ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Gigahertz Integrated Graphene Ring Oscillators

View Author Information
L-NESS, Department of Physics, Politecnico di Milano, Polo di Como, Via Anzani 42, 22100 Como, Italy
Department of Science and High Technology, Universitá degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
§ Department of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
Micro and Nanotechnology Lab, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
Beckman Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2013, 7, 6, 5588–5594
Publication Date (Web):May 28, 2013
https://doi.org/10.1021/nn401933v
Copyright © 2013 American Chemical Society

    Article Views

    2817

    Altmetric

    -

    Citations

    69
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Ring oscillators (ROs) are the most important class of circuits used to evaluate the performance limits of any digital technology. However, ROs based on low-dimensional nanomaterials (e.g., 1-D nanotubes, nanowires, 2-D MoS2) have so far exhibited limited performance due to low current drive or large parasitics. Here we demonstrate integrated ROs fabricated from wafer-scale graphene grown by chemical vapor deposition. The highest oscillation frequency was 1.28 GHz, while the largest output voltage swing was 0.57 V. Both values remain limited by parasitic capacitances in the circuit rather than intrinsic properties of the graphene transistor components, suggesting further improvements are possible. The fabricated ROs are the fastest realized in any low-dimensional nanomaterial to date and also the least sensitive to fluctuations in the supply voltage. They represent the first integrated graphene oscillators of any kind and can also be used in a wide range of applications in analog electronics. As a demonstration, we also realized the first stand-alone graphene mixers that do not require external oscillators for frequency conversion. The first gigahertz multitransistor graphene integrated circuits demonstrated here pave the way for application of graphene in high-speed digital and analog circuits in which high operating speed could be traded off against power consumption.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Measurements and discussions on top-gate capacitance, dc characteristics of individual FETs and inverters, extensive modeling and simulations of the fabricated ROs, scaling of the oscillation frequency, detuning of the ROs, the highest frequencies and voltage swings of the fabricated ROs, higher harmonics, output bandwidth, influence of the supply voltage on the oscillation frequency, circuit diagram and output signals in the time domain of the stand-alone graphene mixers, nonlinear intermodulations in the mixers, noise margin, phase noise, Raman spectrum of monolayer graphene, contact resistance, complete circuit layout, back-gating used to shift the Dirac point, and drift of the transfer curves at large back-gate voltages. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 69 publications.

    1. Kai Xu, Dongxue Chen, Fengyou Yang, Zhenxing Wang, Lei Yin, Feng Wang, Ruiqing Cheng, Kaihui Liu, Jie Xiong, Qian Liu, and Jun He . Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. Nano Letters 2017, 17 (2) , 1065-1070. https://doi.org/10.1021/acs.nanolett.6b04576
    2. Wonjae Kim, Changfeng Li, Nikolai Chekurov, Sanna Arpiainen, Deji Akinwande, Harri Lipsanen, and Juha Riikonen . All-Graphene Three-Terminal-Junction Field-Effect Devices as Rectifiers and Inverters. ACS Nano 2015, 9 (6) , 5666-5674. https://doi.org/10.1021/nn507199n
    3. Deep Jariwala, Vinod K. Sangwan, Lincoln J. Lauhon, Tobin J. Marks, and Mark C. Hersam . Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8 (2) , 1102-1120. https://doi.org/10.1021/nn500064s
    4. Qingxiang Ji, Bohan Li, Muamer Kadic, Changguo Wang. Thermal conductivity of wrinkled graphene ring with defects. Journal of Physics: Condensed Matter 2024, 36 (28) , 285704. https://doi.org/10.1088/1361-648X/ad3b59
    5. Yosef T Aladadi, Majeed A S Alkanhal. Poles and residues of lossy and dispersive electromagnetic metamaterials. Physica Scripta 2024, 99 (5) , 055030. https://doi.org/10.1088/1402-4896/ad3a44
    6. Diogo Baptista, Ivo Colmiais, Vitor Silva, Pedro Alpuim, Paulo M. Mendes. 2D Electronic Circuits for Sensing Applications. 2023, 1-23. https://doi.org/10.1002/9783527843374.ch1
    7. Dongxu Fan, Weisheng Li, Hao Qiu, Yifei Xu, Si Gao, Lei Liu, Taotao Li, Futao Huang, Yun Mao, Wenbin Zhou, Wanqing Meng, Mengxin Liu, Xuecou Tu, Peng Wang, Zhihao Yu, Yi Shi, Xinran Wang. Two-dimensional semiconductor integrated circuits operating at gigahertz frequencies. Nature Electronics 2023, 6 (11) , 879-887. https://doi.org/10.1038/s41928-023-01052-5
    8. M. A. Torkaman-Asadi, M. A. Kouchakzadeh. Fracture analysis of pre-cracked graphene layer sheets using peridynamic theory. International Journal of Fracture 2023, 243 (2) , 229-245. https://doi.org/10.1007/s10704-023-00744-5
    9. Chenwei Fan, Xiaohan Cheng, Lin Xu, Maguang Zhu, Sujuan Ding, Chuanhong Jin, Yunong Xie, Lian‐Mao Peng, Zhiyong Zhang. Monolithic three‐dimensional integration of aligned carbon nanotube transistors for high‐performance integrated circuits. InfoMat 2023, 5 (7) https://doi.org/10.1002/inf2.12420
    10. Mohamed Saeed, Paula Palacios, Muh‐Dey Wei, Eyyub Baskent, Chun‐Yu Fan, Burkay Uzlu, Kun‐Ta Wang, Andreas Hemmetter, Zhenxing Wang, Daniel Neumaier, Max C. Lemme, Renato Negra. Graphene‐Based Microwave Circuits: A Review. Advanced Materials 2022, 34 (48) https://doi.org/10.1002/adma.202108473
    11. Francisco Pasadas, Pedro C. Feijoo, Nikolaos Mavredakis, Aníbal Pacheco‐Sanchez, Ferney A. Chaves, David Jiménez. Compact Modeling Technology for the Simulation of Integrated Circuits Based on Graphene Field‐Effect Transistors. Advanced Materials 2022, 34 (48) https://doi.org/10.1002/adma.202201691
    12. Luca Anzi, Artur Tuktamyshev, Alexey Fedorov, Amaia Zurutuza, Stefano Sanguinetti, Roman Sordan. Controlling the threshold voltage of a semiconductor field-effect transistor by gating its graphene gate. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00302-y
    13. Ali Safari. A universal current-mode current conveyor filter based on GFET inverter. International Journal of Electronics Letters 2022, 10 (4) , 475-488. https://doi.org/10.1080/21681724.2021.2001848
    14. Ivo Colmiais, Vitor Silva, Jérôme Borme, Pedro Alpuim, Paulo M. Mendes. Towards RF graphene devices: A review. FlatChem 2022, 35 , 100409. https://doi.org/10.1016/j.flatc.2022.100409
    15. M.A. Torkaman-Asadi, M.A. Kouchakzadeh. Atomistic simulations of mechanical properties and fracture of graphene: A review. Computational Materials Science 2022, 210 , 111457. https://doi.org/10.1016/j.commatsci.2022.111457
    16. Priya Kaushal, Gargi Khanna. The role of 2-Dimensional materials for electronic devices. Materials Science in Semiconductor Processing 2022, 143 , 106546. https://doi.org/10.1016/j.mssp.2022.106546
    17. Timothy D. Brown, Suhas Kumar, R. Stanley Williams. Physics-based compact modeling of electro-thermal memristors: Negative differential resistance, local activity, and non-local dynamical bifurcations. Applied Physics Reviews 2022, 9 (1) https://doi.org/10.1063/5.0070558
    18. Leysan Galiakhmetova, Karina Krylova, Igor Kosarev. Dislocation dipole movement in graphene at finite temperatures: Molecular dynamics study. 2022, 020015. https://doi.org/10.1063/5.0098856
    19. Nadia Norhakim, Huzein Fahmi Hawari, Zainal Arif Burhanudin. Assessing the Figures of Merit of Graphene-Based Radio Frequency Electronics: A Review of GFET in RF Technology. IEEE Access 2022, 10 , 17030-17042. https://doi.org/10.1109/ACCESS.2022.3147832
    20. Monica La Mura, Patrizia Lamberti, Vincenzo Tucci. Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors. Nanomaterials 2021, 11 (11) , 3121. https://doi.org/10.3390/nano11113121
    21. Nikolaos Mavredakis, David Jimenez. Input-Referred Low-Frequency Noise Analysis for Single-Layer Graphene FETs. IEEE Transactions on Electron Devices 2021, 68 (9) , 4762-4765. https://doi.org/10.1109/TED.2021.3100003
    22. Tian Carey, Adrees Arbab, Luca Anzi, Helen Bristow, Fei Hui, Sivasambu Bohm, Gwenhivir Wyatt‐Moon, Andrew Flewitt, Andrew Wadsworth, Nicola Gasparini, Jong M. Kim, Mario Lanza, Iain McCulloch, Roman Sordan, Felice Torrisi. Inkjet Printed Circuits with 2D Semiconductor Inks for High‐Performance Electronics. Advanced Electronic Materials 2021, 7 (7) https://doi.org/10.1002/aelm.202100112
    23. Danlu Zhang, Le Zhang, Xuemeng Feng, Tianyi Han, Ruiyan Gao, Shouheng Chen, Ning Wang, Xiaolong Chen. A Tunable Resonant Circuit Based on Graphene Quantum Capacitor. Advanced Electronic Materials 2021, 7 (4) https://doi.org/10.1002/aelm.202001009
    24. Yosef T. Aladadi, Majeed A. S. Alkanhal. Classification and characterization of electromagnetic materials. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-68298-3
    25. Nikolaos Mavredakis, Ramon Garcia Cortadella, Xavi Illa, Nathan Schaefer, Andrea Bonaccini Calia, Anton-Guimerà-Brunet, Jose A. Garrido, David Jiménez. Bias dependent variability of low-frequency noise in single-layer graphene FETs. Nanoscale Advances 2020, 2 (11) , 5450-5460. https://doi.org/10.1039/D0NA00632G
    26. Nikolaos Mavredakis, Wei Wei, Emiliano Pallecchi, Dominique Vignaud, Henri Happy, Ramon Garcia Cortadella, Nathan Schaefer, Andrea Bonaccini Calia, Jose Antonio Garrido, David Jimenez. Low-Frequency Noise Parameter Extraction Method for Single-Layer Graphene FETs. IEEE Transactions on Electron Devices 2020, 67 (5) , 2093-2099. https://doi.org/10.1109/TED.2020.2978215
    27. Yosef T. Aladadi, Majeed A. S. Alkanhal. Electromagnetic Characterization of Graphene-Plasma Formations. IEEE Transactions on Plasma Science 2020, 48 (4) , 852-857. https://doi.org/10.1109/TPS.2020.2982008
    28. Dalal Fadil, Vikram Passi, Wei Wei, Soukaina Ben Salk, Di Zhou, Wlodek Strupinski, Max C. Lemme, Thomas Zimmer, Emiliano Pallecchi, Henri Happy, Sebastien Fregonese. A Broadband Active Microwave Monolithically Integrated Circuit Balun in Graphene Technology. Applied Sciences 2020, 10 (6) , 2183. https://doi.org/10.3390/app10062183
    29. Kishan Ashokbhai Patel, Ryan W Grady, Kirby K H Smithe, Eric Pop, Roman Sordan. Ultra-scaled MoS 2 transistors and circuits fabricated without nanolithography. 2D Materials 2020, 7 (1) , 015018. https://doi.org/10.1088/2053-1583/ab4ef0
    30. Ali Safari, Massoud Dousti, Mohammad Bagher Tavakoli. Distributed Amplifier Based on Monolayer Graphene Field Effect Transistor. Journal of Circuits, Systems and Computers 2019, 28 (14) , 1950231. https://doi.org/10.1142/S0218126619502311
    31. Ali Safari, Massoud Dousti, Mohammad Bagher Tavakoli. Monolayer Graphene Field Effect Transistor-Based Operational Amplifier. Journal of Circuits, Systems and Computers 2019, 28 (03) , 1950052. https://doi.org/10.1142/S021812661950052X
    32. Carlo Gilardi, Paolo Pedrinazzi, Kishan Ashokbhai Patel, Luca Anzi, Birong Luo, Timothy J. Booth, Peter Bøggild, Roman Sordan. Graphene–Si CMOS oscillators. Nanoscale 2019, 11 (8) , 3619-3625. https://doi.org/10.1039/C8NR07862A
    33. Haimeng Zhang, Han Wang. Two‐dimensional Materials for Electronic Applications. 2018, 55-90. https://doi.org/10.1002/9783527811861.ch3
    34. Jangyup Son, Junyoung Kwon, SunPhil Kim, Yinchuan Lv, Jaehyung Yu, Jong-Young Lee, Huije Ryu, Kenji Watanabe, Takashi Taniguchi, Rita Garrido-Menacho, Nadya Mason, Elif Ertekin, Pinshane Y. Huang, Gwan-Hyoung Lee, Arend M. van der Zande. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06524-3
    35. Luca Anzi, Aida Mansouri, Paolo Pedrinazzi, Erica Guerriero, Marco Fiocco, Amaia Pesquera, Alba Centeno, Amaia Zurutuza, Ashkan Behnam, Enrique A Carrion, Eric Pop, Roman Sordan. Ultra-low contact resistance in graphene devices at the Dirac point. 2D Materials 2018, 5 (2) , 025014. https://doi.org/10.1088/2053-1583/aaab96
    36. Yingjun Yang, Li Ding, Hengjia Chen, Jie Han, Zhiyong Zhang, Lian-Mao Peng. Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Research 2018, 11 (1) , 300-310. https://doi.org/10.1007/s12274-017-1632-1
    37. Donglai Zhong, Zhiyong Zhang, Li Ding, Jie Han, Mengmeng Xiao, Jia Si, Lin Xu, Chenguang Qiu, Lian-Mao Peng. Gigahertz integrated circuits based on carbon nanotube films. Nature Electronics 2018, 1 (1) , 40-45. https://doi.org/10.1038/s41928-017-0003-y
    38. Tian Carey, Stefania Cacovich, Giorgio Divitini, Jiesheng Ren, Aida Mansouri, Jong M. Kim, Chaoxia Wang, Caterina Ducati, Roman Sordan, Felice Torrisi. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01210-2
    39. Erica Guerriero, Paolo Pedrinazzi, Aida Mansouri, Omid Habibpour, Michael Winters, Niklas Rorsman, Ashkan Behnam, Enrique A. Carrion, Amaia Pesquera, Alba Centeno, Amaia Zurutuza, Eric Pop, Herbert Zirath, Roman Sordan. High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02541-2
    40. Himadri Pandey, Satender Kataria, Amit Gahoi, Max C. Lemme. High Voltage Gain Inverters From Artificially Stacked Bilayer CVD Graphene FETs. IEEE Electron Device Letters 2017, 38 (12) , 1747-1750. https://doi.org/10.1109/LED.2017.2768076
    41. Jorge-Daniel Aguirre-Morales, Sebastien Fregonese, Chhandak Mukherjee, Wei Wei, Henri Happy, Cristell Maneux, Thomas Zimmer. A Large-Signal Monolayer Graphene Field-Effect Transistor Compact Model for RF-Circuit Applications. IEEE Transactions on Electron Devices 2017, 64 (10) , 4302-4309. https://doi.org/10.1109/TED.2017.2736444
    42. Jingang Wang, Fengcai Ma, Wenjie Liang, Mengtao Sun. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics 2017, 2 , 6-34. https://doi.org/10.1016/j.mtphys.2017.07.001
    43. Yuki Anno, Masato Takeuchi, Masaya Matsuoka, Kuniharu Takei, Seiji Akita, Takayuki Arie. Effect of defect-induced carrier scattering on the thermoelectric power of graphene. Applied Physics Letters 2017, 110 (26) https://doi.org/10.1063/1.4989820
    44. Tanmoy Das, Jong-Hyun Ahn. Development of electronic devices based on two-dimensional materials. FlatChem 2017, 3 , 43-63. https://doi.org/10.1016/j.flatc.2017.05.001
    45. Ning C. Wang, Enrique A. Carrion, Maryann C. Tung, Eric Pop. Reducing graphene device variability with yttrium sacrificial layers. Applied Physics Letters 2017, 110 (22) https://doi.org/10.1063/1.4984090
    46. Xianjun Huang, Ting Leng, Mengjian Zhu, Xiao Zhang, JiaCing Chen, KuoHsin Chang, Mohammed Aqeeli, Andre K. Geim, Kostya S. Novoselov, Zhirun Hu. Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications. Scientific Reports 2016, 5 (1) https://doi.org/10.1038/srep18298
    47. Fei Hui, Chengbin Pan, Yuanyuan Shi, Yanfeng Ji, Enric Grustan-Gutierrez, Mario Lanza. On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering 2016, 163 , 119-133. https://doi.org/10.1016/j.mee.2016.06.015
    48. C Melios, S Spencer, A Shard, W Strupiński, S R P Silva, O Kazakova. Surface and interface structure of quasi-free standing graphene on SiC. 2D Materials 2016, 3 (2) , 025023. https://doi.org/10.1088/2053-1583/3/2/025023
    49. Ime J. Umoh, Zakaria Moktadir, Shuojin Hang, Tom J. Kazmierski, Hiroshi Mizuta. A circuit model for defective bilayer graphene transistors. Solid-State Electronics 2016, 119 , 33-38. https://doi.org/10.1016/j.sse.2016.02.003
    50. B.M. Nichols, A.L. Mazzoni, M.L. Chin, P.B. Shah, S. Najmaei, R.A. Burke, M. Dubey. Advances in 2D Materials for Electronic Devices. 2016, 221-277. https://doi.org/10.1016/bs.semsem.2016.03.001
    51. Song-Lin Li, Kazuhito Tsukagoshi, Emanuele Orgiu, Paolo Samorì. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chemical Society Reviews 2016, 45 (1) , 118-151. https://doi.org/10.1039/C5CS00517E
    52. Song-Lin Li, Kazuhito Tsukagoshi. Carrier Injection and Scattering in Atomically Thin Chalcogenides. Journal of the Physical Society of Japan 2015, 84 (12) , 121011. https://doi.org/10.7566/JPSJ.84.121011
    53. Jincheng Fan, Tengfei Li, Igor Djerdj. Two-Dimensional Atomic Crystals: Paving New Ways for Nanoelectronics. Journal of Electronic Materials 2015, 44 (11) , 4080-4097. https://doi.org/10.1007/s11664-015-3947-6
    54. Yuki Anno, Kuniharu Takei, Seiji Akita, Takayuki Arie. Enhancing the Thermoelectric Device Performance of Graphene Using Isotopes and Isotopic Heterojunctions. Advanced Electronic Materials 2015, 1 (9) https://doi.org/10.1002/aelm.201500175
    55. Daniel Neumaier, Herbert Zirath. High frequency graphene transistors: can a beauty become a cash cow?. 2D Materials 2015, 2 (3) , 030203. https://doi.org/10.1088/2053-1583/2/3/030203
    56. Mario Iannazzo, Valerio Lo Muzzo, Saul Rodriguez, Ana Rusu, Max Lemme, Eduard Alarcon. Design exploration of graphene-FET based ring-oscillator circuits: A test-bench for large-signal compact models. 2015, 2716-2719. https://doi.org/10.1109/ISCAS.2015.7169247
    57. Saul Rodriguez, Ana Rusu, Jose M. de la Rosa. Overview of carbon-based circuits and systems. 2015, 2912-2915. https://doi.org/10.1109/ISCAS.2015.7169296
    58. Xiao‐Dong Wen, Tao Yang, Eric S. W. Kong. Devices Based on Graphene and Graphane. 2015, 45-80. https://doi.org/10.1002/9781118867204.ch3
    59. Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal'ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis, Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen, Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini, Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng, Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander, Jari Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7 (11) , 4598-4810. https://doi.org/10.1039/C4NR01600A
    60. Massimiliano Bianchi, Erica Guerriero, Marco Fiocco, Ruggero Alberti, Laura Polloni, Ashkan Behnam, Enrique A. Carrion, Eric Pop, Roman Sordan. Scaling of graphene integrated circuits. Nanoscale 2015, 7 (17) , 8076-8083. https://doi.org/10.1039/C5NR01126D
    61. Sebastien Fregonese, Magali de Matos, David Mele, Cristell Maneux, Henri Happy, Thomas Zimmer. Source-Pull and Load-Pull Characterization of Graphene FET. IEEE Journal of the Electron Devices Society 2015, 3 (1) , 49-53. https://doi.org/10.1109/JEDS.2014.2360408
    62. Gianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomás Palacios, Daniel Neumaier, Alan Seabaugh, Sanjay K. Banerjee, Luigi Colombo. Electronics based on two-dimensional materials. Nature Nanotechnology 2014, 9 (10) , 768-779. https://doi.org/10.1038/nnano.2014.207
    63. G. N. Dash, Satya R. Pattanaik, Sriyanka Behera. Graphene for Electron Devices: The Panorama of a Decade. IEEE Journal of the Electron Devices Society 2014, 2 (5) , 77-104. https://doi.org/10.1109/JEDS.2014.2328032
    64. Enrique A. Carrion, Andrey Y. Serov, Sharnali Islam, Ashkan Behnam, Akshay Malik, Feng Xiong, Massimiliano Bianchi, Roman Sordan, Eric Pop. Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors. IEEE Transactions on Electron Devices 2014, 61 (5) , 1583-1589. https://doi.org/10.1109/TED.2014.2309651
    65. Johannes Kirschner, Zhenxing Wang, Siegfried Eigler, Hans-Peter Steinrück, Christof M. Jäger, Timothy Clark, Andreas Hirsch, Marcus Halik. Driving forces for the self-assembly of graphene oxide on organic monolayers. Nanoscale 2014, 6 (19) , 11344-11350. https://doi.org/10.1039/C4NR02527J
    66. Daniel Schall, Martin Otto, Daniel Neumaier, Heinrich Kurz. Integrated Ring Oscillators based on high-performance Graphene Inverters. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02592
    67. Roman Sordan, Andrea C. Ferrari. Gigahertz multi-transistor graphene integrated circuits. 2013, 1.1.1-1.1.7. https://doi.org/10.1109/IEDM.2013.6724538
    68. Wenbin Gong, Wei Zhang, Cuilan Ren, Xuezhi Ke, Song Wang, Ping Huai, Wenqing Zhang, Zhiyuan Zhu. Strain-controlled interface engineering of binding and charge doping at metal-graphene contacts. Applied Physics Letters 2013, 103 (14) https://doi.org/10.1063/1.4823800
    69. Hua-Qiang Wu, Chang-Yang Linghu, Hong-Ming Lu, He Qian. Graphene applications in electronic and optoelectronic devices and circuits. Chinese Physics B 2013, 22 (9) , 098106. https://doi.org/10.1088/1674-1056/22/9/098106

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect