Skip to main content
Log in

Optimizing the Refractive Index Sensitivity of Plasmonically Coupled Gold Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The possibility to enhance the local refractive index sensitivity using plasmonic coupling between spherical gold nanoparticles (Au-NPs) has been investigated. A strong and distinct optical coupling between Au-NPs of various sizes was achieved by controlling the interparticle separation using a layer-by-layer assembly of polyelectrolytes. The frequency of the coupled plasmon peak could be tuned by varying either the particle size or the interparticle separation, shown both experimentally and by theoretical simulations. The bulk refractive index (RI) sensitivity for the plasmonic coupling modes was investigated and compared to the RI sensitivity of monolayers of well-separated Au-NPs, and the results clearly demonstrates that the RI sensitivity can be significantly enhanced in plasmonically coupled Au-NPs. The proposed approach is simple and scalable and improves the rather modest RI sensitivity of spherical gold nanoparticles with a factor of 3, providing a new route for fabrication of inexpensive sensors based on plasmonic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  3. Sepulveda B, Angelome PC, Lechuga LM, Liz-Marzan LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251

    Article  CAS  Google Scholar 

  4. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  5. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  6. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  7. Zhang JH, Liu HY, Wang ZL, Ming NB (2007) Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv Funct Mater 17:3295–3303

    Article  CAS  Google Scholar 

  8. Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A et al (2010) Tuning size and sensing properties in colloidal gold nanostars. Langmuir 26:14943–14950

    Article  CAS  Google Scholar 

  9. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  10. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  11. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565

    Article  CAS  Google Scholar 

  12. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  13. Chen HJ, Kou XS, Yang Z, Ni WH, Wang JF (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  14. Lee YH, Chen HJ, Xu QH, Wang JF (2011) Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type. J Phys Chem C 115:7997–8004

    Article  CAS  Google Scholar 

  15. Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  16. Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263

    Article  CAS  Google Scholar 

  17. Charles DE, Aherne D, Gara M, Ledwith DM, Gun'ko YK, Kelly JM et al (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. Acs Nano 4:55–64

    Article  CAS  Google Scholar 

  18. Verellen N, Van Dorpe P, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L et al (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  19. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  20. Atay T, Song JH, Nurmikko AV (2004) Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett 4:1627–1631

    Article  CAS  Google Scholar 

  21. Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088

    Article  CAS  Google Scholar 

  22. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164

    Article  CAS  Google Scholar 

  23. Jain PK, El-Sayed MA (2008) Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Lett 8:4347–4352

    Article  CAS  Google Scholar 

  24. Acimovic SS, Kreuzer MP, Gonzalez MU, Quidant R (2009) Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. Acs Nano 3:1231–1237

    Article  CAS  Google Scholar 

  25. Sannomiya T, Sahoo PK, Mahcicek DI, Solak HH, Hafner C, Grieshaber D et al (2009) Biosensing by densely packed and optically coupled plasmonic particle arrays. Small 5:1889–1896

    Article  CAS  Google Scholar 

  26. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  27. Srivastava S, Verma A, Frankamp BL, Rotello VM (2005) Controlled assembly of protein-nanoparticle composites through protein surface recognition. Adv Mater 17:617–621

    Article  CAS  Google Scholar 

  28. Aili D, Gryko P, Sepulveda B, Dick JAG, Kirby N, Heenan R et al (2011) Polypeptide folding-mediated tuning of the optical and structural properties of gold nanoparticle assemblies. Nano Lett 11:5564–5573

    Article  CAS  Google Scholar 

  29. Guo LH, Chen GN, Kim DH (2010) Three-dimensionally assembled gold nanostructures for plasmonic biosensors. Anal Chem 82:5147–5153

    Article  CAS  Google Scholar 

  30. Ye J, Bonroy K, Nelis D, Frederix F, D'Haen J, Maes G et al (2008) Enhanced localized surface plasmon resonance sensing on three-dimensional gold nanoparticles assemblies. Colloids Surf A 321:313–317

    Article  CAS  Google Scholar 

  31. Jiang CY, Markutsya S, Tsukruk VV (2004) Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly. Langmuir 20:882–890

    Article  CAS  Google Scholar 

  32. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  34. Turkevich J, Stevenson PC, Hillier JD (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  35. Gao B, Rozin MJ, Tao AR (2013) Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles. Nanoscale 5:5677–5691

    Article  CAS  Google Scholar 

  36. Gittins DI, Caruso F (2001) Tailoring the polyelectrolyte coating of metal nanoparticles. J Phys Chem B 105:6846–6852

    Article  CAS  Google Scholar 

  37. Wong JE, Rehfeldt F, Hanni P, Tanaka M, Klitzing RV (2004) Swelling behavior of polyelectrolyte multilayers in saturated water vapor. Macromolecules 37:7285–7289

    Article  CAS  Google Scholar 

  38. Jain PK, Ei-Sayed MA (2007) Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells. J Phys Chem C 111:17451–17454

    Article  CAS  Google Scholar 

  39. Otte MA, Sepulveda B, Ni WH, Juste JP, Liz-Marzan LM, Lechuga LM (2010) Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. Acs Nano 4:349–357

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Linköping University, the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation (KAW), and the Center in Nano science and technology (CeNano). During this study, E.M. was enrolled in the graduate school Forum Scientium. B. Sepulveda acknowledges the financial support of MINECO, Explora Project MAT2011-12645-E

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Aili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 31151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinsson, E., Sepulveda, B., Chen, P. et al. Optimizing the Refractive Index Sensitivity of Plasmonically Coupled Gold Nanoparticles. Plasmonics 9, 773–780 (2014). https://doi.org/10.1007/s11468-013-9659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9659-y

Keywords

Navigation