Skip to main content

Advertisement

Log in

A review on comparative studies addressing exosome isolation methods from body fluids

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Exosomes emerged as valuable sources of disease biomarkers and new therapeutic tools. However, extracellular vesicles isolation with exosome-like characteristics from certain biofluids is still challenging which can limit their potential use in clinical settings. While ultracentrifugation-based procedures are the gold standard for exosome isolation from cell cultures, no unique and standardized method for exosome isolation from distinct body fluids exists. The complexity, specific composition, and physical properties of each biofluid constitute a technical barrier to obtain reproducible and pure exosome preparations, demanding a detailed characterization of both exosome isolation and characterization methods. Moreover, some isolation procedures can affect downstream proteomic or RNA profiling analysis. This review compiles and discussed a set of comparative studies addressing distinct exosome isolation methods from human biofluids, including cerebrospinal fluid, plasma, serum, saliva, and urine, also focusing on body fluid specific challenges, physical properties, and other potential variation sources. This summarized information will facilitate the choice of exosome isolation methods, based on the type of biological samples available, and hopefully encourage the use of exosomes in translational and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Soares Martins T, Trindade D, Vaz M, Campelo I, Almeida M, Trigo G, et al. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem. 2020;156(2):162–81. https://doi.org/10.1111/jnc.15112.

    Article  CAS  PubMed  Google Scholar 

  2. Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating methods for isolation and quantification of exosomes: a review. Mol Biotechnol. 2021;63:249–66. https://doi.org/10.1007/s12033-021-00300-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA, et al. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol. 2013;24(3):385–92. https://doi.org/10.1681/ASN.2012101031.

    Article  CAS  PubMed  Google Scholar 

  4. Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant. 2012;21(6):1305–20. https://doi.org/10.3727/096368911X627534.

    Article  PubMed  Google Scholar 

  5. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37. https://doi.org/10.1016/j.canlet.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  6. Bunduc S, Gede N, Váncsa S, Lillik V, Kiss S, Juhász MF, et al. Exosomes as prognostic biomarkers in pancreatic ductal adenocarcinoma—a systematic review and meta-analysis. Transl Res. 2022;S1931–5244(22):00001–9. https://doi.org/10.1016/j.trsl.2022.01.001.

    Article  CAS  Google Scholar 

  7. Mathews PM, Levy E. Exosome production is key to neuronal endosomal pathway integrity in neurodegenerative diseases. Front Neurosci. 2019;13:1–14. https://doi.org/10.3389/fnins.2019.01347.

    Article  Google Scholar 

  8. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 2008;3(11): e3694. https://doi.org/10.1371/journal.pone.0003694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87. https://doi.org/10.1093/intimm/dxh267.

    Article  CAS  PubMed  Google Scholar 

  10. Yagi Y, Ohkubo T, Kawaji H, Machida A, Miyata H, Goda S, et al. Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett. 2017;636:48–57. https://doi.org/10.1016/j.neulet.2016.10.042.

    Article  CAS  PubMed  Google Scholar 

  11. Lässer C, Seyed Alikhani V, Ekström K, Eldh M, Torregrosa Paredes P, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9. https://doi.org/10.1186/1479-5876-9-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elsharkawi F, Elsabah M, Shabayek M, Khaled H. Urine and serum exosomes as novel biomarkers in detection of bladder cancer. Asian Pacific J Cancer Prev. 2019;20(7):2219–24. https://doi.org/10.31557/APJCP.2019.20.7.2219.

  13. Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res. 2019;210:80–98. https://doi.org/10.1016/j.trsl.2019.03.008.

    Article  CAS  PubMed  Google Scholar 

  14. Yoo YK, Lee J, Kim H, Hwang KS, Yoon DS, Lee JH. Toward exosome-based neuronal diagnostic devices. Micromachines. 2018;9(12):634. https://doi.org/10.3390/mi9120634.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clayton A, Boilard E, Buzas EI, Cheng L, Falcón-Perez JM, Gardiner C, et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J Extracell Vesicles. 2019;8:1. https://doi.org/10.1080/20013078.2019.1647027.

    Article  Google Scholar 

  16. Hou R, Li Y, Sui Z, Yuan H, Yang K, Liang Z, et al. Advances in exosome isolation methods and their applications in proteomic analysis of biological samples. Anal Bioanal Chem. 2019;411(21):5351–61. https://doi.org/10.1007/S00216-019-01982-0/FIGURES/5.

    Article  CAS  PubMed  Google Scholar 

  17. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30

  18. Momen-Heravi F, Balaj L, Alian S, Mantel P-Y, Halleck AE, Trachtenberg AJ, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394(10):1253–62. https://doi.org/10.1515/hsz-2013-0141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yakimchuk K. Exosomes: isolation methods and specific markers. Mater Methods. 2015;5:1450. https://doi.org/10.13070/mm.en.5.1450.

  20. Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804. https://doi.org/10.7150/thno.18133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018;7(12):273. https://doi.org/10.3390/CELLS7120273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim JY, Rhim W-K, Yoo Y-I, Kim D-S, Ko K-W, Heo Y, et al. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng. 2021;12:20417314211008624. https://doi.org/10.1177/20417314211008626.

    Article  CAS  Google Scholar 

  23. Heinemann ML, Ilmer M, Silva LP, Hawke DH, Recio A, Vorontsova MA, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014;1371:125–35. https://doi.org/10.1016/J.CHROMA.2014.10.026.

    Article  CAS  PubMed  Google Scholar 

  24. Soares Martins T, Catita J, Martins Rosa I, A. B. da Cruz e Silva O, Henriques AG, da Cruz e Silva OAB, et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One. 2018;13(6):e0198820. https://doi.org/10.1371/journal.pone.0198820.

  25. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS ONE. 2015;10(8): e0136133. https://doi.org/10.1371/journal.pone.0136133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stranska R, Gysbrechts L, Wouters J, Vermeersch P, Bloch K, Dierickx D, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med. 2018;16(1):1. https://doi.org/10.1186/s12967-017-1374-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc 2019 144. 2019;14(4):1027–53. https://doi.org/10.1038/s41596-019-0126-x.

  28. Wu B, Chen X, Wang J, Qing X, Wang Z, Ding X, et al. Separation and characterization of extracellular vesicles from human plasma by asymmetrical flow field-flow fractionation. Anal Chim Acta. 2020;1127:234–45. https://doi.org/10.1016/J.ACA.2020.06.071.

    Article  CAS  PubMed  Google Scholar 

  29. Kim H, Shin S. ExoCAS-2: rapid and pure isolation of exosomes by anionic exchange using magnetic beads. Biomed 2021;9(1):28. https://doi.org/10.3390/BIOMEDICINES9010028.

  30. Kosanović M, Milutinović B, Goč S, Mitić N, Janković M. Ion-exchange chromatography purification of extracellular vesicles. Biotechniques. 2017;63(2):65–71. https://doi.org/10.2144/000114575/ASSET/IMAGES/LARGE/FIGURE4.JPEG.

    Article  PubMed  Google Scholar 

  31. Morani M, Mai TD, Krupova Z, Defrenaix P, Multia E, Riekkola ML, et al. Electrokinetic characterization of extracellular vesicles with capillary electrophoresis: a new tool for their identification and quantification. Anal Chim Acta. 2020;1128:42–51. https://doi.org/10.1016/J.ACA.2020.06.073.

    Article  CAS  PubMed  Google Scholar 

  32. Peterson MF, Otoc N, Sethi JK, Gupta A, Antes TJ. Integrated systems for exosome investigation. Methods. 2015;87:31–45. https://doi.org/10.1016/J.YMETH.2015.04.015.

    Article  CAS  PubMed  Google Scholar 

  33. Cai S, Luo B, Jiang P, Zhou X, Lan F, Yi Q, et al. Immuno-modified superparamagnetic nanoparticles via host–guest interactions for high-purity capture and mild release of exosomes. Nanoscale. 2018;10(29):14280–9. https://doi.org/10.1039/C8NR02871K.

    Article  CAS  PubMed  Google Scholar 

  34. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L, Wurdinger T, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010;10(4):505–11. https://doi.org/10.1039/B916199F.

    Article  CAS  PubMed  Google Scholar 

  35. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14(11):1891–900. https://doi.org/10.1039/C4LC00136B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang YT, Purcell E, Palacios-Rolston C, Lo TW, Ramnath N, Jolly S, et al. Isolation and profiling of circulating tumor-associated exosomes using extracellular vesicular lipid–protein binding affinity based microfluidic device. Small. 2019;15(47):1903600. https://doi.org/10.1002/SMLL.201903600.

    Article  CAS  Google Scholar 

  37. Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, et al. The exosome total isolation chip. ACS Nano. 2017;11(11):10712–23. https://doi.org/10.1021/acsnano.7b04878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Wu HJ, Fine D, Schmulen J, Hu Y, Godin B, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip. 2013;13(15):2879. https://doi.org/10.1039/C3LC41343H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salafi T, Zhang Y, Zhang Y. A review on deterministic lateral displacement for particle separation and detection. Nano-Micro Lett 2019 111. 2019;11(1):1–33. https://doi.org/10.1007/S40820-019-0308-7.

  40. Wunsch BH, Smith JT, Gifford SM, Wang C, Brink M, Bruce RL, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol. 2016;11(11):936–40. https://doi.org/10.1038/NNANO.2016.134.

    Article  CAS  PubMed  Google Scholar 

  41. Suwatthanarak T, Thiodorus IA, Tanaka M, Shimada T, Takeshita D, Yasui T, et al. Microfluidic-based capture and release of cancer-derived exosomes via peptide–nanowire hybrid interface. Lab Chip. 2021;21(3):597–607. https://doi.org/10.1039/D0LC00899K.

    Article  CAS  PubMed  Google Scholar 

  42. Liu C, Guo J, Tian F, Yang N, Yan F, Ding Y, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017;11(7):6968–76. https://doi.org/10.1021/ACSNANO.7B02277/SUPPL_FILE/NN7B02277_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  43. Wu M, Ouyang Y, Wang Z, Zhang R, Huang P-H, Chen C, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–9. https://doi.org/10.1073/pnas.1709210114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davies RT, Kim J, Jang SC, Choi E-J, Gho YS, Park J. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip. 2012;12(24):5202. https://doi.org/10.1039/c2lc41006k.

    Article  CAS  PubMed  Google Scholar 

  45. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell vesicles. 2014;3:26913. https://doi.org/10.3402/jev.v3.26913.

    Article  PubMed  Google Scholar 

  47. Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/JEV.V2I0.19671.

  49. Kim A, Ng WB, Bernt W, Cho NJ. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep 2019 91. 2019;9(1):1–14. https://doi.org/10.1038/s41598-019-38915-x.

  50. Pecora R. Dynamic light scattering measurement of nanometer particles in liquids. J Nanoparticle Res. 2000;2:123–31. https://doi.org/10.1023/A:1010067107182.

    Article  CAS  Google Scholar 

  51. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):307. https://doi.org/10.3390/cells8040307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Emelyanov A, Shtam T, Kamyshinsky R, Garaeva L, Verlov N, Miliukhina I, et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. Camussi G, editor. PLoS One. 2020;15(1):e0227949. https://doi.org/10.1371/journal.pone.0227949.

  53. Jung MK, Mun JY. Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp. 2018;2018(131):56482. https://doi.org/10.3791/56482.

    Article  CAS  Google Scholar 

  54. Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci. 2018;25:95. https://doi.org/10.1186/s12929-018-0494-5.

    Article  CAS  Google Scholar 

  55. Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 2015;87:46–58. https://doi.org/10.1016/J.YMETH.2015.05.028.

    Article  CAS  PubMed  Google Scholar 

  56. Logozzi M, Di Raimo R, Mizzoni D, Fais S. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzymol. 2020;645:155. https://doi.org/10.1016/BS.MIE.2020.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Logozzi M, De Milito A, Lugini L, Borghi M, Calabrò L, Spada M, et al. High levels of exosomes expressing CD63 and Caveolin-1 in plasma of melanoma patients. Cao Y, editor. PLoS One. 2009;4(4):e5219. https://doi.org/10.1371/journal.pone.0005219.

  58. Ter-Ovanesyan D, Norman M, Lazarovits R, Trieu W, Lee J-H, Church GM, et al. Framework for rapid comparison of extracellular vesicle isolation methods. Elife. 2021;10:70725. https://doi.org/10.7554/ELIFE.70725.

    Article  Google Scholar 

  59. Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 2012;3:162. https://doi.org/10.3389/fphys.2012.00162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1):20360. https://doi.org/10.3402/jev.v2i0.20360.

    Article  CAS  Google Scholar 

  61. Bæk R, Søndergaard EKL, Varming K, Jørgensen MM. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods. 2016;438:11–20. https://doi.org/10.1016/j.jim.2016.08.007.

    Article  CAS  PubMed  Google Scholar 

  62. Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F, et al. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. 2013;11(6):1190–3. https://doi.org/10.1111/jth.12207.

    Article  Google Scholar 

  63. Jamaly S, Ramberg C, Olsen R, Latysheva N, Webster P, Sovershaev T, et al. Impact of preanalytical conditions on plasma concentration and size distribution of extracellular vesicles using nanoparticle tracking analysis. Sci Rep. 2018;8(1):17216. https://doi.org/10.1038/s41598-018-35401-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Palviainen M, Saraswat M, Varga Z, Kitka D, Neuvonen M, Puhka M, et al. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—implications for biomarker discovery. PLoS ONE. 2020;15(8): e0236439. https://doi.org/10.1371/journal.pone.0236439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Atai NA, Balaj L, Van Veen H, Breakefield XO, Jarzyna PA, Van Noorden CJF, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013;115(3):343–51. https://doi.org/10.1007/s11060-013-1235-y.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou H, Yuen PST, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69(8):1471–6. https://doi.org/10.1038/sj.ki.5000273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS Journal. 2018;20(1):1. https://doi.org/10.1208/s12248-017-0160-y.

    Article  CAS  Google Scholar 

  68. Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of circulating blood-based microRNAs-pre-analytic methodological considerations. PLoS ONE. 2017;12(2): e0167969. https://doi.org/10.1371/journal.pone.0167969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:24316. https://doi.org/10.1038/srep24316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakai N, Uchida Y, Ohashi K, Hibuse T, Saika Y, Tomari Y, et al. Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J Lipid Res. 2003;44(6):1256–62. https://doi.org/10.1194/jlr.M300090-JLR200.

    Article  CAS  PubMed  Google Scholar 

  71. Brennan K, Martin K, FitzGerald SP, O’Sullivan J, Wu Y, Blanco A, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep. 2020;10(1):1039. https://doi.org/10.1038/s41598-020-57497-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75(15):2873–86. https://doi.org/10.1007/s00018-018-2773-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang X, Borg EGF, Liaci AM, Vos HR, Stoorvogel W. A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. J Extracell Vesicles. 2020;9:1. https://doi.org/10.1080/20013078.2020.1791450.

    Article  CAS  Google Scholar 

  74. Wu M, Chen C, Wang Z, Bachman H, Ouyang Y, Huang PH, et al. Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab Chip. 2019;19(7):1174–82. https://doi.org/10.1039/C8LC01134F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Y, Zhang Y, Zhang Y, Deng Z, Deng Z, Lou D, et al. High-efficiency separation of extracellular vesicles from lipoproteins in plasma by agarose gel electrophoresis. Anal Chem. 2020;92(11):7493–9. https://doi.org/10.1021/ACS.ANALCHEM.9B05675/SUPPL_FILE/AC9B05675_SI_001.PDF.

    Article  CAS  PubMed  Google Scholar 

  76. McNamara RP, Dittmer DP. Modern techniques for the isolation of extracellular vesicles and viruses. J Neuroimmune Pharmacol. 2020;15(3):459–72. https://doi.org/10.1007/s11481-019-09874-x.

    Article  PubMed  Google Scholar 

  77. Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles. 2015;4(1):28239. https://doi.org/10.3402/jev.v4.28239.

    Article  PubMed  Google Scholar 

  78. Oliveira GP, Porto WF, Palu CC, Pereira LM, Petriz B, Almeida JA, et al. Effects of acute aerobic exercise on rats serum extracellular vesicles diameter, concentration and small RNAs content. Front Physiol. 2018;9:532. https://doi.org/10.3389/fphys.2018.00532.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bertoldi K, Cechinel LR, Schallenberger B, Corssac GB, Davies S, Guerreiro ICK, et al. Circulating extracellular vesicles in the aging process: impact of aerobic exercise. Mol Cell Biochem. 2018;440(1–2):115–25. https://doi.org/10.1007/s11010-017-3160-4.

    Article  CAS  PubMed  Google Scholar 

  80. Soares E, Reis J, Rodrigues M, Ribeiro CF, Pereira FC. Circulating extracellular vesicles: the missing link between physical exercise and depression management? Int J Mol Sci. 2021;22(2):542. https://doi.org/10.3390/IJMS22020542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278. https://doi.org/10.3389/fnins.2017.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 2015;11(6):600-7.e1. https://doi.org/10.1016/j.jalz.2014.06.008.

    Article  PubMed  Google Scholar 

  83. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128(5):639–50. https://doi.org/10.1007/s00401-014-1314-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, et al. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease. Ann Clin Transl Neurol. 2015;2(7):769–73. https://doi.org/10.1002/acn3.211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016;30:3853–9. https://doi.org/10.1096/fj.201600756R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krämer-Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl. 2007;1(11):1446–61. https://doi.org/10.1002/prca.200700522.

    Article  CAS  PubMed  Google Scholar 

  87. Moos M, Tacke R, Scherer H, Teplow D, Früh K, Schachner M. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature. 1988;334(6184):701–3. https://doi.org/10.1038/334701a0.

    Article  CAS  PubMed  Google Scholar 

  88. Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, et al. Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol. 2001;155(4):661–73. https://doi.org/10.1083/jcb.200101099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, Hartmann D, et al. L1 is sequentially processed by two differently activated metalloproteases and presenilin/γ-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol. 2005;25(20):9040–53. https://doi.org/10.1128/mcb.25.20.9040-9053.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Angiolini F, Belloni E, Giordano M, Campioni M, Forneris F, Paronetto MP, et al. A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. Elife. 2019;8: e44305. https://doi.org/10.7554/eLife.44305.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Norman M, Ter-Ovanesyan D, Trieu W, Lazarovits R, Kowal EJK, Lee JH, et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nat Methods. 2021;18(6):631–4. https://doi.org/10.1038/s41592-021-01174-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16. https://doi.org/10.1016/J.ANORL.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  93. Mattsson N, Andreasson U, Persson S, Arai H, Batish SD, Bernardini S, et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer’s Dement. 2011;7(4):386-395.e6. https://doi.org/10.1016/j.jalz.2011.05.2243.

    Article  CAS  Google Scholar 

  94. Mattsson N, Andreasson U, Persson S, Carrillo MC, Collins S, Chalbot S, et al. CSF biomarker variability in the Alzheimer’s Association quality control program. Alzheimer’s Dement. 2013;9(3):251–61. https://doi.org/10.1016/j.jalz.2013.01.010.

    Article  Google Scholar 

  95. Choi JE, Lyons KM, Kieser JA, Waddell NJ. Diurnal variation of intraoral pH and temperature. BDJ Open. 2017;3(1):1–6. https://doi.org/10.1038/bdjopen.2017.15.

    Article  Google Scholar 

  96. Dawes C. Circadian rhythms in human salivary flow rate and composition. J Physiol. 1972;220(3):529–45. https://doi.org/10.1113/jphysiol.1972.sp009721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Deutsch O, Fleissig Y, Zaks B, Krief G, Aframian DJ, Palmon A. An approach to remove alpha amylase for proteomic analysis of low abundance biomarkers in human saliva. Electrophoresis. 2008;29(20):4150–7. https://doi.org/10.1002/elps.200800207.

    Article  CAS  PubMed  Google Scholar 

  98. Sun Y, Xia Z, Shang Z, Sun K, Niu X, Qian L, et al. Facile preparation of salivary extracellular vesicles for cancer proteomics. Sci Rep. 2016;6(1):1–11. https://doi.org/10.1038/srep24669.

    Article  CAS  Google Scholar 

  99. Fernández-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010;77(8):736–42. https://doi.org/10.1038/ki.2009.550.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Musante L, Bontha SV, La Salvia S, Fernandez-Piñeros A, Lannigan J, Le TH, et al. Rigorous characterization of urinary extracellular vesicles (uEVs) in the low centrifugation pellet - a neglected source for uEVs. Sci Rep. 2020;10(1):3701. https://doi.org/10.1038/s41598-020-60619-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu X, Barreiro K, Musante L, Kretz O, Lin H, Zou H, et al. Management of Tamm-Horsfall protein for reliable urinary analytics. Proteomics Clin Appl. 2019;13(6): e1900018. https://doi.org/10.1002/prca.201900018.

    Article  CAS  PubMed  Google Scholar 

  102. Kosanović M, Janković M. Isolation of urinary extracellular vesicles from Tamm- Horsfall protein–depleted urine and their application in the development of a lectin-exosome-binding assay. Biotechniques. 2014;57(3):143–9. https://doi.org/10.2144/000114208.

    Article  CAS  PubMed  Google Scholar 

  103. Liu Z, Cauvi DM, Bernardino EMA, Lara B, Lizardo RE, Hawisher D, et al. Isolation and characterization of human urine extracellular vesicles. Cell Stress Chaperones. 2018;23(5):943–53. https://doi.org/10.1007/s12192-018-0902-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Musante L, Saraswat M, Duriez E, Byrne B, Ravidà A, Domon B, et al. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS ONE. 2012;7(7): e37279. https://doi.org/10.1371/journal.pone.0037279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rood IM, Deegens JKJ, Merchant ML, Tamboer WPM, Wilkey DW, Wetzels JFM, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 2010;78(8):810–6. https://doi.org/10.1038/ki.2010.262.

    Article  CAS  PubMed  Google Scholar 

  106. Oshikawa S, Sonoda H, Ikeda M. Aquaporins in urinary extracellular vesicles (exosomes). Int J of Mol Sci. 2016;17(6):957. https://doi.org/10.3390/ijms17060957.

    Article  CAS  Google Scholar 

  107. Tataruch-Weinert D, Musante L, Kretz O, Holthofer H. Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination. J Extracell Vesicles. 2016;5:30281. https://doi.org/10.3402/jev.v5.30281.

    Article  CAS  PubMed  Google Scholar 

  108. Thompson AG, Gray E, Mager I, Fischer R, Thézénas M, Charles PD, et al. UFLC-derived CSF extracellular vesicle origin and proteome. Proteomics. 2018;18(24):1800257. https://doi.org/10.1002/pmic.201800257.

    Article  CAS  Google Scholar 

  109. Sjoqvist S, Otake K, Hirozane Y. Analysis of cerebrospinal fluid extracellular vesicles by proximity extension assay: a comparative study of four isolation kits. Int J Mol Sci. 2020;21(24):9425. https://doi.org/10.3390/ijms21249425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alameldin S, Costina V, Abdel-Baset HA, Nitschke K, Nuhn P, Neumaier M, et al. Coupling size exclusion chromatography to ultracentrifugation improves detection of exosomal proteins from human plasma by LC-MS. Pract Lab Med. 2021;26: e00241. https://doi.org/10.1016/J.PLABM.2021.E00241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li S, Liu Q, Geng Z, Li K, Zhao T, Liu P. Anionic polysaccharide-modified filter papers for rapid isolation of extracellular vesicles from diverse samples in a simple bind-wash-elute manner. Anal Chem. 2021;93(20):7405–12. https://doi.org/10.1021/ACS.ANALCHEM.0C02107.

    Article  CAS  PubMed  Google Scholar 

  112. Shtam T, Evtushenko V, Samsonov R, Zabrodskaya Y, Kamyshinsky R, Zabegina L, et al. Evaluation of immune and chemical precipitation methods for plasma exosome isolation. PLoS ONE. 2020;15(11): e0242732. https://doi.org/10.1371/journal.pone.0242732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Han BH, Kim S, Seo G, Heo Y, Chung S, Kang JY. Isolation of extracellular vesicles from small volumes of plasma using a microfluidic aqueous two-phase system. Lab Chip. 2020;20(19):3552–9. https://doi.org/10.1039/d0lc00345j.

    Article  CAS  PubMed  Google Scholar 

  114. Peng C, Wang J, Bao Q, Wang J, Liu Z, Wen J, et al. Isolation of extracellular vesicle with different precipitation-based methods exerts a tremendous impact on the biomarker analysis for clinical plasma samples. Cancer Biomark. 2020;29(3):373–85. https://doi.org/10.3233/CBM-201651.

    Article  CAS  PubMed  Google Scholar 

  115. Kim J, Lee H, Park K, Shin S. Rapid and efficient isolation of exosomes by clustering and scattering. J Clin Med. 2020;9(3):650. https://doi.org/10.3390/jcm9030650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sunkara V, Kim CJ, Park J, Woo HK, Kim D, Ha HK, et al. Fully automated, label-free isolation of extracellular vesicles from whole blood for cancer diagnosis and monitoring. Theranostics. 2019;9(7):1851–63. https://doi.org/10.7150/thno.32438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Serrano-Pertierra E, Oliveira-Rodríguez M, Rivas M, Oliva P, Villafani J, Navarro A, et al. Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering. 2019;6(1):8. https://doi.org/10.3390/bioengineering6010008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gallart-Palau X, Serra A, Wong ASW, Sandin S, Lai MKP, Chen CP, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015;5(1):14664. https://doi.org/10.1038/srep14664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. Rito-Palomares M, editor. PLoS One. 2015;10(12):e0145686. https://doi.org/10.1371/journal.pone.0145686.

  120. Lobb RJ, Becker M, Wen Wen S, Wong CSF, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. 2015;4:27031.https://doi.org/10.3402/jev.v4.27031

  121. Kalra H, Adda CG, Liem M, Ang C-S, Mechler A, Simpson RJ, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13(22):3354–64. https://doi.org/10.1002/pmic.201300282.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang J, Nguyen LTH, Hickey R, Walters N, Wang X, Kwak KJ, et al. Immunomagnetic sequential ultrafiltration (iSUF) platform for enrichment and purification of extracellular vesicles from biofluids. Sci Rep. 2021;11(1):1–17. https://doi.org/10.1038/s41598-021-86910-y.

    Article  CAS  Google Scholar 

  123. Małys MS, Aigner C, Schulz SM, Schachner H, Rees AJ, Kain R. Isolation of small extracellular vesicles from human sera. Int J Mol Sci. 2021;22(9):4653. https://doi.org/10.3390/IJMS22094653/S1.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wei H, Qian X, Xie F, Cui D. Isolation of exosomes from serum of patients with lung cancer: a comparison of the ultra-high speed centrifugation and precipitation methods. Ann Transl Med. 2021;9(10):882–882. https://doi.org/10.21037/ATM-21-2075.

  125. Mitchell MI, Ben-Dov IZ, Liu C, Ye K, Chow K, Kramer Y, et al. Extracellular Vesicle Capture by AnTibody of CHoice and Enzymatic Release (EV-CATCHER): a customizable purification assay designed for small-RNA biomarker identification and evaluation of circulating small-EVs. J Extracell Vesicles. 2021;10(8): e12110. https://doi.org/10.1002/JEV2.12110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cheng Y, Qu X, Dong Z, Zeng Q, Ma X, Jia Y, et al. Comparison of serum exosome isolation methods on co-precipitated free microRNAs. PeerJ. 2020;8: e9434. https://doi.org/10.7717/peerj.9434.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Jung HH, Kim JY, Lim JE, Im YH. Cytokine profiling in serum-derived exosomes isolated by different methods. Sci Rep. 2020;10(1):14069. https://doi.org/10.1038/s41598-020-70584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Macías M, Rebmann V, Mateos B, Varo N, Perez-Gracia JL, Alegre E, et al. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clin Chem Lab Med. 2019;57(10):1539–45. https://doi.org/10.1515/cclm-2018-1297.

  129. Nguyen HQ, Lee D, Kim Y, Paek M, Kim M, Jang KS, et al. Platelet Factor 4 as a novel exosome marker in MALDI-MS analysis of exosomes from human serum. Anal Chem. 2019;91(20):13297–305. https://doi.org/10.1021/acs.analchem.9b04198.

    Article  CAS  PubMed  Google Scholar 

  130. An M, Wu J, Zhu J, Lubman DM. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J Proteome Res. 2018;17(10):3599–605. https://doi.org/10.1021/acs.jproteome.8b00479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Buschmann D, Kirchner B, Hermann S, Märte M, Wurmser C, Brandes F, et al. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles. 2018;7(1):1481321. https://doi.org/10.1080/20013078.2018.1481321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. Camussi G, editor. PLoS One. 2017;12(1):e0170628. https://doi.org/10.1371/journal.pone.0170628.

  133. Tang Y-T, Huang Y-Y, Zheng L, Qin S-H, Xu X-P, An T-X, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med. 2017;40(3):834–44. https://doi.org/10.3892/ijmm.2017.3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M, González-Alvaro I, et al. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J Extracell Vesicles. 2016;5(1):31655. https://doi.org/10.3402/jev.v5.31655.

    Article  CAS  PubMed  Google Scholar 

  135. Caradec J, Kharmate G, Hosseini-Beheshti E, Adomat H, Gleave M, Guns E. Reproducibility and efficiency of serum-derived exosome extraction methods. Clin Biochem. 2014;47(13–14):1286–92. https://doi.org/10.1016/j.clinbiochem.2014.06.011.

    Article  CAS  PubMed  Google Scholar 

  136. Li M, Lou D, Chen J, Shi K, Wang Y, Zhu Q, et al. Deep dive on the proteome of salivary extracellular vesicles: comparison between ultracentrifugation and polymer-based precipitation isolation. Anal Bioanal Chem. 2020;413(2):365–75. https://doi.org/10.1007/s00216-020-03004-w.

    Article  CAS  PubMed  Google Scholar 

  137. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, et al. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015;63(3):181–9. https://doi.org/10.1369/0022155414564219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Barreiro K, Dwivedi OP, Leparc G, Rolser M, Delic D, Forsblom C, et al. Comparison of urinary extracellular vesicle isolation methods for transcriptomic biomarker research in diabetic kidney disease. J Extracell Vesicles. 2020;10(2): e12038. https://doi.org/10.1002/jev2.12038.

    Article  CAS  PubMed  Google Scholar 

  139. Park S, Lee K, Park IB, Kim NH, Cho S, Rhee WJ, et al. The profiles of microRNAs from urinary extracellular vesicles (EVs) prepared by various isolation methods and their correlation with serum EV microRNAs. Diabetes Res Clin Pract. 2020;160: 108010. https://doi.org/10.1016/j.diabres.2020.108010.

    Article  CAS  PubMed  Google Scholar 

  140. Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep. 2018;8(1):3945. https://doi.org/10.1038/s41598-018-22142-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu X, Li L, Iliuk A, Tao WA. Highly efficient phosphoproteome capture and analysis from urinary extracellular vesicles. J Proteome Res. 2018;17(9):3308–16. https://doi.org/10.1021/acs.jproteome.8b00459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77(10):1167–75. https://doi.org/10.1002/pros.23376.

    Article  CAS  PubMed  Google Scholar 

  143. Markowska A, Pendergrast RS, Pendergrast JS, Pendergrast PS. A novel method for the isolation of extracellular vesicles and RNA from urine. J Circ Biomarkers. 2017;6:184945441771266. https://doi.org/10.1177/1849454417712666.

    Article  CAS  Google Scholar 

  144. Channavajjhala SK, Rossato M, Morandini F, Castagna A, Pizzolo F, Bazzoni F, et al. Optimizing the purification and analysis of miRNAs from urinary exosomes. Clin Chem Lab Med. 2014;52(3):345–54. https://doi.org/10.1515/cclm-2013-0562.

    Article  CAS  PubMed  Google Scholar 

  145. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32. https://doi.org/10.1038/ki.2012.256.

    Article  CAS  PubMed  Google Scholar 

  146. Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, Rood IM, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4(1):84–96. https://doi.org/10.1002/prca.200800093.

    Article  CAS  PubMed  Google Scholar 

  147. Tzaridis T, Bachurski D, Liu S, Surmann K, Babatz F, Gesell Salazar M, et al. Extracellular vesicle separation techniques impact results from human blood samples: considerations for diagnostic applications. Int J Mol Sci. 2021;22(17):9211. https://doi.org/10.3390/IJMS22179211/S1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang ZY, Wang RX, Ding XQ, Zhang X, Pan XR, Tong JH. A protocol for cancer-related mutation detection on exosomal DNA in clinical application. Front Oncol. 2020;10: 558106. https://doi.org/10.3389/fonc.2020.558106.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sorop A, Iacob R, Iacob S, Constantinescu D, Chitoiu L, Fertig TE, et al. Plasma small extracellular vesicles derived miR-21-5p and miR-92a-3p as potential biomarkers for hepatocellular carcinoma screening. Front Genet. 2020;11:712. https://doi.org/10.3389/fgene.2020.00712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cao F, Gao Y, Chu Q, Wu Q, Zhao L, Lan T, et al. Proteomics comparison of exosomes from serum and plasma between ultracentrifugation and polymer-based precipitation kit methods. Electrophoresis. 2019;40(23–24):3092–8. https://doi.org/10.1002/elps.201900295.

    Article  CAS  PubMed  Google Scholar 

  151. Ding M, Wang C, Lu X, Zhang C, Zhou Z, Chen X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal Bioanal Chem. 2018;410(16):3805–14. https://doi.org/10.1007/s00216-018-1052-4.

    Article  CAS  PubMed  Google Scholar 

  152. Shi L, Kuhnell D, Borra VJ, Langevin SM, Nakamura T, Esfandiari L. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. Lab Chip. 2019;19(21):3726–34. https://doi.org/10.1039/c9lc00902g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kumar A, Dhadi SR, Mai NN, Taylor C, Roy JW, Barnett DA, et al. The polysaccharide chitosan facilitates the isolation of small extracellular vesicles from multiple biofluids. J Extracell Vesicles. 2021;10(11): e12138. https://doi.org/10.1002/JEV2.12138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Deregibus MC, Figliolini F, D’Antico S, Manzini PM, Pasquino C, De Lena M, et al. Charge-based precipitation of extracellular vesicles. Int J Mol Med. 2016;38(5):1359–66. https://doi.org/10.3892/ijmm.2016.2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Smith JT, Wunsch BH, Dogra N, Ahsen ME, Lee K, Yadav KK, et al. Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples. Lab Chip. 2018;18(24):3913–25. https://doi.org/10.1039/c8lc01017j.

    Article  CAS  PubMed  Google Scholar 

  156. Crossland RE, Norden J, Bibby LA, Davis J, Dickinson AM. Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J Immunol Methods. 2016;429:39–49. https://doi.org/10.1016/j.jim.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  157. Royo F, Théry C, Falcón-Pérez JM, Nieuwland R, Witwer KW. Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV Rigor and Standardization Subcommittee. Cells. 2020;9(9):1955. https://doi.org/10.3390/cells9091955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Alzheimer’s Association under Grant 2019-AARG-644347. TSM is supported by the Fundação para a Ciência e Tecnologia (FCT) of the Ministério da Educação e Ciência under the individual PhD grant SFRH/BD/145979/2019 and MV under the individual PhD grant UI/BD/151354/2021.

Author information

Authors and Affiliations

Authors

Contributions

TSM—conception, literature search, data analysis, manuscript writing. MV—literature search, data analysis, manuscript writing. AGH—conception, manuscript writing and critical revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Gabriela Henriques.

Ethics declarations

Ethics approval

Not applicable.

Source of biological material

Not applicable.

Statement on animal welfare

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Advances in Extracellular Vesicle Analysis with guest editors Lucile Alexandre, Jiashu Sun, Myriam Taverna, and Wenwan Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, T.S., Vaz, M. & Henriques, A.G. A review on comparative studies addressing exosome isolation methods from body fluids. Anal Bioanal Chem 415, 1239–1263 (2023). https://doi.org/10.1007/s00216-022-04174-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04174-5

Keywords

Navigation