Skip to main content
Log in

Green synthesis of carbon dots-functionalized silver nanoparticles for SERS-based detection of thiram fungicide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study reports the reduction of AgNO3 using green-synthesized carbon dots (CDs) derived from the leaf extract of Datura metel without the aid of any chemical-reducing agent. The CDs act as both reducing and stabilizing agent to synthesize CDs-functionalized silver nanoparticles (Ag/CDs) and are employed for surface-enhanced Raman spectroscopy (SERS)-based detection of thiram fungicide. The formation of Ag/CDs is confirmed with UV–Vis absorption spectroscopy and Raman spectroscopy. The synthesized Ag/CDs exhibit high stability and the fabricated SERS substrate exhibited a detection range of 10–3 to 10–8 M with a corresponding correlation coefficient of 0.98. The obtained minimum detection limit of thiram is 10–8 M with an enhancement factor of 1.3 × 105 which is much lower than the maximum allowed residual limit of 7 ppm. This study emphasizes the green route to synthesize CDs-functionalized stable AgNPs for the SERS-based detection of thiram fungicide and explained the sensing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. M. Rafique, I. Sadaf, M.S. Rafique, M.B. Tahir, A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 45, 1272 (2017)

    Google Scholar 

  2. K.M.M. Abou El-Nour, A.A. Eftaiha, A. Al-Warthan, R.A.A. Ammar, Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135 (2010)

    Google Scholar 

  3. S. Zhang, Y. Tang, B. Vlahovic, A review on preparation and applications of silver-containing nanofibers. Nanosc. Res. Lett. 11, 80 (2016)

    ADS  Google Scholar 

  4. W.A. Shaikh, S. Chakraborty, G. Owens, R.U. Islam, A review of the phytochemical mediated synthesis of AgNP (silver nanoparticle): the wonder particle of the past decade. Appl. Nanosci. 11, 2625 (2021)

    ADS  Google Scholar 

  5. S.A. Ghoto, M.Y. Khuhawar, T.M. Jahangir, J.U.D. Mangi, Applications of copper nanoparticles for colorimetric detection of dithiocarbamate pesticides. J Nanostruct. Chem. 9, 77 (2019)

    Google Scholar 

  6. K. Huang, Y. Yan, K. Li, A. Khan, H. Zhang, X. Pi, X. Yu, D. Yang, High and fast response of a graphene-silicon photodetector coupled with 2D fractal platinum nanoparticles. Adv. Opt. Mater. 6, 1700793 (2018)

    Google Scholar 

  7. M. Hu, Y. Yan, K. Huang, A. Khan, X. Qiu, D. Xu, H. Zhang, X. Yu, D. Yang, Performance improvement of graphene/silicon photodetectors using high work function metal nanoparticles with plasma effect. Adv. Opt. Mater. 6, 1701243 (2018)

    Google Scholar 

  8. Z. Lei, D. Wu, X. Cao, X. Zhang, L. Tao, Z. Zheng, X. Feng, L. Tao, Y. Zhao, 2D platinum telluride as SERS substrate: unique layer-dependent Raman enhanced effect. J. Alloys Compd. 937, 168294 (2023)

    Google Scholar 

  9. A. Sultangaziyev, A. Ilyas, A. Dyussupova, R. Bukasov, Trends in application of SERS substrates beyond Ag and Au, and their role in bioanalysis. Biosensors 12, 967 (2022)

    Google Scholar 

  10. S. Wang, Q. Hao, Y. Zhao, Y. Chen, Two-dimensional printed AgNPs@Paper Swab for SERS screening of pesticide residues on apples and pears. J. Agric. Food Chem. 71, 4982 (2023)

    Google Scholar 

  11. L. Li, Q. Cui, M. Li, T. Li, S. Cao, S. Dong, Y. Wang, Q. Dai, J. Ning, Rapid detection of multiple colorant adulteration in Keemun black tea based on hemp spherical AgNPs-SERS. Food Chem. 398, 133841 (2023)

    Google Scholar 

  12. T.Y. Chan, T.Y. Liu, K.S. Wang, K.T. Tsai, Z.X. Chen, Y.C. Chang, Y.Q. Tseng, C.H. Wang, J. Wang, Y.L. Wang, SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array. Nanosc. Res. Lett. 12, 344 (2017)

    ADS  Google Scholar 

  13. H. Guo, L.C. Hamlet, L. He, B. Xing, A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental waters. Sci. Total. Environ. 653, 1034 (2019)

    ADS  Google Scholar 

  14. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 9, 385 (2014)

    Google Scholar 

  15. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11, 2804 (2021)

    ADS  Google Scholar 

  16. Z. Yang, J. Wang, Y. Shao, Y. Jin, M. Yi, Studying corrosion of silver thin film by surface plasmon resonance technique. Opt. Quant. Electron. 52, 31 (2019)

    Google Scholar 

  17. L. Ma, Y. Huang, M. Hou, Z. Xie, Z. Zhang, Silver nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci. Rep. 5, 12890 (2015)

    ADS  Google Scholar 

  18. E.G.D.L. Oliveira, H.P. de Oliveira, A.S.L. Gomes, Metal nanoparticles/carbon dots nanocomposites for SERS devices: trends and perspectives. SN Appl. Sci. 2, 1491 (2020)

    Google Scholar 

  19. V.A. León Anchustegui, J. Zhu, L. He, Y. Bi, Y. Dong, J.H. Liu, S. Wang, Coencapsulation of carbon dots and gold nanoparticles over Escherichia coli for bacterium assay by surface-enhanced Raman scattering. ACS Appl. Bio Mater. 4, 597 (2021)

    Google Scholar 

  20. G. Piszter, G. Molnár, A. Pálinkás, Z. Osváth, Graphene-encapsulated silver nanoparticles for plasmonic vapor sensing. Nanomater. 12, 2473 (2022)

    Google Scholar 

  21. J. Lee, S. Shin, S. Kang, S. Lee, J. Seo, T. Lee, Highly stable surface-enhanced Raman spectroscopy substrates using few-layer graphene on silver nanoparticles. J. Nanomater. 2015, 975043 (2015)

    Google Scholar 

  22. J.C. Reed, H. Zhu, A.Y. Zhu, C. Li, E. Cubukcu, Graphene-enabled silver nanoantenna sensors. Nano Lett. 12, 4090 (2012)

    ADS  Google Scholar 

  23. H. Li, B. Yang, B. Yu, N. Huang, L. Liu, J. Lu, X. Jiang, Graphene-coated Si nanowires as substrates for surface-enhanced Raman scattering. Appl. Surf. Sci. 541, 148486 (2021)

    Google Scholar 

  24. A. Khan, R.R. Kumar, J. Cong, M. Imran, D. Yang, X. Yu, CVD graphene on textured silicon: an emerging technologically versatile heterostructure for energy and detection applications. Adv. Mater. Interfaces 9, 2100977 (2022)

    Google Scholar 

  25. Y. Dong, Q. Wang, L. Wan, X. You, Y. Chi, Carbon based dot capped silver nanoparticles for efficient surface-enhanced Raman scattering. J. Mater. Chem. C. 4, 7472 (2016)

    Google Scholar 

  26. S.K. Bhunia, L. Zeiri, J. Manna, S. Nandi, R. Jelinek, Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl. Mater. Interfaces 8, 25637 (2016)

    Google Scholar 

  27. K.V. Gokulakrishnan, K.C. Alex, K. Sekhar, Koppole, highly sensitive, cost-effective, and flexible SERS substrate based on green synthesized GO/rGO for pesticide detection**. ChemistrySelect 7, e202200348 (2022)

    Google Scholar 

  28. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. ChemComm. 48, 3686–3699 (2012)

    Google Scholar 

  29. H. Li, Z. Kang, Y. Liu, S.T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230 (2012)

    Google Scholar 

  30. M. Amjadi, T. Hallaj, H. Asadollahi, Z. Song, M. de Frutos, N. Hildebrandt, Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sens. Actuat. B Chem. 244, 425 (2017)

    Google Scholar 

  31. S. Bharathi, S.A. John, Silver nanoparticles capped with carbon dots as a fluorescent probe for the highly sensitive “off–on” sensing of sulfide ions in water. Anal. Bioanal. Chem. 411, 1 (2019)

    Google Scholar 

  32. H.V. Tran, A.D. Chu, T. Van Nguyen, N.D. Nguyen, T.D. Le, C.D. Huynh, An Investigation of silver nanoparticles formation under presence of graphene quantum dots as reducing reagent and stabilizer. Mater. Trans. 59, 1106 (2018)

    Google Scholar 

  33. J. Ge, Y. Li, J. Wang, Y. Pu, W. Xue, X. Liu, Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. J. Alloys Compd. 663, 166 (2016)

    Google Scholar 

  34. L. Komalavalli, P. Amutha, S. Monisha, A facile approach for the synthesis of carbon dots from Hibiscus sabdariffa and its application as bio-imaging agent and Cr (VI) sensor. Mater. Today: Proc. 33, 2279 (2020)

    Google Scholar 

  35. S. Bhatt, M. Bhatt, A. Kumar, G. Vyas, T. Gajaria, P. Paul, Green route for synthesis of multifunctional fluorescent carbon dots from Tulsi leaves and its application as Cr(VI) sensors, bio-imaging and patterning agents. Coll. Surf. B 167, 126 (2018)

    Google Scholar 

  36. H. Muktha, R. Sharath, N. Kottam, S.P. Smrithi, K. Samrat, P. Ankitha, Green synthesis of carbon dots and evaluation of its pharmacological activities. BioNanoScience. 10, 731 (2020)

    Google Scholar 

  37. G. Huang, X. Chen, C. Wang, H. Zheng, Z. Huang, D. Chen, H. Xie, Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv. 7, 47840 (2017)

    ADS  Google Scholar 

  38. R. Atchudan, T.N. Jebakumar Immanuel Edison, M. Shanmugam, S. Perumal, T. Somanathan, Y.R. Lee, Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Phys. E Low Dimens. Syst. Nanostruct. 126, 114417 (2021)

    Google Scholar 

  39. C. Yang, R. Ogaki, L. Hansen, J. Kjems, B.M. Teo, Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages. RSC Adv. 5, 97836 (2015)

    ADS  Google Scholar 

  40. S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. ChemComm. 48, 8835 (2012)

    Google Scholar 

  41. C.J. Jeong, A.K. Roy, S.H. Kim, J.-E. Lee, J.H. Jeong, I. In, S.Y. Park, Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale 6, 15196 (2014)

    ADS  Google Scholar 

  42. Y. Su, B. Shi, S. Liao, J. Zhao, L. Chen, S. Zhao, Silver nanoparticles/N-doped carbon-dots nanocomposites derived from Siraitia grosvenorii and its logic gate and surface-enhanced Raman scattering characteristics. ACS Sustain. Chem. Eng. 4, 1728 (2016)

    Google Scholar 

  43. A.L. Queffelec, F. Boisdé, J.P. Larue, J.P. Haelters, B. Corbel, D. Thouvenot, P. Nodet, Development of an immunoassay (ELISA) for the quantification of thiram in lettuce. J. Agric. Food Chem. 49, 1675 (2001)

    Google Scholar 

  44. M. Chen, W. Luo, Q. Liu, N. Hao, Y. Zhu, M. Liu, L. Wang, H. Yang, X. Chen, Simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate for reliable detection of thiram residue. Anal. Chem. 90, 13647 (2018)

    Google Scholar 

  45. V.K. Sharma, J.S. Aulakh, A.K. Malik, Thiram: degradation, applications and analytical methods. J Environ. Monitor. 5, 717 (2003)

    Google Scholar 

  46. L. Kaskevich, V.J.V.D. Bezuglyĭ, Clinical aspects of chronic intoxications induced by TMTD. Vrach Delo. 6, 128 (1973)

    Google Scholar 

  47. V. Cherpak, V. Bezuglyĭ, L.J.V.D. Kaskevich, Health and hygienic characteristics of the working conditions and state of health of persons working with tetramethylthiuramdisulfide (TMTD). Vrach. Delo 10, 136 (1971)

    Google Scholar 

  48. K. Liu, Y. Li, M. Iqbal, Z. Tang, H. Zhang, Thiram exposure in environment: a critical review on cytotoxicity. Chemosphere 295, 133928 (2022)

    ADS  Google Scholar 

  49. B.M. Vasamsetti, K. Chon, J. Kim, J.-A. Oh, C.-Y. Yoon, H.-H. Park, Developmental toxic effects of thiram on developing zebrafish (Danio rerio) embryos. Toxics. 10, 369 (2022)

    Google Scholar 

  50. M.R. Ubeda, M.T.S. Escribano, L.H. Hernandez, Determination of Thiram by high-performance liquid chromatography with amperometric detection in river water and fungicide formulations. Microchemical J. 41, 22 (1990)

    Google Scholar 

  51. J. Zejun, Z. Peng, L. Yongfei, D. Pengfei, C. Ge, J. Maojun, W. Jing, Simultaneous determination of thiram and metalaxyl residues in rice and soil by dispersive solid phase extraction and high performance liquid chromatography-tandem mass spectrometry. Chin. J. Pestic. Sci. 17, 313 (2015)

    Google Scholar 

  52. J. Zhang, Y. Tan, L. Feng, Z. Ni, J. Wang, Z. Cai, Determination of thiram, propineb and metiram in mushroom by gas chromatography-mass spectrometry. Wei Sheng Yan Jiu. 49, 267 (2020)

    Google Scholar 

  53. Y. Yu, P. Zeng, C. Yang, J. Gong, R. Liang, Q. Ou, S. Zhang, Gold-nanorod-coated capillaries for the SERS-based detection of thiram. ACS Appl. Nano Mater. 2, 598 (2019)

    Google Scholar 

  54. X. Bian, J. Xu, Y. Pu, J. Yang, K.-L. Chiu, S. Jiang, Ag-coated cotton fabric as ultrasensitive and flexible SERS substrate. J. Ind. Text. 51, 712S (2021)

    Google Scholar 

  55. T. Wang, A. Wang, R. Wang, Z. Liu, Y. Sun, G. Shan, Y. Chen, Y. Liu, Carbon dots with molecular fluorescence and their application as a “turn-off” fluorescent probe for ferricyanide detection. Sci. Rep. 9, 10723 (2019)

    ADS  Google Scholar 

  56. D. Garibo, H.A. Borbón-Nuñez, J.N.D. de León, E. García Mendoza, I. Estrada, Y. Toledano-Magaña, H. Tiznado, M. Ovalle-Marroquin, A.G. Soto-Ramos, A. Blanco, J.A. Rodríguez, O.A. Romo, L.A. Chávez-Almazán, A. Susarrey-Arce, Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 10, 12805 (2020)

    ADS  Google Scholar 

  57. H. Badiah, F. Seedeh, G. Supriyanto, A. Zaidan, Synthesis of silver nanoparticles and the development in analysis method. IOP Conf. Ser. Earth Environ. Sci. 217, 012005 (2019)

    Google Scholar 

  58. A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon, M. Sharon, Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Mater. Sci. Eng. C 33, 2914 (2013)

    Google Scholar 

  59. S. Sailaja Prasannakumaran Nair, N. Kottam, P.K. S G, Green Synthesized Luminescent Carbon Nanodots for the Sensing Application of Fe3+ Ions, J. Fluoresc. 30, 357–363 (2020).

  60. A. Dager, T. Uchida, T. Maekawa, M. Tachibana, Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci. Rep. 9, 14004 (2019)

    ADS  Google Scholar 

  61. K. Bhardwaj, S. Kumar, S. Ojha, Antioxidant activity and FTIR analysis of Datura metel leaf and seed methanolic extracts. Afr. J. Tradit. Complement. Altern. Med. 13, 7 (2016)

    Google Scholar 

  62. L. Shen, M. Chen, L. Hu, X. Chen, J. Wang, Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 29, 16135 (2013)

    Google Scholar 

  63. P. Luo, C. Li, G. Shi, Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys. 14, 7360 (2012)

    Google Scholar 

  64. N. Vasimalai, V. Vilas-Boas, J. Gallo, M.D.F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein. J. Nanotechnol. 9, 530–544 (2018)

    Google Scholar 

  65. S. Kim, D. Hee Shin, C. Oh Kim, S. Seok Kang, S. Sin Joo, S.-H. Choi, S. Won Hwang, C. Sone, Size-dependence of Raman scattering from graphene quantum dots: Interplay between shape and thickness. Appl. Phys. Lett. 102, 053108 (2013)

    ADS  Google Scholar 

  66. A. Pramanik, A. Kole, N. Rathinam, S. Biswas, C. Tiwary, P. Varalakshmi, S. Rai, A.K. Balasubramaniem, P. Kumbhakar, A novel technique of synthesis of highly fluorescent carbon nanoparticles from broth constituent and in-vivo bioimaging of C. elegans. J Fluoresc 26, 1854 (2016)

    Google Scholar 

  67. A. Khan, S.M. Islam, S. Ahmed, R.R. Kumar, M.R. Habib, K. Huang, M. Hu, X. Yu, D. Yang, Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 5, 1800050 (2018)

    Google Scholar 

  68. M.J.S. Oliveira, C.S. Martin, R.J.G. Rubira, A. Batagin-Neto, C.J.L. Constantino, R.F. Aroca, Surface-enhanced Raman scattering of thiram: quantitative and theoretical analyses. J. Raman Spectrosc. 52, 2557 (2021)

    ADS  Google Scholar 

  69. Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, Y. Cui, Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 139, 5148 (2014)

    ADS  Google Scholar 

  70. L. Li, A. Zhao, D. Wang, H. Guo, H. Sun, Q. He, Fabrication of cube-like Fe3O4@SiO2@Ag nanocomposites with high SERS activity and their application in pesticide detection. J Nanopart Res. 18, 178 (2016)

    Google Scholar 

  71. C. Liu, S. Wang, X. Dong, Q. Huang, Flexible and transparent SERS substrates composed of Au@Ag nanorod arrays for in situ detection of pesticide residues on fruit and vegetables. Chemosensors 10, 423 (2022)

    Google Scholar 

  72. J. Liu, T. Si, L. Zhang, Z. Zhang, Mussel-inspired fabrication of SERS swabs for highly sensitive and conformal rapid detection of thiram bactericides. Nanomaterials 9, 1331 (2019)

    Google Scholar 

  73. K. Sugawa, T. Akiyama, Y. Tanoue, T. Harumoto, S. Yanagida, A. Yasumori, S. Tomita, J. Otsuki, Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)–Ag(shell) nanospheres. Phys. Chem. Chem. Phys. 17, 21182 (2015)

    Google Scholar 

  74. M. Adier, A.-M. Jurdyc, C. Hurel, F. Goutaland, J.-Y. Michalon, A. Merlen, B. Dussardier, D. Vouagner, Toward surface-enhanced Raman scattering using electroless substrate for trace arsenic detection and speciation. J. Appl. Phys. 133, 073103 (2023)

    ADS  Google Scholar 

  75. M.L. Protopapa, Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modelling. Appl. Opt. 48, 778 (2009)

    ADS  Google Scholar 

  76. M. Rippa, R. Castagna, M. Pannico, P. Musto, V. Tkachenko, J. Zhou, L. Petti, Engineered plasmonic Thue-Morse nanostructures for LSPR detection of the pesticide Thiram. Nanophotonics. 6, 1083 (2017)

    Google Scholar 

  77. H. Lai, W. Shang, Y. Yun, D. Chen, L. Wu, F. Xu, Uniform arrangement of gold nanoparticles on magnetic core particles with a metal-organic framework shell as a substrate for sensitive and reproducible SERS based assays: application to the quantitation of Malachite Green and thiram. Mikrochim. Acta 186, 144 (2019)

    Google Scholar 

Download references

Acknowledgements

The author KK acknowledges the DST SERB Govt. of India, for partial support through (ECR/2017/002537).

Author information

Authors and Affiliations

Authors

Contributions

JG: conceptualized and formulated the study, carried out experiments, performed data collection, data analysis, and write the original draft. RR: carried out the experiment. KCS: Contributed to the detailed analysis of the data, and edited manuscript. KK: Supervised the investigations as well as reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kamakshi Koppole.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokulakrishnan, J., Koppole, K., Rugmini, R. et al. Green synthesis of carbon dots-functionalized silver nanoparticles for SERS-based detection of thiram fungicide. Appl. Phys. A 129, 778 (2023). https://doi.org/10.1007/s00339-023-07038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07038-6

Keywords

Navigation