ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Effects of Magnetite Nanoparticles on Soybean Chlorophyll

View Author Information
Soil Science Department, Faculty of Agriculture, Tarbiat Modares University, Tehran 14117-13116, Iran
Horticultural Science Department, Faculty of Agriculture, Tabriz University, Tabriz 51666-14766, Iran
§ Department of Chemical Engineering and Materials Science, University of California Davis, Davis, California, 95616, United States
Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
*M.H.G.: E-mail [email protected]
*M.M.: Web www.biospion.com, e-mail [email protected], phone +98 (21) 66959095, fax +98 (21) 66959096.
Cite this: Environ. Sci. Technol. 2013, 47, 18, 10645–10652
Publication Date (Web):August 16, 2013
https://doi.org/10.1021/es402249b
Copyright © 2013 American Chemical Society

    Article Views

    2371

    Altmetric

    -

    Citations

    87
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Nanoparticles (NPs) have emerged as one of the most innovative and promising application in agriculture. Since plants are recognized as essential component of all ecosystems, the effects of NPs on plants may pave a new insight to the ecosystems. Here, uptake and translocation of superparamagnetic iron oxide NPs (SPIONs), with various surface charges, on soybean has been probed; in addition, the effects of SPIONs on variations of chlorophyll, in hydroponic condition, together with their ability for reduction of iron deficiency chlorosis were explored. We find that SPIONs, which were entered and translocated in the soybean, increased chlorophyll levels, with no trace of toxicity. Furthermore, it was found that physicochemical characteristics of the SPIONs had a crucial role on the enhancement of chlorophyll content in subapical leaves of soybean. The equivalent ratio of chlorophyll a to b, in all treatments with conventional growth medium iron chelate and SPIONs (as iron source), indicated no significant difference on the photosynthesis efficiency. Finally, it was observed that the effect of SPIONs on the soybean chlorophyll content may have influence on both biochemical and enzymatic efficiency in different stages of the photosynthesis reactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Nanoparticle synthesis, synthesis of various copolymers, coating process, SPION characterization, epifluorescence image analysis, figure showing the effect of magnetite, table comparing the mean effect of surface characterization, and additional references. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 87 publications.

    1. Yusong Yao, Le Yue, Xuesong Cao, Feiran Chen, Jing Li, Bingxu Cheng, Chuanxi Wang, Zhenyu Wang. Carbon Dots Embedded in Nanoporous SiO2 Nanoparticles for Enhancing Photosynthesis in Agricultural Crops. ACS Applied Nano Materials 2023, 6 (1) , 110-118. https://doi.org/10.1021/acsanm.2c03843
    2. Xuesong Cao, Le Yue, Chuanxi Wang, Xing Luo, Chenchi Zhang, Xiaoli Zhao, Fengchang Wu, Jason C. White, Zhenyu Wang, Baoshan Xing. Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano 2022, 16 (1) , 1170-1181. https://doi.org/10.1021/acsnano.1c08977
    3. Thynraj Antony Roseline, Muthiyal Prabakaran Sudhakar, Arunkumar Kulanthaiyesu. Synthesis of Silver Nanoparticle Composites Using Calliblepharis fimbriata Aqueous Extract, Phytochemical Stimulation, and Controlling Bacterial Blight Disease in Rice. ACS Agricultural Science & Technology 2021, 1 (6) , 702-718. https://doi.org/10.1021/acsagscitech.1c00189
    4. Guangbo Qu, Tian Xia, Wenhua Zhou, Xue Zhang, Haiyan Zhang, Ligang Hu, Jianbo Shi, Xue-Feng Yu, Guibin Jiang. Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews 2020, 120 (4) , 2288-2346. https://doi.org/10.1021/acs.chemrev.9b00445
    5. Lijuan Zhao, Li Lu, Aodi Wang, Huiling Zhang, Min Huang, Honghong Wu, Baoshan Xing, Zhenyu Wang, Rong Ji. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Journal of Agricultural and Food Chemistry 2020, 68 (7) , 1935-1947. https://doi.org/10.1021/acs.jafc.9b06615
    6. Deepak M. Kasote, Jisun H.J. Lee, G. K. Jayaprakasha, Bhimanagouda S. Patil. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant Potential and Defense-Linked Hormones in Watermelon Seedlings. ACS Sustainable Chemistry & Engineering 2019, 7 (5) , 5142-5151. https://doi.org/10.1021/acssuschemeng.8b06013
    7. Amarendra Dhar Dwivedi, Hakwon Yoon, Jitendra Pal Singh, Keun Hwa Chae, Sang-chul Rho, Dong Soo Hwang, Yoon-Seok Chang. Uptake, Distribution, and Transformation of Zerovalent Iron Nanoparticles in the Edible Plant Cucumis sativus. Environmental Science & Technology 2018, 52 (17) , 10057-10066. https://doi.org/10.1021/acs.est.8b01960
    8. Gauri A. Achari, Meenal Kowshik. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. Journal of Agricultural and Food Chemistry 2018, 66 (33) , 8647-8661. https://doi.org/10.1021/acs.jafc.8b00691
    9. Ramesh Raliya, Vinod Saharan, Christian Dimkpa, Pratim Biswas. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry 2018, 66 (26) , 6487-6503. https://doi.org/10.1021/acs.jafc.7b02178
    10. Saheli Pradhan and Damodhara Rao Mailapalli . Interaction of Engineered Nanoparticles with the Agri-environment. Journal of Agricultural and Food Chemistry 2017, 65 (38) , 8279-8294. https://doi.org/10.1021/acs.jafc.7b02528
    11. Morteza Mahmoudi, Samuel E. Lohse, Catherine J. Murphy, and Kenneth S. Suslick . Identification of Nanoparticles with a Colorimetric Sensor Array. ACS Sensors 2016, 1 (1) , 17-21. https://doi.org/10.1021/acssensors.5b00014
    12. Wenchao Du, Jorge L. Gardea-Torresdey, Rong Ji, Ying Yin, Jianguo Zhu, Jose R. Peralta-Videa, and Hongyan Guo . Physiological and Biochemical Changes Imposed by CeO2 Nanoparticles on Wheat: A Life Cycle Field Study. Environmental Science & Technology 2015, 49 (19) , 11884-11893. https://doi.org/10.1021/acs.est.5b03055
    13. Chuanxin Ma, Jason C. White, Om Parkash Dhankher, and Baoshan Xing . Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environmental Science & Technology 2015, 49 (12) , 7109-7122. https://doi.org/10.1021/acs.est.5b00685
    14. Jae-Hwan Kim, Youngjun Oh, Hakwon Yoon, Inhwan Hwang, and Yoon-Seok Chang . Iron Nanoparticle-Induced Activation of Plasma Membrane H+-ATPase Promotes Stomatal Opening in Arabidopsis thaliana. Environmental Science & Technology 2015, 49 (2) , 1113-1119. https://doi.org/10.1021/es504375t
    15. Hatice Kübra Gören, Feride Öncan Sümer, Öner Canavar. THE IRON OXIDE (FE2O3NPS) AND GRAPHENE OXIDE (GONPS) NANOPARTICULES PRIMING TREATMENTS ALLEVIATE THE EFFECTS OF SALINITY DURING GERMINATION OF THE SOYBEAN. International Journal of Engineering Technologies and Management Research 2024, 11 (3) https://doi.org/10.29121/ijetmr.v11.i3.2024.1413
    16. Divjot Kour, Sofia Sharief Khan, Shilpa Kumari, Shaveta Singh, Rabiya Tabbassum Khan, Chandresh Kumari, Swati Kumari, Hemant Dasila, Harpreet Kour, Manpreet Kaur, Seema Ramniwas, Sanjeev Kumar, Ashutosh Kumar Rai, Wan-Hee Cheng, Ajar Nath Yadav. Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective. Folia Microbiologica 2024, 5 https://doi.org/10.1007/s12223-024-01147-2
    17. Maria Habib, Hina Fatima, Tauseef Anwar, Huma Qureshi, Samson O. Aisida, Ishaq Ahmad, Iftikhar Ali, Amal M. Al-Mohaimeed, Mohamed S. Elshikh, Sarah Abdul Razak, Asif Kamal. Green synthesis, characterization, and application of iron and molybdenum nanoparticles and their composites for enhancing the growth of Solanum lycopersicum. Open Chemistry 2024, 22 (1) https://doi.org/10.1515/chem-2023-0196
    18. Abhishek Singh, Ragini Sharma, Vishnu D. Rajput, Karen Ghazaryan, Tatiana Minkina, Abdel Rahman Mohammad Al Tawaha, Ashi Varshney. Green Synthesis of Nanofertilizers and Their Application for Crop Production. 2024, 205-231. https://doi.org/10.1007/978-3-031-41329-2_8
    19. D. A. Khlebnikova, O. B. Polivanova, M. V. Boytsova, I. I. Chepovoy, N.-O. Munkhbaatar, M. Yu. Cherednichenko. Physiological Aspects of Interaction of Nanoparticles with Plant and Microorganism Cells. Timiryazev Biological Journal 2023, (2) , 77-93. https://doi.org/10.26897/2949-4710-2023-2-77-93
    20. Sapna Rawat. Nanopriming Technology for Sustainable Agriculture. 2023, 21-42. https://doi.org/10.4018/978-1-6684-7232-3.ch002
    21. Annika Arvind Gupta, Arvind Radheyshyam Gupta. The Potential of Nano-Based Seed Priming for Sustainable Agriculture. 2023, 43-88. https://doi.org/10.4018/978-1-6684-7232-3.ch003
    22. Shipra Singh Parmar, Divya Pandey. Nanopriming Effective Tools for the Field of Horticultural Crops to Copping Up With Biotic and Abiotic Stresses. 2023, 241-262. https://doi.org/10.4018/978-1-6684-7232-3.ch011
    23. Li Fu. In vivo Synthesis of Metal Nanoparticles Using Plants as Hosts. 2023, 137-147. https://doi.org/10.2174/9789815136388123010007
    24. Manisha Negi, Saurabh Sharma, Uday Sharma, Pardeep Kumar, Umesh Sharma, Kapil Sharma. Aspects of the Current and Prospective Sustainable Usage of Nanofertilizers in Agriculture and Their Effects on Health of the Soil: an Updated Review. Journal of Soil Science and Plant Nutrition 2023, 23 (1) , 594-611. https://doi.org/10.1007/s42729-022-01068-4
    25. Debraj Biswal. Use of Nanofertilizers in Agriculture. 2023, 102-133. https://doi.org/10.4018/978-1-6684-5533-3.ch006
    26. Yunjiao Yang, Runtian Li, Ling Wang, Hongmei Bi, Zhimei Peng, Junru Li, Changhong Guo, Yingdong Bi, Yongcai Lai, Donglin Guo, . Enhanced Germination and Growth of Alfalfa with Seed Presoaking and Hydroponic Culture in Fe2O3 Magnetic Nanoparticles. Journal of Nanomaterials 2023, 2023 , 1-11. https://doi.org/10.1155/2023/9783977
    27. G. S. Arunakumar, Akhil Suresh, P. M. N. R. Nisarga, M. R. Bhavya, P. Sowbhagya, Belaghihalli N. Gnanesh. Application of Green Synthesized Nanoparticles in Sustainable Mulberry Production: Current Trends and Opportunities. 2023, 273-292. https://doi.org/10.1007/978-3-031-28478-6_12
    28. Bornali Borah, Pratik Parmar, Dileep Kumar, Susmitha Pusarla. Nanofertilizers: A Futuristic Approach to Crop Production and Towards a Sustainable Environment. 2023, 211-235. https://doi.org/10.1007/978-3-031-35147-1_12
    29. Arvind Arya, Pankaj Kumar Tyagi, Sandeep Kumar, Azamal Husen. Nanomaterials and their application in microbiology disciplines. 2023, 175-206. https://doi.org/10.1016/B978-0-323-99546-7.00026-4
    30. Yu‐Miao Yang, Ying Zhu, Minha Naseer, Qi Wang, Guang Li, Hong‐Yan Tao, Shuang‐Guo Zhu, Bao‐Zhong Wang, Wei Wang, You‐Cai Xiong. Rhizosphere effect of nanoscale zero‐valent iron on mycorrhiza‐dependent maize assimilation. Plant, Cell & Environment 2023, 46 (1) , 251-267. https://doi.org/10.1111/pce.14478
    31. Krishan K. Verma, Yuan Zeng, Xiu-Peng Song, Munna Singh, Kai-Chao Wu, Vishnu D. Rajput, Yang-Rui Li. Nanosilicon: An approach for abiotic stress mitigation and sustainable agriculture. Frontiers in Plant Science 2022, 13 https://doi.org/10.3389/fpls.2022.1025974
    32. O. A. Bogoslovskaya, I. P. Olkhovskaya, G. S. Nechitailo, N. N. Glushchenko. Structural and Functional State of Pepper Plant During Biocultivation in a Nutritional Medium with Iron Nanoparticles Under Aseptic Conditions. Russian Journal of Physical Chemistry B 2022, 16 (6) , 1141-1146. https://doi.org/10.1134/S199079312206015X
    33. Rocio Torres, Virginia Emilse Diz, María Gabriela Lagorio. Improved photosynthetic performance induced by Fe3O4 nanoparticles. Photochemical & Photobiological Sciences 2022, 21 (11) , 1931-1946. https://doi.org/10.1007/s43630-022-00269-1
    34. Manrong Zha, Xin Li, Rui Li, Jing Huang, Jinping Fan, Jing Zhang, Yan Wang, Cankui Zhang. Overexpression of Nicotianamine Synthase (AtNAS1) Increases Iron Accumulation in the Tuber of Potato. Plants 2022, 11 (20) , 2741. https://doi.org/10.3390/plants11202741
    35. Zhaojian Wang, Jing Wu, Zongping Sun, Weimin Jiang, Yingying Liu, Jun Tang, Xiaoxi Meng, Xinglong Su, Liping Wu, Longhai Wang, Xiaohu Guo, Daiyin Peng, Shihai Xing. ICP-MS based metallomics and GC-MS based metabolomics reveals the physiological and metabolic responses of Dendrobium huoshanense plants exposed to Fe3O4 nanoparticles. Frontiers in Nutrition 2022, 9 https://doi.org/10.3389/fnut.2022.1013756
    36. Fatemeh Adabavazeh, Nazi Nadernejad, Shahram Pourseyedi, Roya Razavizadeh, Hossein Mozafari. Synthesis of magnetic nanoparticles and their effects on growth and physiological parameters of Calotropis procera seedlings. Environmental Science and Pollution Research 2022, 29 (39) , 59027-59042. https://doi.org/10.1007/s11356-022-19660-7
    37. Wangqing Sainao, Zhenzhen Shi, Hailong Pang, Hanqing Feng. Alleviative effects of magnetic Fe 3 O 4 nanoparticles on the physiological toxicity of 3-nitrophenol to rice ( Oryza sativa L.) seedlings. Open Life Sciences 2022, 17 (1) , 626-640. https://doi.org/10.1515/biol-2022-0060
    38. Erika Murgueitio-Herrera, César E. Falconí, Luis Cumbal, Josselyn Gómez, Karina Yanchatipán, Alejandro Tapia, Kevin Martínez, Izar Sinde-Gonzalez, Theofilos Toulkeridis. Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants. Nanomaterials 2022, 12 (11) , 1921. https://doi.org/10.3390/nano12111921
    39. Krishan K. Verma, Xiu-Peng Song, Abhishek Joshi, Vishnu D. Rajput, Munna Singh, Anjney Sharma, Rajesh Kumar Singh, Dong-Mei Li, Jaya Arora, Tatiana Minkina, Yang-Rui Li. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. Frontiers in Plant Science 2022, 13 https://doi.org/10.3389/fpls.2022.865048
    40. Temesgen Assefa Gelaw, Neeti Sanan-Mishra. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. Physiology and Molecular Biology of Plants 2022, 28 (4) , 791-818. https://doi.org/10.1007/s12298-022-01163-x
    41. Hafiz Muhammad Jhanzab, Abdul Qayyum, Yamin Bibi, Ahmad Sher, Malik Tahir Hayat, Javed Iqbal, Maqsood Qamar, Basem H. Elesawy, Khadiga Ahmed Ismail, Amal F. Gharib, Ahmad El Askary. Chemo-Blended Ag & Fe Nanoparticles Effect on Growth, Physiochemical and Yield Traits of Wheat (Triticum aestivum). Agronomy 2022, 12 (4) , 757. https://doi.org/10.3390/agronomy12040757
    42. Lyubka Koleva, Aisha Umar, Nasim Ahmad Yasin, Anis Ali Shah, Manzer H. Siddiqui, Saud Alamri, Luqman Riaz, Ali Raza, Talha Javed, Zunera Shabbir. Iron Oxide and Silicon Nanoparticles Modulate Mineral Nutrient Homeostasis and Metabolism in Cadmium-Stressed Phaseolus vulgaris. Frontiers in Plant Science 2022, 13 https://doi.org/10.3389/fpls.2022.806781
    43. Layla Muraisi, Dewi Melani Hariyadi, Umi Athiyah, Yashwant Pathak. Eco‐friendly Nanotechnology in Agriculture. 2022, 287-296. https://doi.org/10.1002/9781119650294.ch18
    44. Zeynep Görkem DOĞAROĞLU, Yağmur UYSAL. The Ecotoxicological Evaluations of Fe3O4, HAp, and Fe3O4-HAp Nanocomposite on Wheat: Impact on Chlorophyll Content. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 2022, 25 (1) , 7-16. https://doi.org/10.17780/ksujes.1027395
    45. Lan Zhu, Lingling Chen, Jiangjiang Gu, Huixin Ma, Honghong Wu. Carbon-Based Nanomaterials for Sustainable Agriculture: Their Application as Light Converters, Nanosensors, and Delivery Tools. Plants 2022, 11 (4) , 511. https://doi.org/10.3390/plants11040511
    46. Bruno Teixeira de Sousa, Jhones Luiz de Oliveira, Halley Caixeta Oliveira, Vera Lúcia S. S. de Castro. Balancing the Benefits to Agriculture and Adverse Ecotoxicological Impacts of Inorganic Nanoparticles. 2022, 1-51. https://doi.org/10.1007/978-3-030-94155-0_1
    47. Francisco Guilhien Gomes-Junior, Lívia Araújo Rohr, Fernando Augusto Henning. Nanoparticles on Seed Performance. 2022, 103-122. https://doi.org/10.1007/978-3-030-94155-0_3
    48. Muhammad Azmat Ullah Khan, Humaira Arshad, Abdul Majid. Transport Mechanism from Quantum Dots to Plant Systems. 2022, 103-136. https://doi.org/10.1007/978-3-031-10216-5_5
    49. Gaurav Chugh, Kadambot H. M. Siddique, Zakaria M. Solaiman, . Iron fortification of food crops through nanofertilisation. Crop & Pasture Science 2022, 73 (8) , 736-748. https://doi.org/10.1071/CP21436
    50. Sudhir Shende, Vishnu D. Rajput, Aniket Gade, Tatiana Minkina, Yurii Fedorov, Svetlana Sushkova, Saglara Mandzhieva, Marina Burachevskaya, Veronica Boldyreva. Metal-Based Green Synthesized Nanoparticles: Boon for Sustainable Agriculture and Food Security. IEEE Transactions on NanoBioscience 2022, 21 (1) , 44-54. https://doi.org/10.1109/TNB.2021.3089773
    51. Amira K. Nasrallah, Ahmed A. Kheder, Maimona A. Kord, Ahmed S. Fouad, Mohamed M. El-Mogy, Mohamed A. M. Atia. Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. Horticulturae 2022, 8 (1) , 75. https://doi.org/10.3390/horticulturae8010075
    52. Krishan K. Verma, Xiu-Peng Song, Abhishek Joshi, Dan-Dan Tian, Vishnu D. Rajput, Munna Singh, Jaya Arora, Tatiana Minkina, Yang-Rui Li. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 2022, 12 (1) , 173. https://doi.org/10.3390/nano12010173
    53. Amira K. G. Atteya, Aishah N. Albalawi, Hala M. Bayomy, Eman S. Alamri, Esmail A. E. Genaidy. Maximizing Leaves, Inflorescences, and Chemical Composition Production of Moringa oleifera Trees under Calcareous Soil Conditions. Plants 2022, 11 (2) , 234. https://doi.org/10.3390/plants11020234
    54. M. GHORBANPOUR, A. MOVAHEDI, M. HATAMI, K. KARIMAN, F. BOVAND, M.A. SHAHID. Insights into nanoparticle-induced changes in plant photosynthesis. Photosynthetica 2021, 59 (4) , 570-586. https://doi.org/10.32615/ps.2021.049
    55. Amira K. G. Atteya, Aishah N. Albalawi, Rasha S. El-Serafy, Khalil N. Albalawi, Hala M. Bayomy, Esmail A. E. Genaidy. Response of Moringa oleifera Seeds and Fixed Oil Production to Vermicompost and NPK Fertilizers under Calcareous Soil Conditions. Plants 2021, 10 (10) , 1998. https://doi.org/10.3390/plants10101998
    56. Nayely J. GUTIÉRREZ-RUELAS, Alejandro PALACIO-MÁRQUEZ, Esteban SÁNCHEZ, Ezequiel MUÑOZ-MÁRQUEZ, Celia CHÁVEZ-MENDOZA, Damaris L. OJEDA-BARRIOS, María A. FLORES-CÓRDOVA. Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2021, 49 (3) , 12437. https://doi.org/10.15835/nbha49312437
    57. Nadun H. Madanayake, Nadeesh M. Adassooriya. Phytotoxicity of Nanomaterials in Agriculture. The Open Biotechnology Journal 2021, 15 (1) , 109-118. https://doi.org/10.2174/1874070702115010109
    58. Parul Chaudhary, Priyanka Khati, Saurabh Gangola, Ashish Kumar, Rajeew Kumar, Anita Sharma. Impact of nanochitosan and Bacillus spp. on health, productivity and defence response in Zea mays under field condition. 3 Biotech 2021, 11 (5) https://doi.org/10.1007/s13205-021-02790-z
    59. S Kamali, E Yu, B Bates, J R McBride, C E Johnson, V Taufour, P Stroeve. Magnetic properties of γ-Fe 2 O 3 nanoparticles in a porous SiO 2 shell for drug delivery. Journal of Physics: Condensed Matter 2021, 33 (6) , 065301. https://doi.org/10.1088/1361-648X/abc403
    60. Ranjana Singh, Kajal Patel. Mechanism of Toxicity of Engineered Nanomaterials and Defense by the Crop Plants. 2021, 341-380. https://doi.org/10.1007/978-3-030-63249-6_13
    61. Pingfan Zhou, Muhammad Adeel, Noman Shakoor, Manlin Guo, Yi Hao, Imran Azeem, Mingshu Li, Mengyuan Liu, Yukui Rui. Application of Nanoparticles Alleviates Heavy Metals Stress and Promotes Plant Growth: An Overview. Nanomaterials 2021, 11 (1) , 26. https://doi.org/10.3390/nano11010026
    62. Deepti Mittal, Gurjeet Kaur, Parul Singh, Karmveer Yadav, Syed Azmal Ali. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Frontiers in Nanotechnology 2020, 2 https://doi.org/10.3389/fnano.2020.579954
    63. Muthuraman Yuvaraj, Kizhaeral Sevathapandian Subramanian. Novel Slow Release Nanocomposite Fertilizers. 2020https://doi.org/10.5772/intechopen.93267
    64. Dharmendra S. Ken, Alok Sinha. Recent developments in surface modification of nano zero-valent iron (nZVI): Remediation, toxicity and environmental impacts. Environmental Nanotechnology, Monitoring & Management 2020, 14 , 100344. https://doi.org/10.1016/j.enmm.2020.100344
    65. Mohamed Said Abbas, Adel Saad El-Ha, Mohamed Desouki Ha, Hamdy Abd Elfattah A. Impact of Nano-Micronutrients as Foliar Fertilization on Yield and Quality of Sugar Beet Roots. Pakistan Journal of Biological Sciences 2020, 23 (11) , 1416-1423. https://doi.org/10.3923/pjbs.2020.1416.1423
    66. Davide Sega, Barbara Baldan, Anita Zamboni, Zeno Varanini. FePO4 NPs Are an Efficient Nutritional Source for Plants: Combination of Nano-Material Properties and Metabolic Responses to Nutritional Deficiencies. Frontiers in Plant Science 2020, 11 https://doi.org/10.3389/fpls.2020.586470
    67. Saheli Pradhan, Damodhara Rao Mailapalli. Nanopesticides for Pest Control. 2020, 43-74. https://doi.org/10.1007/978-3-030-33281-5_2
    68. Владимир Олегович Корниенко, Ольга Руслановна Кольченко, Андрей Степанович Яицкий. Влияние наночастиц Fe3O4 на онтогенез и морфометрические показатели кукурузы сахарной (Zea mays L.). Естественные и Технические Науки 2020, (№08-2) , 30-36. https://doi.org/10.37882/2223-2966.2020.08-2.09
    69. Kağan Tolga CİNİSLİ, Sevda UÇAR, Neslihan DİKBAŞ. Nanomateryallerin Tarımda Kullanımı. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2019, 29 (4) , 817-831. https://doi.org/10.29133/yyutbd.595658
    70. Hakwon Yoon, Yu-Gyeong Kang, Yoon-Seok Chang, Jae-Hwan Kim. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. Nanomaterials 2019, 9 (11) , 1543. https://doi.org/10.3390/nano9111543
    71. Edris SHABANI, Sahebali BOLANDNAZAR, Hemattollah PIRDASHTI. Converting Iron Wastes to Nano Scale Zero Valent Iron: A Tool for Improving the Yield and Physiological Properties of Vegetables in Hydroponic Systems-Case Study, Broccoli in Floating System. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2019, 29 (3) , 559-568. https://doi.org/10.29133/yyutbd.556395
    72. Vasile Coman, Ioana Oprea, Loredana Florina Leopold, Dan Cristian Vodnar, Cristina Coman. Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. Nanomaterials 2019, 9 (9) , 1248. https://doi.org/10.3390/nano9091248
    73. Armel Boutchuen, Dell Zimmerman, Nirupam Aich, Arvid Mohammad Masud, Abdollah Arabshahi, Soubantika Palchoudhury. Increased Plant Growth with Hematite Nanoparticle Fertilizer Drop and Determining Nanoparticle Uptake in Plants Using Multimodal Approach. Journal of Nanomaterials 2019, 2019 , 1-11. https://doi.org/10.1155/2019/6890572
    74. Ilona Plaksenkova, Marija Jermaļonoka, Linda Bankovska, Inese Gavarāne, Vjačeslavs Gerbreders, Eriks Sledevskis, Jānis Sniķeris, Inese Kokina. Effects of Fe 3 O 4 Nanoparticle Stress on the Growth and Development of Rocket Eruca sativa. Journal of Nanomaterials 2019, 2019 , 1-10. https://doi.org/10.1155/2019/2678247
    75. María T. Cieschi, Alexander Yu Polyakov, Vasily A. Lebedev, Dmitry S. Volkov, Denis A. Pankratov, Alexey A. Veligzhanin, Irina V. Perminova, Juan J. Lucena. Eco-Friendly Iron-Humic Nanofertilizers Synthesis for the Prevention of Iron Chlorosis in Soybean (Glycine max) Grown in Calcareous Soil. Frontiers in Plant Science 2019, 10 https://doi.org/10.3389/fpls.2019.00413
    76. Gurpreet Kaur, Varsha Dogra, Rajeev Kumar, Sandeep Kumar, Kashmir Singh. Fabrication of iron oxide nanocolloids using metallosurfactant-based microemulsions: antioxidant activity, cellular, and genotoxicity toward Vitis vinifera. Journal of Biomolecular Structure and Dynamics 2019, 37 (4) , 892-909. https://doi.org/10.1080/07391102.2018.1442251
    77. Josef Jampílek, Katarína Kráľová. Beneficial Effects of Metal- and Metalloid-Based Nanoparticles on Crop Production. 2019, 161-219. https://doi.org/10.1007/978-981-32-9370-0_11
    78. Ivan Pacheco, Cristina Buzea. Nanoparticle Uptake by Plants: Beneficial or Detrimental?. 2018, 1-61. https://doi.org/10.1007/978-3-319-76708-6_1
    79. V. Storozhenko, N. Svietlova, M. Kovalenko, L. Batsmanova, N. Taran. Induction of wheat seedlings resistance of different ecotypes to the effect of a drought simulated by a colloidal solution of Cu2+ and Zn2+ nanoparticles. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology 2018, 76 (2) , 79-84. https://doi.org/10.17721/1728_2748.2018.76.79-84
    80. S Siji, J Njana, P J Amrita, Athira Raj, Dalia Vishnudasan, P K Manoj. Green synthesized iron nanoparticles and its uptake in pennisetum glaucum — A nanonutriomics approach. 2017, 1-8. https://doi.org/10.1109/TAPENERGY.2017.8397338
    81. Hemraj Chhipa. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 2017, 15 (1) , 15-22. https://doi.org/10.1007/s10311-016-0600-4
    82. Atul Dev, Anup K. Srivastava, Surajit Karmakar. Uptake and Toxicity of Nanomaterials in Plants. 2017, 169-204. https://doi.org/10.1007/978-3-319-58496-6_7
    83. Т. Анохина, Т. Сиунова, О. Сизова, В.  Кочетков, А. Боронин. СВОЙСТВА НАНОЧАСТИЦ ОКСИДОВ ЖЕЛЕЗА И ПРОБЛЕМЫ ИХ ПРИМЕНЕНИЯ В СЕЛЬСКОМ ХОЗЯЙСТВЕ. Агрохимия 2017, (11) , 74. https://doi.org/10.7868/S0002188117110096
    84. , Soad Saeedi, Mousa Mousavi, , Mohamad Hadi Ghaffarian Mogharab, . In-vitro analysis of the efficacy of Fe oxide nanoparticles in prevention of iron deficiency chlorosis in citrus rootstock (Citrus volkameriana). Journal of Experimental Biology and Agricultural Sciences 2016, 4 (5) , 484-492. https://doi.org/10.18006/2016.4(5).484.492
    85. Christian O. Dimkpa, Prem S. Bindraban. Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development 2016, 36 (1) https://doi.org/10.1007/s13593-015-0346-6
    86. Hemraj Chhipa, Piyush Joshi. Nanofertilisers, Nanopesticides and Nanosensors in Agriculture. 2016, 247-282. https://doi.org/10.1007/978-3-319-39303-2_9
    87. Meng Wang, Xiaoping Liu, Jing Hu, Junli Li, Jin Huang. Nano-Ferric Oxide Promotes Watermelon Growth. Journal of Biomaterials and Nanobiotechnology 2015, 06 (03) , 160-167. https://doi.org/10.4236/jbnb.2015.63016

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect