Skip to main content
Log in

Investigation on stability of silver nanoparticles with different ligands

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Water-dispersible silver nanoparticles (Ag NPs) are widely used in the research of biology and medicine due to their unique physical, chemical, and biological properties. However, the stability of conventional water-dispersible Ag NPs is generally poor, which limits the development of their applications. How to improve the long-term stability of Ag NPs in various environments remains a challenge. The results of this work indicate that the ligands on the surface of Ag NPs (diameter: 4.3 nm) influence their stability greatly. To address the stability difficulties of Ag NPs under long-term storage and application conditions, we prepared water-dispersible Ag NPs with two different types of ligands, namely monodentates ligands 11-mercapto-undecanoic acid and polydentate ligands poly(maleic anhydride-alt-1-octadecene). The stabilities of Ag NPs to light, heat, acid, alkali, salt, and buffer solutions were investigated. Compare with Ag NPs with monodentate ligands, Ag NPs with polydentate ligands shows better stability under the same external conditions. For Ag NPs with polydentate ligands, we attribute the multiple sites provided by the ligands and their inhibition of oxygen permeation through Ag NPs as the main factors for improving their long-term stability. In addition, the presence of free carboxylic acid groups not only conferred Ag NPs high solubility in water, but also allowed them further conjugation with biomolecules such as streptavidin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data included in this study are available on reasonable request by contact with the corresponding author.

References

  1. Gamal WM, El-Bassuony AAH, Abdelsalam HK, Abd El Wahab SM (2021) Role of elastic and optical properties on silver nanoferrite and nanochromite for optical switch device applications. J Mater Sci: Mater Electron 32:21590–21602. https://doi.org/10.1007/s10854-021-06667-y

    Article  CAS  Google Scholar 

  2. El-Bassuony AAH, Abdelsalam HK, Gamal WM (2022) Influence of elastic and optical properties on AgFeO2 and AgCrO2 delafossite to be applied in high-frequency applications. JOM 74:2656–2664. https://doi.org/10.1007/s11837-022-05170-x

    Article  CAS  Google Scholar 

  3. Sayed MA, El-Bassuony AAH, Abdelsalam HK (2020) Evaluation of antimicrobial properties of a novel synthesized nanometric delafossite. Braz J Microbiol 51:1475–1482. https://doi.org/10.1007/s42770-020-00366-2

    Article  CAS  Google Scholar 

  4. El-Bassuony AAH, Gamal WM, Abdelsalam HK (2023) Impact of different magnetic materials added to silver-magnetite nanoparticles on the structural, magnetic and antimicrobial properties. Eur Phys J Spec Top 232:1339–1351. https://doi.org/10.1140/epjs/s11734-022-00759-4

    Article  CAS  Google Scholar 

  5. Gamal WM, El-Bassuony AAH, Abdelsalam HK (2023) Fascinating study of elastic, FTIR, and antimicrobial properties of silver nanochromite at different annealing temperatures. Polym Bullhttps://doi.org/10.1007/s00289-023-04788-4

  6. El-Bassuony AAH, Gamal WM, Abdelsalam HK (2022) Influence of Silver nanoferrite and nanochromite on physical properties for high-frequency and biomedical applications. JOM 74:2635–2644. https://doi.org/10.1007/s11837-022-05315-y

    Article  CAS  Google Scholar 

  7. El-Bassuony AAH, Gamal WM, Abdelsalam HK (2022) Fascinating study of adding nanocomposite cobalt nano ferrite to silver nanoparticles accompanied magnetite impurity. J Mater Sci: Mater Electron 33:16219–16235. https://doi.org/10.1007/s10854-022-08516-y

    Article  CAS  Google Scholar 

  8. El-Bassuony AAH, Abdelsalam HK (2020) Correlation of heat treatment and the impurities accompanying Ag nanoparticles. Eur Phys J Plus 135:66. https://doi.org/10.1140/epjp/s13360-019-00025-y

    Article  CAS  Google Scholar 

  9. Gamal WM, El-Bassuony AAH, Hafez RS, Abdelsalam HK (2022) Study of the structural and magnetic properties of a novel Cola/Lah nanocomposite material. JOM 74:4898–4908. https://doi.org/10.1007/s11837-022-05491-x

    Article  CAS  Google Scholar 

  10. El-Bassuony AAH, Abdelsalam HK (2023) Attractive study of the physical properties of silver iron oxide nanoparticles for biomedical applications. Phys Scr 98:055919. https://doi.org/10.1088/1402-4896/acc90c

    Article  Google Scholar 

  11. Tao HC, Wu TY, Kheiri S, Aldeghi M, Aspuru-Guzik A, Kumacheva E (2021) Self-Driving Platform for metal nanoparticle synthesis: combining microfluidics and machine learning. Adv Funct Mater 31:2106725. https://doi.org/10.1002/adfm.202106725

    Article  CAS  Google Scholar 

  12. Agrawal S, Mysko RA, Nigra MM, Mohanty SK, Hoepfner MP (2021) Plasmonic photocatalytic enhancement of l-cysteine self-assembled gold nanoparticle clusters for fenton reaction catalysis. Langmuir 37:3281–3287. https://doi.org/10.1021/acs.langmuir.0c03254

    Article  CAS  Google Scholar 

  13. Huang L, Zou JS, Ye JY, Zhou ZY, Lin Z, Kang XW, Jain PK, Chen SW (2019) Synergy between plasmonic and electrocatalytic activation of methanol oxidation on palladium-silver alloy nanotubes. Angew Chem Int Ed 58:8794–8798. https://doi.org/10.1002/anie.201903290

    Article  CAS  Google Scholar 

  14. Resa I, Moreira HLN, Bresson B, Mahler B, Dubertret B, Aubin H (2009) Synthesis of monodisperse superconducting lead nanocrystals. J Phys Chem C 113:7120–7122. https://doi.org/10.1021/jp9005845

    Article  CAS  Google Scholar 

  15. Kumar S, Majhi RK, Singh A, Mishra M, Tiwari A, Chawla S, Guha P, Satpati B, Mohapatra H, Goswami L, Goswami C (2019) Carbohydrate-coated gold-silver nanoparticles for efficient elimination of multidrug resistant bacteria and in vivo wound healing. ACS Appl Mater Interfaces 11:42998–43017. https://doi.org/10.1021/acsami.9b17086

    Article  CAS  Google Scholar 

  16. Martin MN, Allen AJ, MacCuspie RI, Hackley VA (2014) Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir 30:11442–11452. https://doi.org/10.1021/la502973z

    Article  CAS  Google Scholar 

  17. Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Taherpour A, Sarparast M, Moosavifard SE, Barati A (2019) Aptamer-based fluorescent biosensing of adenosine triphosphate and cytochrome c via aggregation-induced emission enhancement on novel label-free DNA-capped silver nanoclusters/graphene oxide nanohybrids. ACS Appl Mater Interfaces 11:46077–46089. https://doi.org/10.1021/acsami.9b14487

    Article  CAS  Google Scholar 

  18. Reed JC, Zhu H, Zhu AY, Li C, Cubukcu E (2012) Graphene-enabled silver nanoantenna sensors. Nano Lett 12(8):4090–4094. https://doi.org/10.1021/nl301555t

    Article  CAS  Google Scholar 

  19. Cao YW, Jin R, Mirkin C (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962. https://doi.org/10.1021/ja011342n

    Article  CAS  Google Scholar 

  20. Li W, Virtanen JA, Penner RM (1995) Self-Assembly of n-alkanethiolate monolayers on silver nanostructures: protective encapsulation. Langmuir 11:4361–4365. https://doi.org/10.1021/la00011a031

    Article  CAS  Google Scholar 

  21. Liu S, Zhang Z, Han M (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77:2595–2600. https://doi.org/10.1021/ac0482864

    Article  CAS  Google Scholar 

  22. Evesque M, Keddam M, Takenouti H (2004) The formation of self-assembling membrane of hexadecane-thiol on silver to prevent the tarnishing. Electrochim Acta 49:2937–2943. https://doi.org/10.1016/j.electacta.2004.01.052

    Article  CAS  Google Scholar 

  23. Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nagasawa H, Nakamoto M, Yamaguchi T, Yase K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327:524–527. https://doi.org/10.1016/S0040-6090(98)00702-0

    Article  Google Scholar 

  24. Yamamoto M, Kashiwagi Y, Nak moto M (2006) Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 22:8581–8586. https://doi.org/10.1021/la0600245

    Article  CAS  Google Scholar 

  25. Dumelin CE, Scheuermann J, Melkko S, Neri D (2006) Selection of streptavidin binders from a DNA-encoded chemical library. Bioconjugate Chem 17:366–370. https://doi.org/10.1021/bc050282y

    Article  CAS  Google Scholar 

  26. Schwartz-Duval AS, Wen R, Srivastava I, Moitra P, Pan D (2021) A simplistic single-step method for preparing biomimetic nanoparticles from endogenous biomaterials. ACS Appl Mater Interfaces 13:46464–46477. https://doi.org/10.1021/acsami.1c17302

    Article  CAS  Google Scholar 

  27. Garaiova Z, Melikishvili S, Michlewska S, Ionov M, Pedziwiatr-Werbicka E, Waczulikova I, Hianik T, Gomez-Ramirez R, de la Mata FJ, Bryszewska M (2021) Dendronized gold nanoparticles as carriers for gp160 (HIV-1) peptides: biophysical insight into complex formation. Langmuir 37:1542–1550. https://doi.org/10.1021/acs.langmuir.0c03159

    Article  CAS  Google Scholar 

Download references

Funding

PhD research startup foundation of Changchun Institute of Technology, 04010192020028, Li Song, 04010192020029, Ying Wang, PhD research startup foundation of Changchun Institute of Technology, 04010192020074, Ming Yang

Author information

Authors and Affiliations

Authors

Contributions

Li Song: conceptualization, methodology, investigation, validation, formal Analysis, writing-original drafting, and writing-review and editing; Yan Huang: experiment, analysis, and editing; Ming Yang: methodology, writing-review and editing; Ying Wang: conceptualization, comments, editing and supervision.

Corresponding author

Correspondence to Li Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Wang, Y., Yang, M. et al. Investigation on stability of silver nanoparticles with different ligands. J Nanopart Res 25, 255 (2023). https://doi.org/10.1007/s11051-023-05910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05910-3

Keywords

Navigation