Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graphene nanomesh

Abstract

Graphene has significant potential for application in electronics1,2,3,4,5, but cannot be used for effective field-effect transistors operating at room temperature because it is a semimetal with a zero bandgap6,7. Processing graphene sheets into nanoribbons with widths of less than 10 nm can open up a bandgap that is large enough for room-temperature transistor operation8,9,10,11,12,13,14,15,16,17,18,19, but nanoribbon devices often have low driving currents or transconductances18,19. Moreover, practical devices and circuits will require the production of dense arrays of ordered nanoribbons, which remains a significant challenge20,21. Here, we report the production of a new graphene nanostructure—which we call a graphene nanomesh—that can open up a bandgap in a large sheet of graphene to create a semiconducting thin film. The nanomeshes are prepared using block copolymer lithography and can have variable periodicities and neck widths as low as 5 nm. Graphene nanomesh field-effect transistors can support currents nearly 100 times greater than individual graphene nanoribbon devices, and the on–off ratio, which is comparable with the values achieved in individual nanoribbon devices, can be tuned by varying the neck width. The block copolymer lithography approach used to make the nanomesh devices is intrinsically scalable and could allow for the rational design and fabrication of graphene-based devices and circuits with standard semiconductor processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of fabrication of a graphene nanomesh.
Figure 2: Images illustrating the steps of the nanomesh fabrication process.
Figure 3: TEM studies of graphene and thin-layer graphite nanomesh.
Figure 4: Room-temperature electrical properties of a graphene nanomesh device.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Scott Bunch, J., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P. L. Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005).

    Article  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  5. Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Spec. Top. 148, 15–18 (2007).

    Article  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  7. Meric, I., Han, M. Y., Young, A. F., Ozyilmaz, B., Kim, P. & Shepard, K. L. Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  CAS  Google Scholar 

  8. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  9. Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  10. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  Google Scholar 

  11. Li, T. C. & Lu, S.-P. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B 77, 085408 (2008).

    Article  Google Scholar 

  12. Sols, F., Guinea, F. & Castro Neto, A. H. Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).

    Article  CAS  Google Scholar 

  13. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  14. Ozyilmaz, B., Jarillo-Herrero, P., Efetov, D. & Kim, P. Electronic transport in locally gated graphene nanoconstrictions. Appl. Phys. Lett. 91, 192107 (2007).

    Article  Google Scholar 

  15. Chen, Z. H., Lin, Y.-M., Rookes, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  16. Li, X. L., Wang, X. R., Zhang, L., Lee, S. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  17. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 459, 872–876 (2009).

    Article  Google Scholar 

  18. Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  19. Bai, J., Duan, X. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 9, 2083–2087 (2009).

    Article  CAS  Google Scholar 

  20. Lu, W. & Lieber C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  21. Duan, X. Assembled semiconductor nanowire thin films for high-performance flexible macroelectronics. MRS Bull. 32, 134–141 (2007).

    Article  CAS  Google Scholar 

  22. Park, S. & Ruoff R. S. Chemical methods for the production of graphenes. Nature Nanotech. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  23. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nature Nanotech. 4, 25–29 (2009).

    Article  CAS  Google Scholar 

  24. Li, X. et al. Large-area synthesis of high quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  25. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapour deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  26. Hawker, C. J. & Russell, T. P. Block copolymer lithography: merging ‘bottom-up’ with ‘top-down’ processes. MRS Bull. 30, 952–966 (2005).

    Article  CAS  Google Scholar 

  27. Xu, T. et al. The influence of molecular weight on nanoporous polymer films. Polymer 42, 9091–9095 (2001).

    Article  CAS  Google Scholar 

  28. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by template self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).

    Article  CAS  Google Scholar 

  29. Park, S. et al. Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order. Science 323, 1030–1033 (2009).

    Article  CAS  Google Scholar 

  30. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical support regarding TEM from the Electron Imaging Center for Nanomachines (EICN) at University of California, Los Angeles, and for device fabrication from the Nanoelectronics Research Facility at University of California, Los Angeles. We thank R. Kaner and D. Neuhauser for discussions, J. Chen and C. Liu for assistance in statistics analysis, and F.X. Xiu for assistance in block copolymer processing. Y.H. acknowledges support from the Henry Samueli School of Engineering and an Applied Science Fellowship. X.D. acknowledges partial support by the NIH Director's New Innovator Award Program, part of the NIH Roadmap for Medical Research, through grant no. 1DP2OD004342-01.

Author information

Authors and Affiliations

Authors

Contributions

X.D., Y.H. and J.B. conceived and designed the experiments. J.B., X.Z. and S.J. performed the experiments. J.B. collected and analysed the data. J.B., Y.H. and X.D. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yu Huang or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 944 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J., Zhong, X., Jiang, S. et al. Graphene nanomesh. Nature Nanotech 5, 190–194 (2010). https://doi.org/10.1038/nnano.2010.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing