ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Lattice Mismatch in Crystalline Nanoparticle Thin Films

View Author Information
Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
‡ § ∥ ⊥ Department of Chemistry, §International Institute for Nanotechnology, Department of Chemical and Biological Engineering, and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
Cite this: Nano Lett. 2018, 18, 1, 579–585
Publication Date (Web):December 22, 2017
https://doi.org/10.1021/acs.nanolett.7b04737
Copyright © 2017 American Chemical Society

    Article Views

    4074

    Altmetric

    -

    Citations

    57
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as “soft,” programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b04737.

    • Experimental procedures, including interaction potential calculations, oligonucleotide sequences, nanoparticle functionalization and assembly, substrate preparation, characterization/analysis techniques (SEM, SAXS, FIB cross-sectioning, and AFM) (PDF), and FIB cross sections (TIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 57 publications.

    1. Ahmad Ajjaq, Fatih Bulut, Ozgur Ozturk, Selim Acar. Advanced NH3 Detection by 1D Nanostructured La:ZnO Sensors with Novel Intrinsic p–n Shifting and Ultrahigh Baseline Stability. ACS Sensors 2024, 9 (2) , 895-911. https://doi.org/10.1021/acssensors.3c02256
    2. Theodore Hueckel, Diana J. Lewis, Alket Mertiri, David J. D. Carter, Robert J. Macfarlane. Controlling Colloidal Crystal Nucleation and Growth with Photolithographically Defined Templates. ACS Nano 2023, 17 (21) , 22121-22128. https://doi.org/10.1021/acsnano.3c09401
    3. Chad A. Mirkin, Sarah Hurst Petrosko. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS Nano 2023, 17 (17) , 16291-16307. https://doi.org/10.1021/acsnano.3c06564
    4. Theodore Hueckel, Xin Luo, Omar F. Aly, Robert J. Macfarlane. Nanoparticle Brushes: Macromolecular Ligands for Materials Synthesis. Accounts of Chemical Research 2023, 56 (14) , 1931-1941. https://doi.org/10.1021/acs.accounts.3c00160
    5. Leonardo Z. Zornberg, Diana J. Lewis, Alket Mertiri, Theodore Hueckel, David J. D. Carter, Robert J. Macfarlane. Self-Assembling Systems for Optical Out-of-Plane Coupling Devices. ACS Nano 2023, 17 (4) , 3394-3400. https://doi.org/10.1021/acsnano.2c08344
    6. Masaya Sakakibara, Hiroki Nada, Takayuki Nakamuro, Eiichi Nakamura. Cinematographic Recording of a Metastable Floating Island in Two- and Three-Dimensional Crystal Growth. ACS Central Science 2022, 8 (12) , 1704-1710. https://doi.org/10.1021/acscentsci.2c01093
    7. Rebecca L. Li, Carl J. Thrasher, Theodore Hueckel, Robert J. Macfarlane. Hierarchically Structured Nanocomposites via a “Systems Materials Science” Approach. Accounts of Materials Research 2022, 3 (12) , 1248-1259. https://doi.org/10.1021/accountsmr.2c00153
    8. Jun Nozawa, Satoshi Uda, Hiromasa Niinomi, Junpei Okada, Kozo Fujiwara. Heteroepitaxial Growth of Colloidal Crystals: Dependence of the Growth Mode on the Interparticle Interactions and Lattice Spacing. The Journal of Physical Chemistry Letters 2022, 13 (30) , 6995-7000. https://doi.org/10.1021/acs.jpclett.2c01707
    9. Cindy Y. Zheng, Yudong Yao, Junjing Deng, Soenke Seifert, Alexa M. Wong, Byeongdu Lee, Chad A. Mirkin. Confined Growth of DNA-Assembled Superlattice Films. ACS Nano 2022, 16 (3) , 4813-4822. https://doi.org/10.1021/acsnano.2c00161
    10. Margaret S. Lee, Daryl W. Yee, Matthew Ye, Robert J. Macfarlane. Nanoparticle Assembly as a Materials Development Tool. Journal of the American Chemical Society 2022, 144 (8) , 3330-3346. https://doi.org/10.1021/jacs.1c12335
    11. Sergio Kogikoski Jr., Anushree Dutta, Ilko Bald. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire. ACS Nano 2021, 15 (12) , 20562-20573. https://doi.org/10.1021/acsnano.1c09176
    12. Cindy Y. Zheng, Wisnu Hadibrata, Seokhyoung Kim, George C. Schatz, Koray Aydin, Chad A. Mirkin. Large-Area, Highly Crystalline DNA-Assembled Metasurfaces Exhibiting Widely Tunable Epsilon-Near-Zero Behavior. ACS Nano 2021, 15 (11) , 18289-18296. https://doi.org/10.1021/acsnano.1c07496
    13. Andrea D. Merg, Eric van Genderen, Alisina Bazrafshan, Hanquan Su, Xiaobing Zuo, Gavin Touponse, Thorsten B. Blum, Khalid Salaita, Jan Pieter Abrahams, Vincent P. Conticello. Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core–Shell Nanostructures. Journal of the American Chemical Society 2019, 141 (51) , 20107-20117. https://doi.org/10.1021/jacs.9b09335
    14. Leonardo Z. Zornberg, Paul A. Gabrys, Robert J. Macfarlane. Optical Processing of DNA-Programmed Nanoparticle Superlattices. Nano Letters 2019, 19 (11) , 8074-8081. https://doi.org/10.1021/acs.nanolett.9b03258
    15. Paul A. Gabrys, Robert J. Macfarlane. Controlling Crystal Texture in Programmable Atom Equivalent Thin Films. ACS Nano 2019, 13 (7) , 8452-8460. https://doi.org/10.1021/acsnano.9b04333
    16. Na Li, Yingxu Shang, Zihong Han, Ting Wang, Zhen-Gang Wang, Baoquan Ding. Fabrication of Metal Nanostructures on DNA Templates. ACS Applied Materials & Interfaces 2019, 11 (15) , 13835-13852. https://doi.org/10.1021/acsami.8b16194
    17. Diana J. Lewis, Paul A. Gabrys, Robert J. Macfarlane. DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents. Langmuir 2018, 34 (49) , 14842-14850. https://doi.org/10.1021/acs.langmuir.8b01541
    18. Lu’an Guo, Yitao Wang, Dogan Kaya, Richard E Palmer, Guangde Chen, Quanmin Guo. Orientational Epitaxy of van der Waals Molecular Heterostructures. Nano Letters 2018, 18 (8) , 5257-5261. https://doi.org/10.1021/acs.nanolett.8b02238
    19. Da Bin Kim, Ji Yeon Kim, Ju Han, Yong Soo Cho. Strain engineering in power-generating and self-powered nanodevices. Nano Energy 2024, 125 , 109551. https://doi.org/10.1016/j.nanoen.2024.109551
    20. Koji Harano, Takayuki Nakamuro, Eiichi Nakamura. Cinematographic study of stochastic chemical events at atomic resolution. Microscopy 2024, 73 (2) , 101-116. https://doi.org/10.1093/jmicro/dfad052
    21. YuXin Wang, YanChun Dong, JiaNing Liu, Yun Tian, YunLong Chi, Yong Yang. Hardening mechanism of Thick (Ti,Cr,V)N composite coatings with multi-layer nano-columnar dendrites microstructure. Journal of the European Ceramic Society 2024, 44 (4) , 2013-2025. https://doi.org/10.1016/j.jeurceramsoc.2023.11.032
    22. Navneet Goswami, Kate Chen, Xiaojing Wang, Jacob S. Spendelow, Rodney L. Borup, Partha P. Mukherjee. Mechanistic understanding of thermodynamic metastability of core-shell catalysts in the polymer electrolyte fuel cell catalyst layer durability. Chemical Engineering Journal 2024, 484 , 149672. https://doi.org/10.1016/j.cej.2024.149672
    23. Shiqing Jin, Zhen Wang, Didi Li, Yiming Wang, Minghui Zhu. Effect of Gas Environment on Metal‐Support Interactions of Supported Metal Catalysts. ChemCatChem 2024, 13 https://doi.org/10.1002/cctc.202301350
    24. Hao Chen, Yongbing Ma, Yun Han, Xin Mao, Yongbin Hu, Xin Zhao, Qinglong Dong, Bo Wen, Aijun Du, Xin Wang, Xiao Lyu, Yi Jia. Ligand and Strain Synergistic Effect in NiFeP 0.32 LDH for Triggering Efficient Oxygen Evolution Reaction. Small 2024, 9 https://doi.org/10.1002/smll.202309689
    25. Nurliyana Mohamad Arifin, Ervina Efzan Mhd Noor, Fariza Mohamad, Norhidayah Mohamad. The Impact of Spinning Speed on n-TiO2/ZnO Bilayer Thin Film Fabricated through Sol–Gel Spin-Coating Method. Coatings 2024, 14 (1) , 73. https://doi.org/10.3390/coatings14010073
    26. Yuan-Xiu 元秀 Qin 秦, Sheng-Shi 胜世 Li 李, Wei-Xiao 维霄 Ji 纪, Chang-Wen 昌文 Zhang 张. Electronic property and topological phase transition in a graphene/CoBr 2 heterostructure. Chinese Physics B 2024, 33 (2) , 027901. https://doi.org/10.1088/1674-1056/ad0f8a
    27. Liu Xiao, Zhiying Liu, Gang Zhang, Wenlin Feng. Controlled Epitaxial Growth of (hk1)‐Sb 2 Se 3 Film on Cu 9 S 5 Single Crystal via Post‐Annealing Treatment for Photodetection Application. Small 2023, https://doi.org/10.1002/smll.202308229
    28. Syed Jazib Abbas Zaidi, Jae Chan Park, Ji Won Han, Ji Hyeon Choi, Muhammad Aanish Ali, Muhammad Abdul Basit, Tae Joo Park. Interfaces in Atomic Layer Deposited Films: Opportunities and Challenges. Small Science 2023, 3 (10) https://doi.org/10.1002/smsc.202300060
    29. Nicole Yvonne Suss, Eva M. Heppke, Elena Voloshina, Lukas Schifferle, Sergey S. Lobanov, Sergio Speziale, Hans Josef Reichmann, Tim Küllmey, Beate Paulus, Martin Lerch, Ilias Efthimiopoulos. Comparative high-pressure investigations of Ag2ZnSnS4 and Ag2CdSnS4 compounds. AIP Advances 2023, 13 (10) https://doi.org/10.1063/5.0161366
    30. Surajit Mondal, Supriti Dutta, Santanu Mal, Swapan K. Pati, Sayan Bhattacharyya. Lattice Mismatch Guided Nickel‐Indium Heterogeneous Alloy Electrocatalysts for Promoting the Alkaline Hydrogen Evolution. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202301269
    31. Surajit Mondal, Supriti Dutta, Santanu Mal, Swapan K. Pati, Sayan Bhattacharyya. Lattice Mismatch Guided Nickel‐Indium Heterogeneous Alloy Electrocatalysts for Promoting the Alkaline Hydrogen Evolution. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202301269
    32. Linlin Liu, Yu Xie, John S. Tse, Yanming Ma. Theoretical design of two-dimensional AMInP 2 X 3 Y 3 (AM = Li, Na, K; X/Y = S, Se, Te) monolayers for highly efficient excitonic solar cells. Materials Advances 2023, 4 (2) , 570-577. https://doi.org/10.1039/D2MA00937D
    33. Ahmed Refaat Elhelw, Mahmoud Salman S. Ibrahim, Ahmed Nabih Zaki Rashed, Abd El-Naser A. Mohamed, Mohamed Farhat O. Hameed, Salah S. A. Obayya. Highly Sensitive Bilirubin Biosensor Based on Photonic Crystal Fiber in Terahertz Region. Photonics 2023, 10 (1) , 68. https://doi.org/10.3390/photonics10010068
    34. Juyi Yang, Yanbin Zhao, Jianwei Dai, Linyuan Han, Qiangsheng Dong, Lu Zhang, Jing Bai, Feng Xue, Paul K. Chu, Chenglin Chu. Fabrication and growth mechanism of multilayered hydroxyapatite/organic composite coatings on the WE43 magnesium alloy. Surface and Coatings Technology 2023, 452 , 129125. https://doi.org/10.1016/j.surfcoat.2022.129125
    35. Shouyuan Li, Shaoyang Sun, Xinyuan Li, Jiatao Zhang. Interfacial regulation of aqueous synthesized metal-semiconductor hetero-nanocrystals. Frontiers in Materials 2022, 9 https://doi.org/10.3389/fmats.2022.1054877
    36. Wei Guo, Chaochao Dun, Chang Yu, Xuedan Song, Feipeng Yang, Wenzheng Kuang, Yuanyang Xie, Shaofeng Li, Zhao Wang, Jinhe Yu, Guosheng Fu, Jinghua Guo, Matthew A. Marcus, Jeffrey J. Urban, Qiuyu Zhang, Jieshan Qiu. Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28918-0
    37. Ruifang Xue, Jingyi Kong, Ying Wu, Yangyang Wang, Xiangyi Kong, Min Gong, Liang Zhang, Xiang Lin, Dongrui Wang. Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. Journal of Materials Chemistry A 2022, 10 (18) , 10043-10050. https://doi.org/10.1039/D2TA00326K
    38. Tian Wang, Guohua Dong, Yuxuan Ma, Haixia Liu, Ziyao Zhou, Ming Liu. Stress-induced controllable magnetic properties in flexible epitaxial Mn0.5Zn0.5Fe2O4 ferrite films. Journal of Materiomics 2022, 8 (3) , 596-600. https://doi.org/10.1016/j.jmat.2021.12.001
    39. Devleena Samanta, Wenjie Zhou, Sasha B. Ebrahimi, Sarah Hurst Petrosko, Chad A. Mirkin. Programmable Matter: The Nanoparticle Atom and DNA Bond. Advanced Materials 2022, 34 (12) https://doi.org/10.1002/adma.202107875
    40. W. Zhang, C. J. Shi, M. Hu. Crystalline Coordination Polymers Nanoarchitectonics by Epitaxial Growth and Etching. 2022, 210-225. https://doi.org/10.1039/9781788019613-00210
    41. Jun Nozawa, Satoshi Uda, Akiko Toyotama, Junpei Yamanaka, Hiromasa Niinomi, Junpei Okada. Heteroepitaxial fabrication of binary colloidal crystals by a balance of interparticle interaction and lattice spacing. Journal of Colloid and Interface Science 2022, 608 , 873-881. https://doi.org/10.1016/j.jcis.2021.10.041
    42. Abu Dzar Al-Ghiffari, Norasikin Ahmad Ludin, Rozan Mohamad Yunus, Mohd Sukor Suait, Mohd Adib Ibrahim. CVD-Grown Molybdenum Disulfide: Effect of Temperature Variations on Morphological Appearance and Chemical Properties. SSRN Electronic Journal 2022, 118 https://doi.org/10.2139/ssrn.4093748
    43. Gaurav Rawal, Animangsu Ghatak. Effect of roughness on the conductivity of vacuum coated flexible paper electrodes. Nano Select 2021, 2 (10) , 2007-2018. https://doi.org/10.1002/nano.202100034
    44. Jiaming Liu, Jingjing Wei, Zhijie Yang. Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics 2021, 23 (36) , 20028-20037. https://doi.org/10.1039/D1CP02373J
    45. Deginet Admassu, Tejumade Durowade, Ryan Sellers, Sivalingam Sivananthan. Effect of interface grading on the optical performance of distributed Bragg reflector multilayers in Fabry-Pérot optical filters. Microsystem Technologies 2021, 27 (7) , 2785-2790. https://doi.org/10.1007/s00542-020-05063-6
    46. An-Yuan Hou, Yi-Hsin Ting, Kuo-Lun Tai, Chih-Yang Huang, Kuo-Chang Lu, Wen-Wei Wu. Atomic-scale silicidation of low resistivity Ni-Si system through in-situ TEM investigation. Applied Surface Science 2021, 538 , 148129. https://doi.org/10.1016/j.apsusc.2020.148129
    47. Manodeep Mondal, Chandan K. Mishra, Rajdeep Banerjee, Shobhana Narasimhan, A. K. Sood, Rajesh Ganapathy. Cooperative particle rearrangements facilitate the self-organized growth of colloidal crystal arrays on strain-relief patterns. Science Advances 2020, 6 (10) https://doi.org/10.1126/sciadv.aay8418
    48. Ruo-Yu Zhang, Pei-Li Li, Hui Gao, . Research on acousto-optic switch based on optical tamm state. Acta Physica Sinica 2020, 69 (16) , 164204. https://doi.org/10.7498/aps.69.20200396
    49. Qiuping Fu, Naifeng Zhuang, Xiaolin Hu, Jianzhong Chen. Substrate influence on the structure and properties of YbFeO 3 films. Materials Research Express 2019, 6 (12) , 126120. https://doi.org/10.1088/2053-1591/ab663e
    50. Peng Zhang, Ting Zhang, Yafei Wang, Detao Liu, Hao Xu, Li Chen, Yanbo Li, Jiang Wu, Zhi David Chen, Shibin Li. Enhanced thermal stability of electron transport layer-free perovskite solar cells via interface strain releasing. Journal of Power Sources 2019, 439 , 227091. https://doi.org/10.1016/j.jpowsour.2019.227091
    51. Layne B. Frechette, Christoph Dellago, Phillip L. Geissler. Consequences of Lattice Mismatch for Phase Equilibrium in Heterostructured Solids. Physical Review Letters 2019, 123 (13) https://doi.org/10.1103/PhysRevLett.123.135701
    52. Paul A. Gabrys, Leonardo Z. Zornberg, Robert J. Macfarlane. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices. Small 2019, 15 (26) https://doi.org/10.1002/smll.201805424
    53. Chao Ji, Changzeng Yan, Ying Wang, Shuxian Xiong, Fengrui Zhou, Yayun Li, Rong Sun, Ching-Ping Wong. Thermal conductivity enhancement of CNT/MoS2/graphene−epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Composites Part B: Engineering 2019, 163 , 363-370. https://doi.org/10.1016/j.compositesb.2018.11.005
    54. Mikhail Shekhirev, Eli Sutter, Peter Sutter. In Situ Atomic Force Microscopy of the Reconfiguration of On‐Surface Self‐Assembled DNA‐Nanoparticle Superlattices. Advanced Functional Materials 2019, 29 (10) https://doi.org/10.1002/adfm.201806924
    55. Soyoung E. Seo, Martin Girard, Monica Olvera de la Cruz, Chad A. Mirkin. Non-equilibrium anisotropic colloidal single crystal growth with DNA. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06982-9
    56. Shengli Zhuang, Lingwen Liao, Jinyun Yuan, Chengming Wang, Yan Zhao, Nan Xia, Zibao Gan, Wanmiao Gu, Jin Li, Haiteng Deng, Jinlong Yang, Zhikun Wu. Kernel Homology in Gold Nanoclusters. Angewandte Chemie 2018, 130 (47) , 15676-15680. https://doi.org/10.1002/ange.201808997
    57. Shengli Zhuang, Lingwen Liao, Jinyun Yuan, Chengming Wang, Yan Zhao, Nan Xia, Zibao Gan, Wanmiao Gu, Jin Li, Haiteng Deng, Jinlong Yang, Zhikun Wu. Kernel Homology in Gold Nanoclusters. Angewandte Chemie International Edition 2018, 57 (47) , 15450-15454. https://doi.org/10.1002/anie.201808997

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect