Nanosize objects such as metal clusters present an ideal system for the study of quantum phenomena and for the construction of practical quantum devices. Integrating these small objects in a macroscopic circuit is, however, a difficult task. So far, nanoparticles have been contacted and addressed by highly sophisticated techniques not suitable for large-scale integration in macroscopic circuits. We present an optical lithography method that allows for the fabrication of a network of electrodes separated by gaps of controlled nanometer size. The main idea is to control the gap size with subnanometer precision using a structure grown by molecular-beam epitaxy.

1.
T. A.
Fulton
and
G. J.
Dolan
,
Phys. Rev. Lett.
59
,
109
(
1987
).
2.
D.
Porath
,
Y.
Levi
,
M.
Tarabiah
, and
O.
Millo
,
Phys. Rev. B
56
,
9829
(
1997
).
3.
H.
Park
,
A. K. L.
Lim
,
A. P.
Alivisatos
,
J.
Park
, and
P. L.
Euen
,
Appl. Phys. Lett.
75
,
301
(
1999
).
4.
M. A.
Reed
,
C.
Zhou
,
C. J.
Muller
,
T. P.
Burgin
, and
J. M.
Tour
,
Science
278
,
278
(
1997
).
5.
D. L.
Klein
,
P. L.
McEuen
,
J. E.
Bowen Katari
,
R.
Roth
, and
A. P.
Alivisatos
,
Appl. Phys. Lett.
68
,
2574
(
1996
).
6.
D.
Porath
,
A.
Bezryadin
,
S.
de Vries
, and
C.
Dekker
,
Nature (London)
403
,
635
(
2000
).
7.
A.
Bezryadin
,
C.
Dekker
, and
G.
Schmid
,
Appl. Phys. Lett.
71
,
1273
(
1997
).
8.
E.
Braun
,
Y.
Eichen
,
U.
Sivan
, and
G.
Ben-Yoseph
,
Nature (London)
391
,
775
(
1998
).
9.
A.
Bachtold
,
P.
Hadley
,
T.
Nakanishi
, and
C.
Dekker
,
Science
294
,
1317
(
2001
).
10.
G. C.
de Salvo
,
W. F.
Tseng
, and
J.
Comas
,
J. Electrochem. Soc.
139
,
831
(
1992
).
11.
G. Schmid, Clusters and Colloids (VCH, New York, 1994).
12.
A. E.
Hanna
and
M.
Tinkham
,
Phys. Rev. B
44
,
5919
(
1991
).
13.
A.
Korotkov
and
Y.
Nazarov
,
Physica B
173
,
217
(
1991
).
14.
A. Korotkov, URL: http://qt.tn.tudelft.nl/CHARGE/
This content is only available via PDF.
You do not currently have access to this content.