Cucumis sativus. Environmental Science & Technology 2018, 52 (17) , 10057-10066. https://doi.org/10.1021/acs.est.8b01960
    22. Gauri A. Achari, Meenal Kowshik. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. Journal of Agricultural and Food Chemistry 2018, 66 (33) , 8647-8661. https://doi.org/10.1021/acs.jafc.8b00691
    23. Nyekachi C. Adele, Bryne T. Ngwenya, Kate V. Heal, J. Frederick W. Mosselmans. Soil Bacteria Override Speciation Effects on Zinc Phytotoxicity in Zinc-Contaminated Soils. Environmental Science & Technology 2018, 52 (6) , 3412-3421. https://doi.org/10.1021/acs.est.7b05094
    24. Roberta Ruotolo, Elena Maestri, Luca Pagano, Marta Marmiroli, Jason C. White, Nelson Marmiroli. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. Environmental Science & Technology 2018, 52 (5) , 2451-2467. https://doi.org/10.1021/acs.est.7b04121
    25. Ryan A. Davis, Devin A. Rippner, Sven H. Hausner, Sanjai J. Parikh, Andrew J. McElrone, and Julie L. Sutcliffe . In Vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa. Environmental Science & Technology 2017, 51 (21) , 12537-12546. https://doi.org/10.1021/acs.est.7b03333
    26. Yingqing Deng, Elijah J. Petersen, Katie E. Challis, Savelas A. Rabb, R. David Holbrook, James F. Ranville, Bryant C. Nelson, and Baoshan Xing . Multiple Method Analysis of TiO2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants. Environmental Science & Technology 2017, 51 (18) , 10615-10623. https://doi.org/10.1021/acs.est.7b01364
    27. Premysl Landa, Pavel Dytrych, Sylva Prerostova, Sarka Petrova, Radomira Vankova, and Tomas Vanek . Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper. Environmental Science & Technology 2017, 51 (18) , 10814-10824. https://doi.org/10.1021/acs.est.7b02265
    28. Yongguang Yin, Zhiqiang Tan, Ligang Hu, Sujuan Yu, Jingfu Liu, and Guibin Jiang . Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chemical Reviews 2017, 117 (5) , 4462-4487. https://doi.org/10.1021/acs.chemrev.6b00693
    29. Zhi Tang, Xiaoli Zhao, Tianhui Zhao, Hao Wang, Peifang Wang, Fengchang Wu, and John P. Giesy . Magnetic Nanoparticles Interaction with Humic Acid: In the Presence of Surfactants. Environmental Science & Technology 2016, 50 (16) , 8640-8648. https://doi.org/10.1021/acs.est.6b01749
    30. Premysl Landa, Sylva Prerostova, Sarka Petrova, Vojtech Knirsch, Radomira Vankova, and Tomas Vanek . The Transcriptomic Response of Arabidopsis thaliana to Zinc Oxide: A Comparison of the Impact of Nanoparticle, Bulk, and Ionic Zinc. Environmental Science & Technology 2015, 49 (24) , 14537-14545. https://doi.org/10.1021/acs.est.5b03330
    31. Chuanxin Ma, Sudesh Chhikara, Rakesh Minocha, Stephanie Long, Craig Musante, Jason C. White, Baoshan Xing, and Om Parkash Dhankher . Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase. Environmental Science & Technology 2015, 49 (16) , 10117-10126. https://doi.org/10.1021/acs.est.5b02007
    32. John P. Stegemeier, Fabienne Schwab, Benjamin P. Colman, Samuel M. Webb, Matthew Newville, Antonio Lanzirotti, Christopher Winkler, Mark R. Wiesner, and Gregory V. Lowry . Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa). Environmental Science & Technology 2015, 49 (14) , 8451-8460. https://doi.org/10.1021/acs.est.5b01147
    33. Varsha Srivastava, Deepak Gusain, and Yogesh Chandra Sharma . Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Industrial & Engineering Chemistry Research 2015, 54 (24) , 6209-6233. https://doi.org/10.1021/acs.iecr.5b01610
    34. Chuanxin Ma, Jason C. White, Om Parkash Dhankher, and Baoshan Xing . Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environmental Science & Technology 2015, 49 (12) , 7109-7122. https://doi.org/10.1021/acs.est.5b00685
    35. Daniela Montalvo, Fien Degryse, and Mike J. McLaughlin . Natural Colloidal P and Its Contribution to Plant P Uptake. Environmental Science & Technology 2015, 49 (6) , 3427-3434. https://doi.org/10.1021/es504643f
    36. Pierre Le Pape, Cécile Quantin, Guillaume Morin, Delphine Jouvin, Isabelle Kieffer, Olivier Proux, Jaafar Ghanbaja, and Sophie Ayrault . Zinc Speciation in the Suspended Particulate Matter of an Urban River (Orge, France): Influence of Seasonality and Urbanization Gradient. Environmental Science & Technology 2014, 48 (20) , 11901-11909. https://doi.org/10.1021/es500680x
    37. Qingxin Mu, Guibin Jiang, Lingxin Chen, Hongyu Zhou, Denis Fourches, Alexander Tropsha, and Bing Yan . Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews 2014, 114 (15) , 7740-7781. https://doi.org/10.1021/cr400295a
    38. M. Marmiroli, L. Pagano, M. L. Savo Sardaro, M. Villani, and N. Marmiroli . Genome-Wide Approach in Arabidopsis thaliana to Assess the Toxicity of Cadmium Sulfide Quantum Dots. Environmental Science & Technology 2014, 48 (10) , 5902-5909. https://doi.org/10.1021/es404958r
    39. Niya Mary Jacob, Giridhar Madras, Nagaraju Kottam, and Tiju Thomas . Multivalent Cu-Doped ZnO Nanoparticles with Full Solar Spectrum Absorbance and Enhanced Photoactivity. Industrial & Engineering Chemistry Research 2014, 53 (14) , 5895-5904. https://doi.org/10.1021/ie404378z
    40. Jae-Hwan Kim, Yongjik Lee, Eun-Ju Kim, Sungmin Gu, Eun Ju Sohn, Young Sook Seo, Hyun Joo An, and Yoon-Seok Chang . Exposure of Iron Nanoparticles to Arabidopsis thaliana Enhances Root Elongation by Triggering Cell Wall Loosening. Environmental Science & Technology 2014, 48 (6) , 3477-3485. https://doi.org/10.1021/es4043462
    41. Yan-Wen Wang, Aoneng Cao, Yu Jiang, Xin Zhang, Jia-Hui Liu, Yuanfang Liu, and Haifang Wang . Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria. ACS Applied Materials & Interfaces 2014, 6 (4) , 2791-2798. https://doi.org/10.1021/am4053317
    42. Lijuan Zhao, Youping Sun, Jose A. Hernandez-Viezcas, Alia D. Servin, Jie Hong, Genhua Niu, Jose R. Peralta-Videa, Maria Duarte-Gardea, and Jorge L. Gardea-Torresdey . Influence of CeO2 and ZnO Nanoparticles on Cucumber Physiological Markers and Bioaccumulation of Ce and Zn: A Life Cycle Study. Journal of Agricultural and Food Chemistry 2013, 61 (49) , 11945-11951. https://doi.org/10.1021/jf404328e
    43. Peng Wang, Neal W. Menzies, Enzo Lombi, Brigid A. McKenna, Bernt Johannessen, Chris J. Glover, Peter Kappen, and Peter M. Kopittke . Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata). Environmental Science & Technology 2013, 47 (23) , 13822-13830. https://doi.org/10.1021/es403466p
    44. Niya Mary Jacob, Praveena Kuruva, Giridhar Madras, and Tiju Thomas . Purifying Water Containing Both Anionic and Cationic Species Using a (Zn, Cu)O, ZnO, and Cobalt Ferrite Based Multiphase Adsorbent System. Industrial & Engineering Chemistry Research 2013, 52 (46) , 16384-16395. https://doi.org/10.1021/ie402727z
    45. Lok R. Pokhrel, Brajesh Dubey, and Phillip R. Scheuerman . Impacts of Select Organic Ligands on the Colloidal Stability, Dissolution Dynamics, and Toxicity of Silver Nanoparticles. Environmental Science & Technology 2013, 47 (22) , 12877-12885. https://doi.org/10.1021/es403462j
    46. J. Brad Glenn and Stephen J. Klaine . Abiotic and Biotic Factors That Influence the Bioavailability of Gold Nanoparticles to Aquatic Macrophytes. Environmental Science & Technology 2013, 47 (18) , 10223-10230. https://doi.org/10.1021/es4020508
    47. Mohammad H. Ghafariyan, Mohammad J. Malakouti, Mohammad R. Dadpour, Pieter Stroeve, and Morteza Mahmoudi . Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental Science & Technology 2013, 47 (18) , 10645-10652. https://doi.org/10.1021/es402249b
    48. Chuanxin Ma, Sudesh Chhikara, Baoshan Xing, Craig Musante, Jason C. White, and Om Parkash Dhankher . Physiological and Molecular Response of Arabidopsis thaliana (L.) to Nanoparticle Cerium and Indium Oxide Exposure. ACS Sustainable Chemistry & Engineering 2013, 1 (7) , 768-778. https://doi.org/10.1021/sc400098h
    49. Antonietta Quigg, Wei-Chun Chin, Chi-Shuo Chen, Saijin Zhang, Yuelu Jiang, Ai-Jun Miao, Kathleen A. Schwehr, Chen Xu, and Peter H. Santschi . Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic Matter. ACS Sustainable Chemistry & Engineering 2013, 1 (7) , 686-702. https://doi.org/10.1021/sc400103x
    50. Christian O. Dimkpa, Drew E. Latta, Joan E. McLean, David W. Britt, Maxim I. Boyanov, and Anne J. Anderson . Fate of CuO and ZnO Nano- and Microparticles in the Plant Environment. Environmental Science & Technology 2013, 47 (9) , 4734-4742. https://doi.org/10.1021/es304736y
    51. Zheng-Jiang Zhu, Huanhua Wang, Bo Yan, Hao Zheng, Ying Jiang, Oscar R. Miranda, Vincent M. Rotello, Baoshan Xing, and Richard W. Vachet . Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environmental Science & Technology 2012, 46 (22) , 12391-12398. https://doi.org/10.1021/es301977w
    52. Danielle L. Slomberg and Mark H. Schoenfisch . Silica Nanoparticle Phytotoxicity to Arabidopsis thaliana. Environmental Science & Technology 2012, 46 (18) , 10247-10254. https://doi.org/10.1021/es300949f
    53. Pola Miralles, Tamara L. Church, and Andrew T. Harris . Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants. Environmental Science & Technology 2012, 46 (17) , 9224-9239. https://doi.org/10.1021/es202995d
    54. Jonathan D. Judy, Jason M. Unrine, William Rao, Sue Wirick, and Paul M. Bertsch . Bioavailability of Gold Nanomaterials to Plants: Importance of Particle Size and Surface Coating. Environmental Science & Technology 2012, 46 (15) , 8467-8474. https://doi.org/10.1021/es3019397
    55. Zhenyu Wang, Xiaoyan Xie, Jian Zhao, Xiaoyun Liu, Wenqiang Feng, Jason C. White, and Baoshan Xing . Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (Zea mays L.). Environmental Science & Technology 2012, 46 (8) , 4434-4441. https://doi.org/10.1021/es204212z
    56. Xi Yang, Xiao Liu, Hujie Lu, Xiaofan Zhang, Liying Ma, Ruiling Gao, and Yanjun Zhang . Real-Time Investigation of Acute Toxicity of ZnO Nanoparticles on Human Lung Epithelia with Hopping Probe Ion Conductance Microscopy. Chemical Research in Toxicology 2012, 25 (2) , 297-304. https://doi.org/10.1021/tx2004823
    57. Donald H. Atha, Huanhua Wang, Elijah J. Petersen, Danielle Cleveland, R. David Holbrook, Pawel Jaruga, Miral Dizdaroglu, Baoshan Xing, and Bryant C. Nelson . Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environmental Science & Technology 2012, 46 (3) , 1819-1827. https://doi.org/10.1021/es202660k
    58. Peng Zhang, Yuhui Ma, Zhiyong Zhang, Xiao He, Zhi Guo, Renzhong Tai, Yayun Ding, Yuliang Zhao, and Zhifang Chai . Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environmental Science & Technology 2012, 46 (3) , 1834-1841. https://doi.org/10.1021/es2027295
    59. Imali A. Mudunkotuwa, Thilini Rupasinghe, Chia-Ming Wu, and Vicki H. Grassian . Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir 2012, 28 (1) , 396-403. https://doi.org/10.1021/la203542x
    60. Zhenyu Wang, Jing Li, Jian Zhao, and Baoshan Xing . Toxicity and Internalization of CuO Nanoparticles to Prokaryotic Alga Microcystis aeruginosa as Affected by Dissolved Organic Matter. Environmental Science & Technology 2011, 45 (14) , 6032-6040. https://doi.org/10.1021/es2010573
    61. Cyren M. Rico, Sanghamitra Majumdar, Maria Duarte-Gardea, Jose R. Peralta-Videa, and Jorge L. Gardea-Torresdey . Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. Journal of Agricultural and Food Chemistry 2011, 59 (8) , 3485-3498. https://doi.org/10.1021/jf104517j
    62. Mei Li, Lizhong Zhu, and Daohui Lin . Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components. Environmental Science & Technology 2011, 45 (5) , 1977-1983. https://doi.org/10.1021/es102624t
    63. Helen C. Poynton, James M. Lazorchak, Christopher A. Impellitteri, Mark E. Smith, Kim Rogers, Manomita Patra, Katherine A. Hammer, H. Joel Allen, and Chris D. Vulpe . Differential Gene Expression in Daphnia magna Suggests Distinct Modes of Action and Bioavailability for ZnO Nanoparticles and Zn Ions. Environmental Science & Technology 2011, 45 (2) , 762-768. https://doi.org/10.1021/es102501z
    64. Karin Birbaum, Robert Brogioli, Maya Schellenberg, Enrico Martinoia, Wendelin J. Stark, Detlef Günther, and Ludwig K. Limbach. No Evidence for Cerium Dioxide Nanoparticle Translocation in Maize Plants. Environmental Science & Technology 2010, 44 (22) , 8718-8723. https://doi.org/10.1021/es101685f
    65. Qiaoling Liu, Yuanyuan Zhao, Yinglang Wan, Junpeng Zheng, Xuejie Zhang, Chunru Wang, Xiaohong Fang, and Jinxing Lin . Study of the Inhibitory Effect of Water-Soluble Fullerenes on Plant Growth at the Cellular Level. ACS Nano 2010, 4 (10) , 5743-5748. https://doi.org/10.1021/nn101430g
    66. Jasmina Kurepa, Tatjana Paunesku, Stefan Vogt, Hans Arora, Bryan M. Rabatic, Jinju Lu, M. Beau Wanzer, Gayle E. Woloschak and Jan A. Smalle . Uptake and Distribution of Ultrasmall Anatase TiO2 Alizarin Red S Nanoconjugates in Arabidopsis thaliana. Nano Letters 2010, 10 (7) , 2296-2302. https://doi.org/10.1021/nl903518f
    67. Martha L. López-Moreno, Guadalupe de la Rosa, José A. Hernández-Viezcas, José R. Peralta-Videa and Jorge L. Gardea-Torresdey . X-ray Absorption Spectroscopy (XAS) Corroboration of the Uptake and Storage of CeO2 Nanoparticles and Assessment of Their Differential Toxicity in Four Edible Plant Species. Journal of Agricultural and Food Chemistry 2010, 58 (6) , 3689-3693. https://doi.org/10.1021/jf904472e
    68. Dimitrios Stampoulis, Saion K. Sinha and Jason C. White . Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environmental Science & Technology 2009, 43 (24) , 9473-9479. https://doi.org/10.1021/es901695c
    69. Qingxin Mu, Zhenwei Li, Xi Li, Sanjay R. Mishra, Bin Zhang, Zhikun Si, Lei Yang, Wei Jiang and Bing Yan. Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells. The Journal of Physical Chemistry C 2009, 113 (14) , 5390-5395. https://doi.org/10.1021/jp809493t
    70. Kun Yang, Daohui Lin and Baoshan Xing . Interactions of Humic Acid with Nanosized Inorganic Oxides. Langmuir 2009, 25 (6) , 3571-3576. https://doi.org/10.1021/la803701b
    71. Ahamadul Hoque Mandal, Surajit Ghosh, Ditipriya Adhurjya, Priyajit Chatterjee, Ishita Samajdar, Dip Mukherjee, Kishore Dhara, Nimai Chandra Saha, Giuseppe Piccione, Cristiana Roberta Multisanti, Shubhajit Saha, Caterina Faggio. Exploring the impact of zinc oxide nanoparticles on fish and fish-food organisms: A review. Aquaculture Reports 2024, 36 , 102038. https://doi.org/10.1016/j.aqrep.2024.102038
    72. Ying Yang, Guifeng Li, Zhida Li, Lu Lu. The roles of typical emerging pollutants on N2O emissions during biological nitrogen removal from wastewater. Science of The Total Environment 2024, 930 , 172851. https://doi.org/10.1016/j.scitotenv.2024.172851
    73. Sunil Soni, Ambuj Bhushan Jha, Rama Shanker Dubey, Pallavi Sharma. Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. Science of The Total Environment 2024, 925 , 171433. https://doi.org/10.1016/j.scitotenv.2024.171433
    74. Yilan Zeng, Marianna Molnárová, Martin Motola. Metallic nanoparticles and photosynthesis organisms: Comprehensive review from the ecological perspective. Journal of Environmental Management 2024, 358 , 120858. https://doi.org/10.1016/j.jenvman.2024.120858
    75. Komal Pandey, Rishabh Anand Omar, Nishith Verma, Govind Gupta. Fe–carbon nanofiber-modified Mo-MOF for the controlled release and translocation of micronutrients in plants. Environmental Science: Nano 2024, 11 (4) , 1597-1611. https://doi.org/10.1039/D3EN00833A
    76. Léa Mounier, Mathieu Pédrot, Martine Bouhnik-Le-Coz, Francisco Cabello-Hurtado. Iron oxide nanoparticles improving multimetal phytoextraction in Helianthus annuus. Chemosphere 2024, 353 , 141534. https://doi.org/10.1016/j.chemosphere.2024.141534
    77. Muhammad Jafir, Aqsa Khan, Adeel Ahmad, Khalid Hussain, Muhammad Zia ur Rehman, Samina Jam Nazeer Ahmad, Muhammad Irfan, Muhammad Azeem Sabir, Tanveer Hussain Khan, Usman Zulfiqar. Zinc Nanoparticles for Enhancing Plant Tolerance to Abiotic Stress: A Bibliometric Analysis and Review. Journal of Soil Science and Plant Nutrition 2024, 21 https://doi.org/10.1007/s42729-024-01733-w
    78. Pronabananda Das, Sapan Kumar Sen, Md. Serajum Manir, Md. Shahinur Islam, Abdul Al Mortuza, Nasrin Sultana, Md. Liakat Hossain, Md. Tanvir Ahsan, M. R. Hasan, ATM Fayezul Islam, ANK Mamun, M. A. Hakim. Impact of TiO2 Nanoparticles on Seed Germination and Growth of Nonabokra Rice, Mortality of Bean Weevil, and Antibacterial and Cytotoxic Activity. BioNanoScience 2024, 14 (1) , 102-118. https://doi.org/10.1007/s12668-023-01273-0
    79. Atikah Farooq, Ilham Khan, Junaid Shehzad, Murtaza Hasan, Ghazala Mustafa. Proteomic insights to decipher nanoparticle uptake, translocation, and intercellular mechanisms in plants. Environmental Science and Pollution Research 2024, 31 (12) , 18313-18339. https://doi.org/10.1007/s11356-024-32121-7
    80. Augustine Innalegwu Daniel, Lizex Hüsselmann, Oluwatosin Kudirat Shittu, Arun Gokul, Marshall Keyster, Ashwil Klein. Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture. Journal of Crop Science and Biotechnology 2024, 93 https://doi.org/10.1007/s12892-024-00235-6
    81. Boyi Liu, Yuanyuan Lu, Jiao Yang, Kamel Mohamed Eltohamy, Yunying Fang, Ehsan Tavakkoli, Xinqiang Liang. Navigating the complexity of colloidal phosphorus in water: Sources, occurrence, transformations, and eco-friendly removal strategies. Critical Reviews in Environmental Science and Technology 2024, 27 , 1-19. https://doi.org/10.1080/10643389.2024.2317685
    82. Guankai Qiu, Quanying Wang, Tianye Wang, Shaoqing Zhang, Ningning Song, Xiutao Yang, Ying Zeng, Zhenghao Sun, Guangfeng Wu, Hongwen Yu. Microplastic risk assessment and toxicity in plants: a review. Environmental Chemistry Letters 2024, 22 (1) , 209-226. https://doi.org/10.1007/s10311-023-01665-4
    83. Dibyaranjan Samal, Pratima Khandayataray, Meesala Sravani, Meesala Krishna Murthy. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. Environmental Science and Pollution Research 2024, 31 (6) , 8400-8428. https://doi.org/10.1007/s11356-023-31669-0
    84. Feng Zhang, Shuxin Li, Lichun Wang, Xiangnan Li. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. International Journal of Molecular Sciences 2024, 25 (3) , 1896. https://doi.org/10.3390/ijms25031896
    85. Fazal ur Rehman, Najeeba Paree Paker, Shafiq ur Rehman, Muhammad Tariq Javed, Muhammad Farooq Hussain Munis, Hassan Javed Chaudhary. Zinc oxide nanoparticles: biogenesis and applications against phytopathogens. Journal of Plant Pathology 2024, 106 (1) , 45-65. https://doi.org/10.1007/s42161-023-01522-x
    86. Jiao Guo, Qian Fu, Mengshan Tang, Junrui Bai, Ruiyu Liu, Haoyue Zhang, Kadambot H.M. Siddique, Hui Mao. Fulvic acid modified ZnO nanoparticles improve nanoparticle stability, mung bean growth, grain zinc content, and soil biodiversity. Science of The Total Environment 2024, 913 , 169840. https://doi.org/10.1016/j.scitotenv.2023.169840
    87. Aliya Sheik, Kugalur Shanmugam Ranjith, Seyed Majid Ghoreishian, Yujeong Yang, YongHyeon Park, Sejin Son, Young-Kyu Han, Yun Suk Huh. Green approach for the fabrication of dual-functional S/N doped graphene tagged ZnO nanograins for in vitro bioimaging and water pollutant remediation. Environmental Pollution 2024, 343 , 123077. https://doi.org/10.1016/j.envpol.2023.123077
    88. Mengen Kang, Yi Liu, Yuzhu Weng, Haoke Wang, Xue Bai. A critical review on the toxicity regulation and ecological risks of zinc oxide nanoparticles to plants. Environmental Science: Nano 2024, 11 (1) , 14-35. https://doi.org/10.1039/D3EN00630A
    89. M. Reshma Anjum, J. Maheswari, K. Anusha, B. Sravya, G. Narasimha, Kamel A. Abd-Elsalam. Maximizing Crop Yield with Macro and Micro Nano Enhanced Fertilizers. 2024, 1-33. https://doi.org/10.1007/978-3-031-41329-2_1
    90. Eman Tawfik, Mohamed Fathy Ahmed, Muthuraman Yuvaraj, K. S. Subramanian. Effects of Metal Nanoparticles on Plants and Related Microbes in Agroecosystems. 2024, 373-398. https://doi.org/10.1007/978-3-031-41329-2_14
    91. A. Najitha Banu, Neha Rana, Natasha Kudesia, Durdana Sadaf, A. M. Raut. Fabricated Nanofertilizers: A Clean and Feasible Substitute for Conventional Fertilizers. 2024, 35-59. https://doi.org/10.1007/978-3-031-41329-2_2
    92. Smruti Ranjan Padhan, Ipsita Kar, Ayesha Mohanty, Kaushik Kumar Panigrahi. Nanofertilizers: Types, Synthesis, Methods, and Mechanisms. 2024, 61-98. https://doi.org/10.1007/978-3-031-41329-2_3
    93. Mohammad Faizan, Fadime Karabulut, Ira Khan, Mohd.Sayeed Akhtar, Pravej Alam. Emergence of nanotechnology in efficient fertilizer management in soil. South African Journal of Botany 2024, 164 , 242-249. https://doi.org/10.1016/j.sajb.2023.12.004
    94. Gabriela Medina-Pérez, Laura Afanador-Barajas, Sergio Pérez-Ríos, Yendi E. Navarro-Noya, Marco Luna-Guido, Fabián Fernández-Luqueño, Luc Dendooven. Bacterial Communities in the Rhizosphere of Common Bean Plants (Phaseolus vulgaris L.) Grown in an Arable Soil Amended with TiO2 Nanoparticles. Agronomy 2024, 14 (1) , 74. https://doi.org/10.3390/agronomy14010074
    95. Arjmand Fatima, Tean Zaheer, Kaushik Pal, Rao Zahid Abbas, Tayyaba Akhtar, Sultan Ali, Muhammad Shahid Mahmood. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biological Trace Element Research 2024, 202 (1) , 268-290. https://doi.org/10.1007/s12011-023-03651-x
    96. Gouranga Upadhyaya, Aryadeep Roychoudhury. Potential of Silver and Zinc Nanoparticles in Mediating Abiotic Stress Tolerance in Crop Plants. 2024, 157-177. https://doi.org/10.1007/978-981-99-7673-7_8
    97. Anca Awal Sembada, I. Wuled Lenggoro. Transport of Nanoparticles into Plants and Their Detection Methods. Nanomaterials 2024, 14 (2) , 131. https://doi.org/10.3390/nano14020131
    98. Seyed Ali Johari, Mohammad Behzadi Tayemeh, Shakila Veisi, Mehrdad Sarkheil. Acute toxicity of nanoscale zeolitic imidazolate framework 8 (ZIF-8) to saltwater planktonic species Artemia salina and Nannochloropsis oculata. Environmental Science and Pollution Research 2024, 31 (3) , 4025-4035. https://doi.org/10.1007/s11356-023-31436-1
    99. Pathirannahalage Sahan Samuditha, Nadeesh Madusanka Adassooriya, Nazeera Salim. Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus : implications for widespread adoptions. Beilstein Journal of Nanotechnology 2024, 15 , 115-125. https://doi.org/10.3762/bjnano.15.11
    100. Junbo Peng, Xuncheng Wang, Hui Wang, Xinghong Li, Qi Zhang, Meng Wang, Jiye Yan. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. Molecular Plant Pathology 2024, 25 (1) https://doi.org/10.1111/mpp.13401
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect