
PRODUCTS OF NEARLY COMPACT SPACES

BY

C. T. SCARBOROUGH AND A. H. STONE(i)

1. Introduction. Topological properties similar to, but slightly weaker than,

compactness have often been considered (see [22, pp. 901, 902] for a partial list)

and it would be desirable to know to what extent the analog of Tychonoff's

theorem (that every product of compact spaces is compact) will hold for them.

That it is liable not to hold in general is shown by J. Novak's example [17], in

which the product of two countably compact regular spaces is so far from compact

as to have an open-closed infinite discrete subspace. On the other hand, Chevalley

and Frink [10] have shown that every product of absolutely closed spaces is

absolutely closed; Ikenaga [15] has proved a similar theorem for minimal Haus-

dorff spaces(2); and Glicksberg [11] has demonstrated that the product

theorem holds for pseudocompact spaces under simple supplementary hypotheses

(though not without them).

In this paper, we first (§2) extend the known results about absolutely closed

and minimal Hausdorff spaces, reformulating them so that they apply to non-

Hausdorff spaces. For minimal regular spaces the question is still open ; however,

we prove some results in this direction in §3. We obtain partial results for products

of feebly compact spaces in §4 (our results here are slight generalizations of those

of Glicksberg [11]), and for products of sequentially compact spaces in §5(3).

We use the term "space" to mean "topological space", no separation axioms

being assumed unless they are stated explicitly. "Compact" thus does not imply

"Hausdorff", but coincides with Bourbaki's "quasicompact". We denote the

space (X,3~) by X, leaving the topology 9~ to be understood. If {Xa | a e A} is a

family of spaces, we write their product X = n{^|a e Á) as \~[Xa for short;

it is understood that X is given the usual product topology, and (to eliminate
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trivial exceptions in stating theorems) that no Xa is empty. The projection of X

onto Xa is denoted by na. If x e X, na(x) is also written as xa. If J5" is a family of

subsets of X, na^ denotes the family {na(F) \Fe &} of subsets of Xa; thus if

SF is a filter base, then so is na&. An open (closed) filter base is a filter base con-

sisting of open (closed) sets. A regular filter base is an open filter base which is

equivalent to a closed filter base. The adherence of a filter base J5" is denoted by

adJ*. If A is a subset of a space X, the closure of A is written Ä or Cl(A). Finally,

a space X is "regular" if each point of X has a base of closed neighborhoods;

the Ty axiom is not assumed. A similar remark applies to "completely regular".

2. H(i) and LZ(ii) spaces.

2.1. We recall that a Hausdorff space is said to be absolutely closed^) if it is

closed in every Hausdorff space in which it is imbedded, and minimal Hausdorff

if it has no strictly smaller (less fine, weaker) Hausdorff topology. As is well known,

every compact Hausdorff space is minimal Hausdorff, and every minimal Haus-

dorff space is absolutely closed, and both converse statements are false — a

result which we shall sharpen later. As observed by Bourbaki [9, p. 160], absolute

closedness is equivalent (for Hausdorff spaces) to the condition:

H(i) Every open filter base on X has nonvoid adherence;

and minimal Hausdorfiness is equivalent to :

Lf(ii) Every open filter base on X which has a unique adherent point x is con-

vergent (necessarily to x) (5).

We shall study these properties H(i) and H(ii) for spaces which are not neces-

sarily Hausdorff; and for this purpose it is desirable to refine H(ii) further. We

say that a space X is (or satisfies) H(ii) nonvacuously if X satisfies H(ii) and

moreover has at least one open filter base with unique adherent point. (This

additional requirement is certainly met if X is Hausdorff and nonempty; but it

can happen more generally, as is shown in Example 2.3 below.) The same reason-

ing ([3], [5]) which shows that, for Hausdorff spaces, H(ii) implies H(i), also

shows more generally that any space which is H(ii) nonvacuously must be H(i).

However, a space can satisfy H(ii) vacuously without being fî(i); see Example

2.2 below.

We remark that H(i) is equivalent to the property that every open covering of X

has a finite dense subsystem (property (A) of the list in [22]), and that for regular

spaces H(i) is equivalent to compactness.

2.2. Example. Let Q be the space of rational numbers, in its usual topology,

and let £ be a countably infinite set topologized so that its closed proper subsets

(4) Or "iï-closed" in the terminology of Alexandroff and Hopf [1]; "Hausdorff complete"

jn the terminology of Banaschewski [3], [4]. We are grateful to M. P. Berri for calling these

papers of Banaschewski to our attention.

(5) These properties are called S(i) and 5(ii) by Berri [5]. We have renamed them so as to

have H for Hausdorff, R for regular (see §3).
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are precisely its finite subsets. Then Q x E is a countable Ty space which satisfies

//(ii) vacuously but does not satisfy H(i).

2.3. Example. Let X = E u{p}, where E is the space used in the previous

example and where p is an extra, isolated point. Then X is a countable Ty space

which satisfies //(ii) nonvacuously (and hence also satisfies H(i)), but it is clearly

non-Hausdorff.

2.4. Theorem.   If X = Y\Xa, then X is H(i) if and only if each Xa is H(i).

When the spaces are Hausdorff (so that H(i) coincides with absolute closedness),

the nontrivial implication here ("if") is proved by Chevalley and Frink in [10,

Theorem 3]; and their proof applies here without change.

2.5. Lemma. Let X =Y\Xa, where each Xa is an H(i) space. If !F is an open

filter base on X, and if teadn^ for some be A, then there exists a point

xe ad & such that xb = t.

Let JT be the family of open neighborhoods of t in Xb. Then

{7ts_1(TV) C\F:NeJi,Fe^}

is an open filter base on X, and is therefore contained in a maximal open filter

base Jt. We take xh = t, xa e ad na Jl'for ae A — {b}, and verify (as in the proof

of [10, Theorem 3]) that this works.

2.6. Lemma.    If X x Y satisfies //(ii) nonvacuously, then so does X.

Let !F be an open filter base on X with a unique adherent point x. By hypo-

thesis, there exists an open filter base S on X x Y having a unique adherent

point, say (t,y). Since X x Y is //(ii) nonvacuously, it is H(i), and therefore X

and Tare H(i). From the preceding lemma, riy 'S and n2 'S have the unique adher-

ent points / and y respectively. Then the open filter base

Jf={F x K2G\Fe^, Ge 'S}

has the unique adherent point (x,y). Since X is //(ii), ^"converges to (x,y),

whence J5" converges to x. Thus X satisfies condition //(ii); and it must do so

nonvacuously because ir y 'S has the unique adherent point t.

2.7. Theorem. IfX = \~\Xa, then X is //(ii) nonvacuously if and only if each

Xa is //(ii) nonvacuously.

"Only if" is immediate from the preceding lemma, so we assume that each Xa

is //(ii) nonvacuously; it is then H(i) also. Suppose J5" is an open filter base on X

with a unique adherent point x. Then, for each aeA,xa is an adherent point of

tiJF, and by Lemma 2.5 it must be the only one. Hence njF converges to xa for

each a e A, whence J5" converges to x, and X is //(ii).
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By hypothesis, for each aeA there exists an open filter base !Fa on Xa having

a unique adherent point ta. The product filter base \\^a (see [9, pp. 69, 70])

will then have the unique adherent point t. Thus X is Lf(ii) nonvacuously.

2.8. Corollary (Ikenaga). // X = Y[Xa, tnen X is minimal Hausdorff if

and only if each Xa is minimal Hausdorff (see(2)).

This is the special case of the theorem in which all the spaces are Hausdorff.

2.9. Theorem. If X = Y\Xa, then X satisfies H(ii) vacuously if and only if

at least one Xa does so(6).

Suppose some Xa, say Xy, is ff(ii) vacuously, and write X2 for the product of

all the others. Let J5" be a maximal open filter base on X = Xx x X2, with an

adherent point (x!,x2). Then itylF is a maximal open filter base on Xy (see [18,

p. 3]), and Xy is an adherent point of %x^. Since Xy is if(ii) vacuously, %yiF

must have another adherent point, say tv By maximality, %y!F converges to ty

also; and similarly it23F converges to x2. Hence J5" converges to both (x1(x2) and

(r1;x2). Thus no open filter base on X has a unique adherent point.

Conversely, if each Xa has an open filter base 3FB with a unique adherent point

x„, then the product filter base Yi^a wiU nave x = jTx„ as its unique adherent

point.

2.10. Corollary.   IfX = \\Xa and each Xa is Lf(ii), then so is X.

Note that the converse of this corollary, as it stands, is false, even for a product

of two factors. The space Q x E of Example 2.2 satisfies H(ii) (vacuously), but Q

does not.

2.11. Theorem. There exist minimal Hausdorff spaces of arbitrary infinite

cardinality which are not compact.

We begin with a standard example, due to Urysohn [24], of a countably in-

finite space X which is minimal Hausdorff but not compact; see [5, p. 98] for

details. Given an infinite cardinal K, take Z to be any compact Hausdorff space of

K points — for instance, the 1-point compactification of a discrete space of K

points. The space X x Z is of cardinality K; it is minimal Hausdorff by Corollary

2.8; and it is noncompact because X is noncompact (7).

2.12. Corollary. For each cardinal K~—c, there exists a minimal Haus-

dorff space of cardinality K which is nowhere locally compact.

For, with the preceding notation, X*° x Z is such a space. Note that this

(6) We assume in the proof that the set A has at least 2 elements; the theorem is trivial in the

remaining cases.

(?) We could of course use the "sum" (disjoint union) of X and Z instead of their product ;

but the proof, though more elementary, would be longer.
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corollary does not hold when K = K0 ; in fact, by a theorem of Berri [6, Theorem

4], every countable minimal Hausdorff space has an isolated point.

2.13. Theorem. There exist absolutely closed spaces of arbitrary infinite

cardinality which are not minimal Hausdorff.

The proof is similar to that of Theorem 2.11 ; we replace X by a suitable subspace

Y (consisting of the points au, c,, a, where i, j = 1,2, •••, in the notation of [5])

which is absolutely closed but not minimal Hausdorff. The space Tx Z is abso-

lutely closed by Theorem 2.4, and is not minimal Hausdorff by Corollary 2.8.

2.14. It has been shown by M. H. Stone [23, p. 435] (see also Obreanu [21]

for a simpler proof) that every Hausdorff space can be embedded as a dense

subset of some absolutely closed space. Analogously, Berri has asked [5, p. 105]

whether every Hausdorff space X can be embedded in some minimal Hausdorff

space. If X is completely regular, the answer is of course "yes", since X can

then be embedded in a compact Hausdorff space (e.g. ßX). We give another

sufficient condition, but the general question remains open(8). First, a definition:

Given a family LTa | a e A} of topologies on a set X, the smallest (coarsest,

weakest) topology on X which contains all the topologies 3~a is said to be "gen-

erated" by the family \ß~a\aeA}. It is the topology having (J{^"a|ae^4} as

subbase.

2.15. Theorem. // a space X has its topology generated by a family of

topologies, each of which is embeddable in a minimal Hausdorff space, then X

can be embedded in a minimal Hausdorff space.

Suppose the topology &~ of X is generated by the family {fTa \ a e A} of topo-

logies, and write Xa for X with topology ¡7~a. One can verify that the diagonal

map / of X in \~\Xa (that is, f(x)„ = x for all a e A) is a homeomorphism. By

Corollary 2.8, if each Xa is embeddable in a minimal Hausdorff space Ya, this

embeds X in the minimal Hausdorff space \~[Ya.

2.16. Corollary. If the topology of X is generated by a family of minimal

Hausdorff topologies, then X can be embedded in a minimal Hausdorff space.

We remark that the converse of Theorem 2.15 is trivially true (through of

course this theorem does not solve the problem) ; however, the converse of Corol-

lary 2.16 is not true. For if X is a countable Hausdorff space without isolated

points, it follows from the theorem of Berri quoted in 2.12 that the topology ST

of X contains no minimal Hausdorff topologies, and so ¡7~ is not generated by

such topologies. Such an X can be completely regular, and is then embeddable

(8) For dense embedding, the question has been answered by Banaschewski [4] : a Hausdorff

space X can be densely embedded in some minimal Hausdorff space if, and only if, X is semi-

regular.
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in a minimal Hausdorff space. On the other hand, such an X need not be regular

(see [12, p. 65] and [13, p. 508] for examples); and it would be interesting to

know it if can then be embedded in a minimal Hausdorff space.

It has recently been shown(9) that every Hausdorff space can be embedded as a

closed subset of an absolutely closed space, and every space X can be embedded

in a compact (not necessarily Hausdorff) space X* (for instance, its 1-point

compactification), and X* will be both H(i) and H(fii)—even nonvacuously if we

add an extra isolated point to X*; moreover, X* will be Ty if X is.

The following result will be useful later.

2.17. Theorem. Let X be an H(i) space, and Y an arbitrary space. If A is

an open subset of X x Y, then n2(Ä) is closed.

Let y be any point of Cl(7r2(,i)) ; we prove yen2(Â). Let Jf be the open

neighborhood system of y; then SF = {(X x N) C\A\NeJ/'} is an open filter

base on X x Y, so %y!F has nonvoid adherence. Take xead^J^; then, for

every neighborhood F of x and for all Ae JF, [(X x N)C\A] n(V x Y) ̂  0.

Thus (x, y) e Â,  and  y e n2(Ä).

In particular, this theorem applies whenever X is absolutely closed.

3. R(i) and R(ii) spaces.

3.1. A regular Ty space will be called "R-closed" if it is closed in every regular

Ty space in which it is embedded; it is said to be "minimal regular" if it has no

strictly smaller regular Ty topology. Banaschewski [3], and Berri and Sorgenfrey

[7], have shown that, for regular T¡ spaces, R-closedness is equivalent to the

condition:

R(i) Every regular filter base has nonvoid adherence;

and minimal regularity is equivalent to:

R(ii) Every regular filter base which has a unique adherent point is convergent.

Again we shall consider these properties for spaces which need not satisfy any

separation axioms. We say that a space X satisfies (or is) R(ii) nonvacuously if it

satisfies R(ii) and moreover there exists a regular filter base on X which has a

unique adherent point. (This additional requirement is certainly met if X is regular

Ty and nonempty; but it can happen more generally.) The same reasoning [7, p.

454] which shows that, for regular Ty spaces, R(ii) implies R(i), also shows more

generally that any space which is R(ii) nonvacuously must be R(i). However, a

space can be R(ii) vacuously without being R(i); see Examples 2.2 and 3.12.

We shall later answer a question raised in [7] by showing that, even for regular Ty

spaces, R(i) does not imply R(ii). (See Theorem 3.18.)(10)

For regular Ty spaces we clearly have compact •*> minimal Hausdorff => minimal

regular => R-closed; neither of the last two implications is reversible([7], 3.18).

(') Chen-tung Liu, unpublished.

(!0) This question has also been answered independently by Herrlich [14].
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We also have H(\) => R(i), and R-cIosed =-> feebly compact11). For completely

regular Ty spaces, Ä-cIosedness is equivalent to compactness [7, Theorem 3];

and this result extends to non-Tj spaces, though a different proof is required.

3.2. Theorem.   Every completely regular R(i) space is compact.

Let #" be a filter on a completely regular R(i) space X. There exist regular

filter bases which are subsets of J5" (e.g. {X}), and hence (Zorn's lemma) there

exists a maximal such, say 'S. Since X is R(i), we can take xead 'S; we prove

xead SP'. For if not, then there exists FelF such that x$F ; and by complete

regularity there exists a real-valued continuous function fon X such that/(x) = 0

and f(F) = 1. For each positive real a < 1, put Ha = {x|/(x) > a}; note that

the sets Ha form a regular filter base, and that Ha zd F. Then

3f= 'S v>{Har\G\0<a<l,Ge'S}

is a regular filter base contained in !F. By maximality of 'S, $f = 'S, and therefore

Hae 'S; but x$Cl(Ha), so x^ad'S, a contradiction. Therefore xeadJ% and X

is compact.

3.3. Corollary. If 8> is a filter on a completely regular R(\) space, and eS

is a regular filter base contained in J5" and maximal with respect to these prop-

erties, then ad 'S = ad J5".

This is shown by the proof of 3.2.

3.4. Corollary.   Every regular Lindelôf R(\) space is compact.

For it is normal [16, p. 113] and hence completely regular; so Theorem 3.2

applies.

3.5. Corollary.   Every countable regular R(i) space is compact.

3.6. Theorem.   Every continuous image of an R(i) space is R(i).

Proof.    Trivial.

3.7. Corollary.   If X = \[Xa is R(i), then so is each Xa.

In particular, if X is K-closed, then so is each Xa. It is unknown whether the

converse of this corollary is true, even in the regular Tt case. We shall obtain a

partial result in this direction later (3.14).

3.8. Theorem. // X = Y\Xa, then X satisfies R(ii) vacuously if and only if

at least one Xa does so (see)(6).

(H) For the definition of feeble compactness, see 4.1. In terms of the list in [22], it can

be shown that R(i) implies (E), but that even Ä(ii) nonvacuously does not imply (D) in general.

For regular spaces, (D) and (E) coincide with (B) (feeble compactness).
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Suppose some Xa, say Xy, is R(ii) vacuously, and write X2 for the product of

all the others. Let ¿F be a regular filter base on X = Xy x X2, with unique adherent

point (ay,a2); we derive a contradiction. For each Fef, let Fy denote its

"section" {x|(x,a2)eF}; we observe that ayeFy, because there exists F'e$F

such that Cl(F')cF, and we have (ay,a2)eCl(F') cf. It follows easily that

{Fy \FeêF} is a regular filter base onX„ with unique adherent point at; but

this contradicts the assumption on Xy.

The converse is proved in the same way as in the H{i\) case (2.9); we have only

to note that a product of regular filter bases is a regular filter base.

3.9. Theorem. If X =\\Xa, and if X is R(ii) nonvacuously, then each X„ is

R(ii) nonvacuously.

As in the proof of the preceding theorem, we may assume that there are only

two factors, X = Xy x X2. Assuming that X is R(ii) nonvacuously, we deduce

that Xy has the same property. For if not, then either Xy satisfies R(ii) vacuously

or it does not satisfy R(ii) at all. The first of these alternatives is excluded here, by

Theorem 3.8; hence Xy has a regular filter base #\ with a unique adherent point

Xy to which it does not converge. Also X2 has a regular filter base ¡F2 with unique

adherent point x2, because of Theorem 3.8. The product filter base 3Fy x 2F2 is

regular, has (xt,x2) as its unique adherent point, and does not converge to this

point, because 2F\ does not converge to Xy. This is a contradiction.

In particular, if a product of (regular Ty) spaces is minimal regular, then so is

each factor(12).

Again, it is unknown whether the converse of Theorem 3.9 is true, even in the

regular Ty case (when it is a problem of Berri and Sorgenfrey [7]). We obtain a

partial result later (3.16).

For regular (not necessarily Ty) spaces, the property of being R(ii) vacuously

can be simplified:

3.10. Theorem. If X is regular, then X is R(ii) vacuously if and only if,

for each xeX, there exists yeX — {x} such that x and y have the same

neighborhood systems.

For if X satisfies this last condition, then no filter base has a unique adherent

point. Conversely, the neighborhood system of x e X has at least the adherent

point x; if there is another adherent point y, then every neighborhood of y meets

every neighborhood of x, from which (in view of regularity) the condition follows.

3.11. Corollary. IfX is regular, then X is R(ii) vacuously if and only if it is

H(ii) vacuously.

Thus, in the regular case, Theorem 3.8 follows from Theorem 2.9.

(12) This is an unpublished result of M. P. Berri; cf. also [15].
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From Theorem 3.10 (or 3.8) it is easy to construct a regular space which ¡s R(ii)

vacuously without being R(i). (Of course it cannot be Ty too.)

3.12. Example. Let X be an infinite discrete space. Let Y be a 2-point space

with the trivial topology in which only 0 and Tare open. Then X x Yis regular,

and is R(ii) vacuously (from 3.8 or 3.10), but it is not R(i). This example also

illustrates that X x Yean be R(ii) vacuously though X is not R(ii).

3.13. Lemma. Let X be an H(i) space, Y an R(i) space, and 3F a regular

filter base on X x Y. Then (i) adn2!F ^ 0, (ii) if yeadn2¡F, there exists xeX

such that (x,y)ead !F.

By Theorem 2.17, ti2!F is a regular filter base on Y, so ad n2!F 5= 0. Let

y e ad %z&, and let Jf be the open neighborhood system of y. Then

J? = {(X x N) r.F\Ne jV, Fe&}

is an open filter base on X x Y, and Uy^C is an open filter base on X. Since X is

H(i), there exists xeadriyJF; and (x, y) is easily seen to be an adherent point of J5".

We remark that ad^J^^ 0 also; but, to obtain the symmetric situation

that to each x e ad rtySF there corresponds y e Y such that (x, y) e adJ*, it seems to

be necessary (it is certainly sufficient) to assume X regular and therefore compact.

3.14. Theorem.   If X is H(\) and Yis R(i), then X x Y is R(i).

The proof is immediate from Lemma 3.13.

3.15. Corollary The product of a compact Hausdorff (or, equivalently, a

regular absolutely closed) space and an R-closed space is R-closed.

3.16. Theorem.   If X is //(ii) and Y is R(ii), then X x Yis R(i\).

Let J-7 be a regular filter base on X x Y with unique adherent point (x, y).

By Lemma 3.13, y is the unique adherent point of %2!F; also (Theorem 2.17)

n2!F is a regular filter base on Y; hence n2iF converges to y. Thus, if x' e ad UySF,

it readily follows that (x',y) e ad J5", and therefore x' = x. So the open filter base

it, J5" has x as its unique adherent point, and it must converge to x. It follows that

J* converges to (x, y), as required.

3.17. Corollary (Ikenaga [15]). The product of a compact Hausdorff space

and a minimal regular space is minimal regular.

3.18. Theorem. There exist R-closed spaces of every uncountably infinite

cardinality which are not minimal regular.

As in 2.11 and 2.13, it will suffice to exhibit an .R-closed space T of cardinality

Hi which is not minimal regular; for then the space X x T, where X is a compact
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Hausdorff space of the appropriate cardinality, has the desired properties because

of Theorem 3.9 and 3.14. Using the notation of [7, p. 456], we let

T=U{Z,.|,-^l}u{p},

with the induced topology from Z, and verify that Tis R-closed but not minimal

regular; a detailed proof is given by Herrlich [14].

The cardinal K0 must be excluded in this theorem, because all countable

R-closed spaces are compact (Corollary 3.5)(13). However, it is not hard to see

that there exist Ty spaces of cardinal K0 which are R(i) but not R(ii).

3.19. Theorem. There exist minimal regular spaces of every uncountably

infinite cardinality which are not compact.

As shown in [7, p. 456], Tychonoff's regular but not completely regular space

is in fact minimal regular; and it has cardinalKt and is not compact. (Hence it is

not minimal Hausdorff or absolutely closed either.) As in 3.18 we can increase

the cardinal as desired. As before, the cardinal K0 must be excluded.

The next two results are partial answers to a question raised by Berri: Can

every regular space be embedded in a minimal regular space?

3.20. Theorem. If a space X has its topology generated by an H(i) (H(ii))

topology and an R(i) (R(ii)) topology, then X can be embedded in an R(i) (R(ii))

space.

The proof is similar to that of Theorem 2.15.

3.21. Corollary. If a space X has its topology generated by a compact

Hausdorff topology and an R-closed (minimal regular) topology, then X can be

embedded in an R-closed (minimal regular) space.

As with 2.16, there are spaces—for instance, any countable regular space having

no isolated points—to which this corollary does not apply, and for which the

question remains open. However, Herrlich [14] has given an example of a regular

space which cannot be embedded densely in any R-closed space.

4. Feebly compact spaces.

4.1. Definition. A space X is said to be "feebly compact", or "lightly compact",

if every locally finite system 3? of nonempty open sets in X is necessarily finite.

This is property (Bt) of the list in [22, p. 901], which mentions other characteri-

zations; in particular, rS may be restricted to consist of pairwise disjoint sets.

Every H(i) space is feebly compact (because (A) implies (B) in the notation of

[22]), and so is every countably compact space; moreover, every feebly compact

space is pseudocompact (that is, every continuous real function on the space is

bounded). The converses are false, in general [22, p. 902]. But for completely

(13) This remark also shows that Theorem 5 of [6] reduces to Theorem 4 of the~same paper.
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regular spaces it is known that pseudocompactness is equivalent to feeble com-

pactness, and for normal Ty spaces both these properties coincide with countable

compactness (though not with H(i)).

4.2. Theorem.   IfX = Y\Xa> and X is feebly compact, then so is each X„.

The proof is trivial. The question of interest is to what extent the converse is

true. Novak's example [17] shows that some supplementary conditions are

needed, even for products of 2 factors. We present some sufficient conditions,

which together give a slight generalization of a theorem of Glicksberg [11, The-

orem 4](14).

4.3. Definition. We recall that a point x of a space X is said to be a P-point

(in X) providing x is interior to every intersection of countably many neighborhoods

of x. (Examples abound in spaces of ordinals.)

4.4. Theorem. IfX = Y]Xa, where each Xa is feebly compact, and if (except

perhaps for one value of a) each non-P point of Xa has a countable base of

neighborhoods in Xa, then X is feebly compact.

This is essentially Theorem 4b of [11], to which it reduces when the spaces

are completely regular (in view of the fact that in a regular feebly compact space

each Gd point has a countable base of neighborhoods, by the same argument as

in [11, p. 378]). The proof is omitted, as it is substantially the same as

Glicksberg's.

We remark that Theorem 6 of [2] is an immediate corollary of the above

theorem.

4.5. Lemma. IfX is feebly compact and Y is compact then X x Y is feebly

compact.

This is probably known; the proof is straightforward, by familiar technique.

4.6. Theorem. IfX = \\Xa, where each Xa is feebly compact, and if (except

for perhaps one value of a) each Xa is locally compact, then X is feebly compact(15).

This is a slight extension of [11, Theorem 4a], and the idea of the proof is the

same; however, the proof in [11] now needs modification, so we give the argument.

As in [11] it suffices to prove the theorem for a product of countably many

factors, say X = Y[{x« | « = 0,1, ---}, where X„ is feebly compact for all n, and

locally compact for n > 0. Given a system ^ = {G(m)| m = 1,2, ••• } of non-

empty open sets in X, we must produce a cluster point of ^ in X. We may assume

that each G(m) is an "elementary" set of the form G(m) = \\Gn(m), where G„(m)

(14) Glicksberg's results are formulated for completely regular pseudocompact spaces.

Thus, in effect, our generalization consists in dropping the requirement of complete regularity.

(!5) Here a space is said to be "locally compact" if each point has a compact neighborhood

(not necessarily open-or closed); the Hausdorff separation axiom is not required.
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is a nonempty open subset of X„ (n = 0,1, • • • ). (It will also be true that Gn(m) = X„

for all n > n(m), but this fact plays no part in the argument.) The system

{Gi(m)|m = 1,2, •■•} of nonempty open subsets of Xy has a cluster point

x.eJf,; let Yy be a compact neighborhood of x.; the set My = [m\ Yy meets

Gy(m)} is thus infinite. Recursively we obtain, for each n = 1,2, •••, a compact set

Y„ ezz X„ such that the set M„ = {m | m e M„_ x and Y„ meets G„(m)} is infinite. Let

mr = rth member of Mr (r = 1,2, ••• ); note that, because My => M2 zo •••, we

have mt < m2< ■■•, and mreMs whenever r^.s. Consider the space X0 x Y,

where Y= f]{Y„|n = 1,2, ••• }; Yis compact, so (by Lemma 4.5) X0 x Y is

feebly compact.  Define, for r = 1,2,••»,

H(r) = G0(mr) x (Gy(mr) n Yy) x - x iGrimr) n Yr) x Yr+1 x  Yr+2 x »»• ,

a nonempty open subset of X0 x Y. The system {//(r)[r = 1,2, ••• } has a cluster

point p in X0 x Y ezz X. Each neighborhood of p in X contains one of the form

F= ]7{Fn|n = 0,1,---}, where Vn is a neighborhood of p„ in Xn, and where

K„ = X„ if n > /c. Then the set

Vo x (Fi O Yy) x .». x (^ O F») x rt+1 x Yk+2 x -

is a neighborhood of p in A"0 x T, and it therefore meets //(r) for infinitely many

values of r; but for each such r > k this means that F meets Gimr), and hence p

is a cluster point of 'S, as required.

A third result of Glicksberg [11, Theorem 4c] can be extended similarly.

4.7. Theorem. If X = Y[Xa, where each Xa is feebly compact, and if, for

some infinite cardinal K, each Xa is K-compact, and each non-P point ofXa has

a neighborhood basis consisting of at most K sets, then X is feebly compact.

As in [11] and 4.6, it suffices to prove the theorem for a countable product

X = YVe^n | « = 1>2, •••} ; and we prove more—that X is now countably compact.

Given a sequence {x(m) | m = 1,2, •••} of points of X, we must produce a cluster

point of it.

Let i y = first n, if any, for which infinitely many of the sets

Cl(x„(m)),    me TV = {1,2,-}

have nonempty intersection ; say p(1 e Ç\ {Cl(x(l(m)) | m eMy}, where My is an infi-

nite subset of TV. Let i2=first n > iu if any, such that there exists an infinite M2ezzMy

with some p,2e Q{Cl(xn(m))|meM2}; and so on. We get a subset/ = {iy,i2,---}

of TV, perhaps finite (or even empty), with it < i2 < ■-■. If / is finite, the process

terminates with some ir; we put M* = M, ( = TV if r = 0, that is, if / = 0). If / is

infinite, let ms = sth member of Ms (s = 1,2,•••), and put M* = {ms|seiV}.

In either case, we have that M* is an infinite subset of TV, and: (1) If ne I,

p„ e Cl(xn(m)) for all large enough m e M*. (2) If n $ I, the system

{Cl(x„(m)) | m e Ai*} is point-finite. Now put TV - / = J, and let J = {jy,j2,--- }

where U <j2 <•-• ; J may be finite (or empty—but if J = 0 we are through).
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Write Fk = {x(m)\ m eM*, m> k}, 3F0 = {Fk\k = 1,2, •••}; êF0 is a filter base.

Because Xji is R-compact (and therefore countably compact), tTj/^o) has an

adherent point q}l. Now qJt is not a F-point. For, by (2), we have qJleXji

— Cl(xy,(/«)) for all m > some k; hence, if qJt were a F-point it would have a

neighborhood disjoint from X/,(Fj^, giving a contradiction. We omit the rest of

the proof, as it is essentially the same as the second half of Glicksberg's.

5. Sequentially compact spaces.

5.1. Definition. As usual, we call a space X sequentially compact providing

each sequence {x(n)|n e N}, where N = {1,2, • • •}, has a convergent subsequence^ 6).

As is well known, every sequentially compact space is countably compact

and therefore feebly compact; in the converse direction, a countably compact

space, in which each non-F point has a countable base of neighborhoods, is

easily seen to be sequentially compact. Thus the case R=N0 of Theorem 4.7

(but not Theorem 4.4) is included in the following theorem.

5.2. Theorem. Every product of feebly compact spaces, of which all but

one (at most) are sequentially compact, is feebly compact.

The proof is immediate from the three observations: (1) it is enough to prove

this for products of countably many spaces, (2) every product of countably many

sequentially compact spaces is sequentially compact, (3) the product of a sequen-

tially compact space and a feebly compact space is feebly compact.

We now consider what can be said when all the factor spaces are sequentially

compact. The product will in general (when there are uncountably many factors)

not be sequentially compact, as the following example shows (5.3). It would be

interesting to know whether every product of sequentially compact spaces must

be countably compact. We shall see that this is so in two special cases (5.5, 5.8),

but the general question remains open.

5.3. Example.    The space 2° is not sequentially compact.

Here 2C denotes the product of c ( = 2So) spaces each consisting of 2 isolated

points ; it is, of course, compact. Let S be the set of all infinite subsets of the set N

of positive integers, a set of cardinal c, and for each se S choose disjoint infinite

subsets as, bs with union s. Let Xs be the space consisting of as and bs (regarded

as isolated points) as members ; then Y\{XS | s e S] is just 2C. We define a sequence

{x(n) | n e N} of points of 2C by specifying that the sth coordinate xs(n) is as if

n e as, bs if n e bs. If this has a convergent subsequence {x(n) | n e r}, then t e S,

and the rth coordinate xt(n) takes both the values at, b, for arbitrarily large net;

the sequence {xt(n) \ n e t] thus does not converge, giving a contradiction.

5.4. Corollary. Assuming the continuum hypothesis, the product of an

uncountable family of Tt spaces, each having more than one point, is never

sequentially compact.

(n) A sequence may converge to more than one limit.
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For it has 2e as a closed subspace.

5.5. Theorem. Every product of at most Kx sequentially compact spaces is

countably compact.

It is enough to consider X = \~\Xa where a now runs over the set of all countable

ordinals, and where each Xa is sequentially compact. Given a sequence

{x(n) | n e N} of points of X, we produce a cluster point. As in 5.3, let S be the

set of all infinite subsets of A. We construct, by transfinite induction over a, a set

s(a) e S for each a, such that

(1) The sequence {xa(n) | n e s(a)} converges to some ya e Xa.

(2) Whenever b <a, s(a) — s(b) is finite.

For suppose this done for all a' < a, and consider three cases.

(i) If a = 0, we take s(0) to be any member of S for which {x0(n) | n e s(0)}

converges (in X0).

(ii) If a = Z> + l, the sequence {xa(n)\nes(b)} (in Xa) has a convergent

subsequence {xa(n)\net} for some infinite t c s(b); we take s(a) = t, noting

that if b' <b then s(a) — s(b') <= s(b) — s(b') which is finite.

(iii) If a is a limit ordinal, we take a sequence of ordinals by < b2 < •■■ with

supZ>t = a. Take nt es(by) so large that, whenever n > ny and n es(b2) it follows

that nes(by); this is possible because, by assumption, s(b2) — s(by) is finite.

Take nk recursively so that nkes(bk), nk> nk_y, and whenever n>nk and

nes(bk+l) it follows that nes(bk). This defines a set t = {nk\keN}eS. The

sequence {xa(n)\net} has a convergent subsequence {xa(n)|nes(a)} for some

infinite s(a) cz t; we prove that s(a) has the desired properties. Clearly (1) continues

to hold, so we have only to verify (2). Suppose b < a; then, for large enough k,

we have b < bk< a. If nes(a) and n > nk, then n e t and so n = n¡ for some

i > k; thus n e s(b¡) and n > n,_l5 so n e s(£?,_j); and by repeating this argument

we obtain n e s(bk). Thus s(a) — s(bk) consists only of numbers ^ nk, and is therefore

finite. But s(bk) — s(b) is also finite; hence so is s(a) — s(b), as required.

Thus we have, for each aeA, a set s(a)eS such that (1) and (2) hold. The

point y = Y\{ya | a e A} (where ya is as in (1)) is easily seen to be a cluster point

of the sequence {x(n)|neA}, and the theorem is proved.

In considering the general question as to the countable compactness of an

arbitrary product X = Y\Xa of (sequentially compact) spaces, it is evidently

sufficient to restrict attention to the case in which each Xa is separable (has a

countable dense set). For, given a sequence {x(ri)\ n e N} in X, we may replace Xa

by the closure (in Xa) of the set {xa(n) \ne N}. Another reduction of the problem

is given by the next theorem; it is enough to consider products of at most 22°

factors.

5.6. Theorem. IfX = \[Xa, and every product of at most 22c of the spaces Xa

is countably compact, then X is countably compact.



1966] PRODUCTS OF NEARLY COMPACT SPACES 145

Given a sequence {x(ri) | n e N} in X, we observe that (for each ae A) Xa is

countably compact, so the sequence {xa(n) | n e N} has a nonempty set Ca of

cluster points in Xa. For each caeCa, and for each neighborhood Ua of ca, consider

the set {n | x„(n) e Ua} ; as Ua varies, these sets form a filter Fa(cJ on JV. Let i>a

denote the set {Faica)\caeCa}, and write {<!>„|aeA} = A. There are only 2C

filters on N, so the cardinal of A is at most22<\ For each A eA, put Ax = {a | <3>0 = A} ;

the sets ^ are disjoint and nonempty, and their union is A.

Each a eA belongs to a unique Ax, say for A = p(a). We select one element,

denoted by b(A), in each Ax. (Thus p(b(A)) = A.) Consider the product

Y= \~\{XbW IA eA}, and let it denote the projection of X onto Y. By hypothesis, Y

is countably compact, so the sequence {7i(x(n)) | n e N} has a cluster point y in Y.

We define a cluster point z of the given sequence in X as follows. For each

aeA,yHß,a))eCb(jl,a)); the filter Fb0¡W)(yb(j¡W)) is thus defined, and belongs to

®bo>(a)y But b(p(a)) and a belong to the same Ax, so ^t,^)) — ®a- We may therefore

choose z„eCa so that Fa(zf) = FblßW)(yb(pian). This defines z = J~I{z0\aeA}eX;

we verify that z is a cluster point of {x(n)| n eTV}.

Given a neighborhood t/ of z in Z, 1/ contains one of the form V= \\ Va,

where Va is a neighborhood of za in Xa, and where Ka = Xa for all ae A — E,

where £ is finite. The set p(E) is, of course, finite too. For each A e p(E), we consider

the finite set E <~>AX; for each aeE C\AX we have /<(a) = A and

{n | xa(«) e Va} e Fa(za) = FbWa))(yb,„W)) = FbW(ybW).

Since this is a filter, the intersection {n|xa(ri)e Va for all aeE n.4A} is also a

member of F^/y,^). That is, there exists a neighborhood Wb(X) of ybW such that

(1) xbW(n)e WbW if and only if xa(n)e Va for all aeE (~\AX.

We write FFfc(A) = Xbm if A £ p(£). The set IF = l~\{Wba) \ A eA} is then a neigh-

borhood of y in Y, and it therefore contains n(x(n)) for arbitrarily large n. From

(1) it follows that K(and so U) contains x(n) for arbitrarily large n, and the proof

is complete.

5.7. Corollary. If X = \~[Xa, where each Xa is first countable, and if every

product of at most 2cofthe spaces Xa is countably compact, then X is countably

compact.

For we can here restrict attention to countably-based filters on TV in the preceding

argument, and there are only c of these. (Note that the hypotheses imply that

each Xa is sequentially compact here.)

5.8. Theorem. Let Z be any sequentially compact space of at most c points.

Then, assuming the continuum hypothesis, ZK is countably compact, for every

cardinal X(17).

(! 7) The hypotheses apply whenever Z is sequentially compact, separable and Hausdorff.
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Here ZK denotes ]T{X„|ae,4} where each Xa = Z and A has cardinal K.

Because of Theorem 5.5, we may assume K ~¿. K, = c.

Given a sequence {x(n) | n e N} in ZK, we must as usual produce a cluster point.

Let if be the family of all sequences (of points of Z) (that is, of maps N -» Z) of

the form {x„(n)|neJV} for at least one aeA; then ¿F has cardinal g cNo = c,

and we write S? ={SX\XeA}, where A is an index set of cardinal ^ c. Let

Ax = {a | {xa(n) | n e A} = Sx}; the sets ^4A form a partition of /I. From each Ax

select one element b(X), and put F= ^{Jf^^)| AeA}. Let n denote the projection

of ZK onto Y. By Theorem 5.5, Y is countably compact, so the sequence

{n(x(n)) | n e N} has a cluster point y. For each aeA define p(o) = the value of X

for which a e y4A, and take pa = y^,,). By an argument similar to that in 5.6 one

verifies that p = Y\{pa | a e A} is a cluster point of the given sequence (x(n) \neN},

as required.
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