ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Polarized Plasmonic Enhancement by Au Nanostructures Probed through Raman Scattering of Suspended Graphene

View Author Information
Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
Department of Physics, Imperial College London, London SW7 2AZ, U.K.
¶ § School of Computer Science and §Centre for Mesoscience and Nanotechnology, The University of Manchester, Manchester M13 9PL, U.K.
Cite this: Nano Lett. 2013, 13, 1, 301–308
Publication Date (Web):December 7, 2012
https://doi.org/10.1021/nl3041542
Copyright © 2012 American Chemical Society

    Article Views

    5886

    Altmetric

    -

    Citations

    131
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We characterize plasmonic enhancement in a hotspot between two Au nanodisks using Raman scattering of graphene. Single layer graphene is suspended across the dimer cavity and provides an ideal two-dimensional test material for the local near-field distribution. We detect a Raman enhancement of the order of 103 originating from the cavity. Spatially resolved Raman measurements reveal a near-field localization one order of magnitude smaller than the wavelength of the excitation, which can be turned off by rotating the polarization of the excitation. The suspended graphene is under tensile strain. The resulting phonon mode softening allows for a clear identification of the enhanced signal compared to unperturbed graphene.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Fabrication and structural characterization; optical characterization; simulations; AFM data on dimers before and after graphene deposition; microscope images of graphene flake; AFM data and graphene topography on different structure; 2D peak fits for PX; Raman line scan raw data for 638 nm excitation; laser spot profile; intensity drop for 532 nm excitation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 131 publications.

    1. Chang Liu, Chaojie Ma, Dewei Gong, Chenjun Ma, Dongxue Chen, Chunchun Wu, Mengze Zhao, Zhibin Zhang, Jinming Yun, Fajun Xiao, EnGe Wang, Kaihui Liu, Hao Hong. Greatly Enhanced Raman Scattering of Graphene on Metals by a Boron Nitride Film Covering. The Journal of Physical Chemistry Letters 2023, 14 (24) , 5573-5579. https://doi.org/10.1021/acs.jpclett.3c01074
    2. Han Lin, Zhenfang Zhang, Huihui Zhang, Keng-Te Lin, Xiaoming Wen, Yao Liang, Yang Fu, Alan Kin Tak Lau, Tianyi Ma, Cheng-Wei Qiu, Baohua Jia. Engineering van der Waals Materials for Advanced Metaphotonics. Chemical Reviews 2022, 122 (19) , 15204-15355. https://doi.org/10.1021/acs.chemrev.2c00048
    3. Roman M. Wyss, Markus Parzefall, Karl-Philipp Schlichting, Cynthia M. Gruber, Sebastian Busschaert, Carin Rae Lightner, Emanuel Lörtscher, Lukas Novotny, Sebastian Heeg. Freestanding and Permeable Nanoporous Gold Membranes for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2022, 14 (14) , 16558-16567. https://doi.org/10.1021/acsami.2c02608
    4. M. Glaeske, P. Kusch, N. S. Mueller, A. Setaro. Carbon Nanotubes for the Optical Far-Field Readout of Processes That Are Mediated by Plasmonic Near-Fields. The Journal of Physical Chemistry C 2022, 126 (13) , 5927-5934. https://doi.org/10.1021/acs.jpcc.2c00315
    5. Luca Sortino, Matthew Brooks, Panaiot G. Zotev, Armando Genco, Javier Cambiasso, Sandro Mignuzzi, Stefan A. Maier, Guido Burkard, Riccardo Sapienza, Alexander I. Tartakovskii. Dielectric Nanoantennas for Strain Engineering in Atomically Thin Two-Dimensional Semiconductors. ACS Photonics 2020, 7 (9) , 2413-2422. https://doi.org/10.1021/acsphotonics.0c00294
    6. Mohammed Alamri, Bo Liu, Seyed M. Sadeghi, Dan Ewing, Amy Wilson, Jennifer L. Doolin, Cindy L. Berrie, Judy Wu. Graphene/WS2 Nanodisk Van der Waals Heterostructures on Plasmonic Ag Nanoparticle-Embedded Silica Metafilms for High-Performance Photodetectors. ACS Applied Nano Materials 2020, 3 (8) , 7858-7868. https://doi.org/10.1021/acsanm.0c01360
    7. Zhizhen Ma, Kazuya Kikunaga, Hao Wang, Shuai Sun, Rubab Amin, Rishi Maiti, Mohammad H. Tahersima, Hamed Dalir, Mario Miscuglio, Volker J. Sorger. Compact Graphene Plasmonic Slot Photodetector on Silicon-on-Insulator with High Responsivity. ACS Photonics 2020, 7 (4) , 932-940. https://doi.org/10.1021/acsphotonics.9b01452
    8. Judith Langer, Dorleta Jimenez de Aberasturi, Javier Aizpurua, Ramon A. Alvarez-Puebla, Baptiste Auguié, Jeremy J. Baumberg, Guillermo C. Bazan, Steven E. J. Bell, Anja Boisen, Alexandre G. Brolo, Jaebum Choo, Dana Cialla-May, Volker Deckert, Laura Fabris, Karen Faulds, F. Javier García de Abajo, Royston Goodacre, Duncan Graham, Amanda J. Haes, Christy L. Haynes, Christian Huck, Tamitake Itoh, Mikael Käll, Janina Kneipp, Nicholas A. Kotov, Hua Kuang, Eric C. Le Ru, Hiang Kwee Lee, Jian-Feng Li, Xing Yi Ling, Stefan A. Maier, Thomas Mayerhöfer, Martin Moskovits, Kei Murakoshi, Jwa-Min Nam, Shuming Nie, Yukihiro Ozaki, Isabel Pastoriza-Santos, Jorge Perez-Juste, Juergen Popp, Annemarie Pucci, Stephanie Reich, Bin Ren, George C. Schatz, Timur Shegai, Sebastian Schlücker, Li-Lin Tay, K. George Thomas, Zhong-Qun Tian, Richard P. Van Duyne, Tuan Vo-Dinh, Yue Wang, Katherine A. Willets, Chuanlai Xu, Hongxing Xu, Yikai Xu, Yuko S. Yamamoto, Bing Zhao, Luis M. Liz-Marzán. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1) , 28-117. https://doi.org/10.1021/acsnano.9b04224
    9. Jinjiang Zhang, Ruifeng Zhou, Hiro Minamimoto, Satoshi Yasuda, Kei Murakoshi. Nonzero Wavevector Excitation of Graphene by Localized Surface Plasmons. Nano Letters 2019, 19 (11) , 7887-7894. https://doi.org/10.1021/acs.nanolett.9b02947
    10. U. Celano, N. Maccaferri. Chasing Plasmons in Flatland. Nano Letters 2019, 19 (11) , 7549-7552. https://doi.org/10.1021/acs.nanolett.9b04349
    11. Sören Wasserroth, Sebastian Heeg, Niclas S. Mueller, Patryk Kusch, Uwe Hübner, Etienne Gaufrès, Nathalie Y.-W. Tang, Richard Martel, Aravind Vijayaraghavan, Stephanie Reich. Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (16) , 10578-10585. https://doi.org/10.1021/acs.jpcc.9b01600
    12. Maria Kanidi, Alva Dagkli, Nikolaos Kelaidis, Dimitrios Palles, Sigiava Aminalragia-Giamini, Jose Marquez-Velasco, Alan Colli, Athanasios Dimoulas, Elefterios Lidorikis, Maria Kandyla, Efstratios I. Kamitsos. Surface-Enhanced Raman Spectroscopy of Graphene Integrated in Plasmonic Silicon Platforms with Three-Dimensional Nanotopography. The Journal of Physical Chemistry C 2019, 123 (5) , 3076-3087. https://doi.org/10.1021/acs.jpcc.8b10356
    13. Harald Fitzek, Jürgen Sattelkow, Harald Plank, Peter Pölt. Accurate Near-Field Simulations of the Real Substrate Geometry—A Powerful Tool for Understanding Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (12) , 6826-6834. https://doi.org/10.1021/acs.jpcc.8b00594
    14. Veronika Sutrová, Ivana Šloufová, Zuzana Melníková, Martin Kalbáč, Ewa Pavlova, and Blanka Vlčková . Effect of Ethanethiolate Spacer on Morphology and Optical Responses of Ag Nanoparticle Array–Single Layer Graphene Hybrid Systems. Langmuir 2017, 33 (50) , 14414-14424. https://doi.org/10.1021/acs.langmuir.7b03462
    15. Xingang Zhang, Shuyao Si, Xiaolei Zhang, Wei Wu, Xiangheng Xiao, and Changzhong Jiang . Improved Thermal Stability of Graphene-Veiled Noble Metal Nanoarrays as Recyclable SERS Substrates. ACS Applied Materials & Interfaces 2017, 9 (46) , 40726-40733. https://doi.org/10.1021/acsami.7b13708
    16. Johan Ek Weis, Sara Costa, Otakar Frank, Michaela Fridrichová, Blanka Vlčková, Jana Vejpravova, and Martin Kalbac . SERS of Isotopically Labeled 12C/13C Graphene Bilayer–Gold Nanostructured Film Hybrids: Graphene Layer as Spacer and SERS Probe. The Journal of Physical Chemistry C 2017, 121 (21) , 11680-11686. https://doi.org/10.1021/acs.jpcc.7b02585
    17. Patryk Kusch, Stefan Mastel, Niclas S. Mueller, Nieves Morquillas Azpiazu, Sebastian Heeg, Roman Gorbachev, Fredrik Schedin, Uwe Hübner, Jose I. Pascual, Stephanie Reich, and Rainer Hillenbrand . Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots. Nano Letters 2017, 17 (4) , 2667-2673. https://doi.org/10.1021/acs.nanolett.7b00503
    18. Michaël Lobet, Michaël Sarrazin, Francesca Cecchet, Nicolas Reckinger, Alexandru Vlad, Jean-François Colomer, and Dan Lis . Probing Graphene χ(2) Using a Gold Photon Sieve. Nano Letters 2016, 16 (1) , 48-54. https://doi.org/10.1021/acs.nanolett.5b02494
    19. Yang-Chun Lee, En-Yun Wang, Yu-Lun Liu, and Hsuen-Li Chen . Using Metal-less Structures To Enhance the Raman Signals of Graphene by 100-fold while Maintaining the Band-to-Band Ratio and Peak Positions Precisely. Chemistry of Materials 2015, 27 (3) , 876-884. https://doi.org/10.1021/cm504003t
    20. Ganjigunte R. Swathi Iyer, Jian Wang, Garth Wells, Srinivasan Guruvenket, Scott Payne, Michael Bradley, and Ferenc Borondics . Large-Area, Freestanding, Single-Layer Graphene–Gold: A Hybrid Plasmonic Nanostructure. ACS Nano 2014, 8 (6) , 6353-6362. https://doi.org/10.1021/nn501864h
    21. Xi Ling, Wenjing Fang, Yi-Hsien Lee, Paulo T. Araujo, Xu Zhang, Joaquin F. Rodriguez-Nieva, Yuxuan Lin, Jin Zhang, Jing Kong, and Mildred S. Dresselhaus . Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS2. Nano Letters 2014, 14 (6) , 3033-3040. https://doi.org/10.1021/nl404610c
    22. Taron Makaryan, Santiago Esconjauregui, Manuel Gonçalves, Junwei Yang, Hisashi Sugime, Dirk Nille, Pathabi Raman Renganathan, Pola Goldberg-Oppenheimer, and John Robertson . Hybrids of carbon Nanotube Forests and Gold Nanoparticles for Improved Surface Plasmon Manipulation. ACS Applied Materials & Interfaces 2014, 6 (8) , 5344-5349. https://doi.org/10.1021/am501863g
    23. Sebastian Heeg, Antonios Oikonomou, Roberto Fernandez-Garcia, Christian Lehmann, Stefan A. Maier, Aravind Vijayaraghavan, and Stephanie Reich . Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities. Nano Letters 2014, 14 (4) , 1762-1768. https://doi.org/10.1021/nl404229w
    24. Hsiang-An Chen, Cheng-Lun Hsin, Yu-Ting Huang, Ming Lee Tang, Scott Dhuey, Stefano Cabrini, Wen-Wei Wu, and Stephen R. Leone . Measurement of Interlayer Screening Length of Layered Graphene by Plasmonic Nanostructure Resonances. The Journal of Physical Chemistry C 2013, 117 (43) , 22211-22217. https://doi.org/10.1021/jp312363x
    25. Goki Eda and Stefan A. Maier . Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano 2013, 7 (7) , 5660-5665. https://doi.org/10.1021/nn403159y
    26. Samar Moustafa, Jamal Q. M. Almarashi, Mohamed Almokhtar, Hesham Fares, Mohamed K. Zayed. On photo-induced electrons in graphene-plasmonic nanoparticles. Applied Physics A 2023, 129 (5) https://doi.org/10.1007/s00339-023-06646-6
    27. Xiaoxu Zhang, Chengxu Song, Shilun Li, Liang Chen, Jing Xu, Wei Liu, Shangshen Feng. Graphene-Au nanosphere composite arrays and their enhanced SERS performance. Optical Materials 2023, 136 , 113384. https://doi.org/10.1016/j.optmat.2022.113384
    28. Hui Yan, Meng Zhang, Shuang Wang, Heng Li, Sándor Kunsági-Máté, Shougen Yin. Raman spectroscopy of strained monolayer graphene modulated by monodispersed Au nanoparticles. Applied Surface Science 2023, 610 , 155531. https://doi.org/10.1016/j.apsusc.2022.155531
    29. Sun-Woo Kim, Jong-Hwan Park, Se-Hee Shin, Young-Il Song, Su-Jeong Suh. One-step green synthesis and dispersion characteristics of silver/graphene core/shell-structure nanocomposites. Carbon Letters 2022, 32 (2) , 547-555. https://doi.org/10.1007/s42823-021-00286-7
    30. Oisín Garrity, Alvaro Rodriguez, Niclas S. Mueller, Otakar Frank, Patryk Kusch. Probing the local dielectric function of WS2 on an Au substrate by near field optical microscopy operating in the visible spectral range. Applied Surface Science 2022, 574 , 151672. https://doi.org/10.1016/j.apsusc.2021.151672
    31. Zhi-Jun Zhao, Junseong Ahn, Dongheon Lee, Chan Bae Jeong, Mingu Kang, Jungrak Choi, Moonjeong Bok, Soonhyoung Hwang, Sohee Jeon, Sooyeon Park, Jiwoo Ko, Ki Soo Chang, Jung-Woo Choi, Inkyu Park, Jun-Ho Jeong. Wafer-scale, highly uniform, and well-arrayed suspended nanostructures for enhancing the performance of electronic devices. Nanoscale 2022, 14 (4) , 1136-1143. https://doi.org/10.1039/D1NR07375C
    32. Jinlong Zhuo, Gongguo Zhang, Yanyun Ma, Wenjun Zhao, Feng Liu, Maochang Liu, Yiqun Zheng. Seeded growth of wavy Au@PdAu core-shell nanoplates with tunable thickness for visible light-assisted reduction of 4-nitrophenol. Journal of Nanoparticle Research 2021, 23 (11) https://doi.org/10.1007/s11051-021-05361-8
    33. Yiqun Zheng, Xiping Wang, Yuhan Kong, Yanyun Ma. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021, 23 (37) , 6454-6469. https://doi.org/10.1039/D1CE00975C
    34. Debadrita Paria, Vaisakh Vadakkumbatt, Pramod Ravindra, Sushobhan Avasthi, Ambarish Ghosh. Unconventional plasmonic sensitization of graphene in mid-infrared. Nanotechnology 2021, 32 (31) , 315202. https://doi.org/10.1088/1361-6528/abf96c
    35. Sebastian Heeg, Niclas S. Mueller, Sören Wasserroth, Patryk Kusch, Stephanie Reich. Experimental tests of surface‐enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory. Journal of Raman Spectroscopy 2021, 52 (2) , 310-322. https://doi.org/10.1002/jrs.6014
    36. V Kaydashev, B Khlebtsov, A Miakonkikh, E Zhukova, S Zhukov, D Mylnikov, I Domaratskiy, D Svintsov. Excitation of localized graphene plasmons by aperiodic self-assembled arrays of metallic antennas. Nanotechnology 2021, 32 (3) , 035201. https://doi.org/10.1088/1361-6528/aba785
    37. Yibo Dong, Yiyang Xie, Liangchen Hu, Chen Xu, Weiling Guo, Guanzhong Pan, Qiuhua Wang, Fengsong Qian, Jie Sun. Graphene-assisted preparation of large-scale single-crystal Ag(111) nanoparticle arrays for surface-enhanced Raman scattering. Nanotechnology 2021, 32 (2) , 025301. https://doi.org/10.1088/1361-6528/abba56
    38. Francesco De Nicola, Nikhil Santh Puthiya Purayil, Vaidotas Miŝeikis, Davide Spirito, Andrea Tomadin, Camilla Coletti, Marco Polini, Roman Krahne, Vittorio Pellegrini. Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-63099-0
    39. Igor A Litvin, Niclas S Mueller, Stephanie Reich. Selective excitation of localized surface plasmons by structured light. Optics Express 2020, 28 (16) , 24262. https://doi.org/10.1364/OE.399225
    40. Pritam Khan, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, Christophe Silien. Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials. Symmetry 2020, 12 (8) , 1365. https://doi.org/10.3390/sym12081365
    41. Siqi Yan, Xiaolong Zhu, Jianji Dong, Yunhong Ding, Sanshui Xiao. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics 2020, 9 (7) , 1877-1900. https://doi.org/10.1515/nanoph-2020-0074
    42. Shinpei Ogawa, Shoichiro Fukushima, Masaaki Shimatani. Graphene Plasmonics in Sensor Applications: A Review. Sensors 2020, 20 (12) , 3563. https://doi.org/10.3390/s20123563
    43. Shivani Uppal, Aashima, Rajendra Kumar, Shweta Sareen, Khushwinder Kaur, S.K. Mehta. Biofabrication of cerium oxide nanoparticles using emulsification for an efficient delivery of Benzyl isothiocyanate. Applied Surface Science 2020, 510 , 145011. https://doi.org/10.1016/j.apsusc.2019.145011
    44. Alisha Prasad, Ardalan Chaichi, Amirreza Mahigir, Sushant P. Sahu, Deepak Ganta, Georgios Veronis, Manas Ranjan Gartia. Ripple mediated surface enhanced Raman spectroscopy on graphene. Carbon 2020, 157 , 525-536. https://doi.org/10.1016/j.carbon.2019.09.078
    45. Kirill Anikin, Ekaterina Rodyakina, Sergey Veber, Alexander Milekhin, Alexander Latyshev, Dietrich R. T. Zahn. Localized Surface Plasmon Resonance in Gold Nanocluster Arrays on Opaque Substrates. Plasmonics 2019, 14 (6) , 1527-1537. https://doi.org/10.1007/s11468-019-00949-2
    46. Tingting Wu, Kaiwei Li, Nan Zhang, Juan Xia, Qingsheng Zeng, Xinglin Wen, Unnimadhavakurup S. Dinish, Malini Olivo, Zexiang Shen, Zheng Liu, Qihua Xiong, Yu Luo, Stefan A. Maier, Lei Wei. Ultrawideband Surface Enhanced Raman Scattering in Hybrid Graphene Fragmented‐Gold Substrates via Cold‐Etching. Advanced Optical Materials 2019, 7 (21) https://doi.org/10.1002/adom.201900905
    47. Zhou, Qiu, Wang, Ren, Zhao, Lin, Qiu, Kan. Effect of Nanodisks at Different Positions on the Fano Resonance of Graphene Heptamers. Applied Sciences 2019, 9 (20) , 4345. https://doi.org/10.3390/app9204345
    48. Georgios Veronis, Amirreza Mahigir, Te-Wei Chang, Ashkan Behnam, Gang L. Liu, Manas R. Gartia, , . Nanostructures for enhancing the SERS signal of a graphene monolayer in water and visible light absorption in a graphene monolayer. 2019, 31. https://doi.org/10.1117/12.2529621
    49. Jianping Lin, Guiqing Guan, Wenyu Yang, Hong Fu. The enhanced Raman scattering of Ag nanoparticles decorated on the carbon nanotube via a simple manipulation. Optical Materials 2019, 95 , 109258. https://doi.org/10.1016/j.optmat.2019.109258
    50. Niclas S. Mueller, Stephanie Reich. Modeling Surface-Enhanced Spectroscopy With Perturbation Theory. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00470
    51. Shoichiro Fukushima, Masaaki Shimatani, Satoshi Okuda, Shinpei Ogawa, Yasushi Kanai, Takao Ono, Koichi Inoue, Kazuhiko Matsumoto. Low dark current and high-responsivity graphene mid-infrared photodetectors using amplification of injected photo-carriers by photo-gating. Optics Letters 2019, 44 (10) , 2598. https://doi.org/10.1364/OL.44.002598
    52. Shohreh Nouri Novin, Ferdows B. Zarrabi, Maryam Bazgir, Samaneh Heydari, Sepideh Ebrahimi. Field Enhancement in Metamaterial Split Ring Resonator Aperture Nano-Antenna with Spherical Nano-Particle Arrangement. Silicon 2019, 11 (1) , 293-300. https://doi.org/10.1007/s12633-018-9854-8
    53. Kai‐Ming Hu, Zhong‐Ying Xue, Yun‐Qi Liu, Hu Long, Bo Peng, Han Yan, Zeng‐Feng Di, Xi Wang, Liwei Lin, Wen‐Ming Zhang. Tension‐Induced Raman Enhancement of Graphene Membranes in the Stretched State. Small 2019, 15 (2) https://doi.org/10.1002/smll.201804337
    54. M. Kanidi, A. Dagkli, N. Kelaidis, D. Palles, S. Aminalragia-Giamini, J. Marquez-Velasco, A. Colli, A. Dimoulas, E. Lidorikis, M. Kandyla, E.I. Kamitsos. Surface-enhanced Raman Spectroscopy of Graphene Integrated in Three-dimensional Nanostructured Plasmonic Silicon Platforms. 2019, SM1H.3. https://doi.org/10.1364/CLEO_SI.2019.SM1H.3
    55. Sebastian Heeg, Nick Clark, Aravind Vijayaraghavan. Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes. Nanotechnology 2018, 29 (46) , 465710. https://doi.org/10.1088/1361-6528/aaded9
    56. Markus Pfeiffer, Boris V Senkovskiy, Danny Haberer, Felix R Fischer, Fan Yang, Klaus Meerholz, Yoichi Ando, Alexander Grüneis, Klas Lindfors. Enhanced light–matter interaction of aligned armchair graphene nanoribbons using arrays of plasmonic nanoantennas. 2D Materials 2018, 5 (4) , 045006. https://doi.org/10.1088/2053-1583/aacf2b
    57. Raphael F. Tiefenauer, Thomas Dalgaty, Tobias Keplinger, Tian Tian, Chih‐Jen Shih, János Vörös, Morteza Aramesh. Monolayer Graphene Coupled to a Flexible Plasmonic Nanograting for Ultrasensitive Strain Monitoring. Small 2018, 14 (28) https://doi.org/10.1002/smll.201801187
    58. T. Xu, A. Díaz Álvarez, W. Wei, D. Eschimese, S. Eliet, O. Lancry, E. Galopin, F. Vaurette, M. Berthe, D. Desremes, B. Wei, J. Xu, J. F. Lampin, E. Pallecchi, H. Happy, D. Vignaud, B. Grandidier. Transport mechanisms in a puckered graphene-on-lattice. Nanoscale 2018, 10 (16) , 7519-7525. https://doi.org/10.1039/C8NR00678D
    59. Jingyi Zhao, Zhengmin Cao, Yuqing Cheng, Jianning Xu, Te Wen, Aiqin Hu, Qihuang Gong, Guowei Lu. In situ Optical Study of Gold Nanorod Coupling with Graphene. Advanced Optical Materials 2018, 6 (8) https://doi.org/10.1002/adom.201701043
    60. Sören Wasserroth, Timo Bisswanger, Niclas S. Mueller, Patryk Kusch, Sebastian Heeg, Nick Clark, Fredrik Schedin, Roman Gorbachev, Stephanie Reich. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures. Physical Review B 2018, 97 (15) https://doi.org/10.1103/PhysRevB.97.155417
    61. Niclas S Mueller, Sebastian Heeg, Miriam Peña Alvarez, Patryk Kusch, Sören Wasserroth, Nick Clark, Fredrik Schedin, John Parthenios, Konstantinos Papagelis, Costas Galiotis, Martin Kalbáč, Aravind Vijayaraghavan, Uwe Huebner, Roman Gorbachev, Otakar Frank, Stephanie Reich. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials 2018, 5 (1) , 015016. https://doi.org/10.1088/2053-1583/aa90b3
    62. Renxian Gao, Yongjun Zhang, Fan Zhang, Shuang Guo, Yaxin Wang, Lei Chen, Jinghai Yang. SERS polarization-dependent effects for an ordered 3D plasmonic tilted silver nanorod array. Nanoscale 2018, 10 (17) , 8106-8114. https://doi.org/10.1039/C8NR01198B
    63. András Pálinkás, Péter Kun, Antal A. Koós, Zoltán Osváth. Dynamic strain in gold nanoparticle supported graphene induced by focused laser irradiation. Nanoscale 2018, 10 (28) , 13417-13425. https://doi.org/10.1039/C8NR02848F
    64. M. Dusza, F. Granek, W. Strek. Illumination intensity dependent photoresponse of ultra-thin ZnO/graphene/ZnO heterostructure. Optical Materials 2017, 74 , 176-182. https://doi.org/10.1016/j.optmat.2017.01.054
    65. Amirreza Mahigir, Te-Wei Chang, Ashkan Behnam, Gang Logan Liu, Manas Ranjan Gartia, Georgios Veronis. Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-14369-x
    66. Xinyu Wang, Jie Zhang, Xiaolei Zhang, Yong Zhu. Characterization, uniformity and photo-catalytic properties of graphene/TiO_2 nanocomposites via Raman mapping. Optics Express 2017, 25 (18) , 21496. https://doi.org/10.1364/OE.25.021496
    67. Yu Li, Ziwei Li, Cheng Chi, Hangyong Shan, Liheng Zheng, Zheyu Fang. Plasmonics of 2D Nanomaterials: Properties and Applications. Advanced Science 2017, 4 (8) https://doi.org/10.1002/advs.201600430
    68. Hadiseh Nasari, Mohammad Sadegh Abrishamian. Numerical Study of Plasmonic Resonance Enhanced, Terahertz Second Harmonic Generation from Graphene in the Otto Configuration. IEEE Journal of Quantum Electronics 2017, 53 (4) , 1-7. https://doi.org/10.1109/JQE.2017.2708525
    69. D. Legrand, L. O. Le Cunff, A. Bruyant, R. Salas-Montiel, Z. Liu, B.K. Tay, T. Maurer, R. Bachelot. Surface plasmons in suspended graphene: launching with in-plane gold nanoantenna and propagation properties. Optics Express 2017, 25 (15) , 17306. https://doi.org/10.1364/OE.25.017306
    70. Jan Rogalski, Kai Braun, Anke Horneber, Marius van den Berg, Johannes Uihlein, Heiko Peisert, Thomas Chassé, Alfred J. Meixner, Dai Zhang. STM tip-enhanced Raman spectroscopy and the investigation of doped graphene. Vibrational Spectroscopy 2017, 91 , 128-135. https://doi.org/10.1016/j.vibspec.2016.09.023
    71. Hadiseh Nasari, Mohammad Sadegh Abrishamian. Terahertz bistability and multistability in graphene/dielectric Fibonacci multilayer. Applied Optics 2017, 56 (19) , 5313. https://doi.org/10.1364/AO.56.005313
    72. Ado Jorio, Niclas S. Mueller, Stephanie Reich. Symmetry-derived selection rules for plasmon-enhanced Raman scattering. Physical Review B 2017, 95 (15) https://doi.org/10.1103/PhysRevB.95.155409
    73. , , A. Mahigir, M. R. Gartia, T.-W. Chang, G. L. Liu, G. Veronis. Intensified surface enhanced Raman signal of a graphene monolayer on a plasmonic substrate through the use of fluidic dielectrics. 2017, 1008005. https://doi.org/10.1117/12.2252614
    74. Hai-Bin Sun, Can Fu, Yan-Jie Xia, Chong-Wu Zhang, Jiang-Hui Du, Wen-Chao Yang, Peng-Fei Guo, Jun-Qi Xu, Chun-Lei Wang, Yong-Lei Jia, Jiang-Feng Liu. Enhanced Raman scattering of graphene by silver nanoparticles with different densities and locations. Materials Research Express 2017, 4 (2) , 025012. https://doi.org/10.1088/2053-1591/aa59e5
    75. Ekaterina S. Babich, Sergey A. Scherbak, Alexey V. Redkov, Alexander N. Kamenskii, Igor V. Reduto, Andrey A. Lipovskii. Resonant properties of coupled silver hemispheroids. Journal of Nanophotonics 2017, 11 (3) , 032503. https://doi.org/10.1117/1.JNP.11.032503
    76. Samaneh Heydari, Iman Rastan, Amin Parvin, Azadeh Pirooj, Ferdows B. Zarrabi. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application. Physics Letters A 2017, 381 (3) , 140-144. https://doi.org/10.1016/j.physleta.2016.10.028
    77. Niclas S. Mueller, Sebastian Heeg, Patryk Kusch, Etienne Gaufrès, Nathalie Y.-W. Tang, Uwe Hübner, Richard Martel, Aravind Vijayaraghavan, Stephanie Reich. Plasmonic enhancement of SERS measured on molecules in carbon nanotubes. Faraday Discussions 2017, 205 , 85-103. https://doi.org/10.1039/C7FD00127D
    78. Zhengmin Cao, Yingbo He, Yuqing Cheng, Jingyi Zhao, Guantao Li, Qihuang Gong, Guowei Lu. Nano-gap between a gold tip and nanorod for polarization dependent surface enhanced Raman scattering. Applied Physics Letters 2016, 109 (23) https://doi.org/10.1063/1.4971832
    79. Yaowu Hu, Prashant Kumar, Yi Xuan, Biwei Deng, Minghao Qi, Gary J. Cheng. Controlled and Stabilized Light–Matter Interaction in Graphene: Plasmonic Film with Large‐Scale 10‐nm Lithography. Advanced Optical Materials 2016, 4 (11) , 1811-1823. https://doi.org/10.1002/adom.201600201
    80. Xinyu Wang, Ning Wang, Tiancheng Gong, Yong Zhu, Jie Zhang. Preparation of graphene-Ag nanoparticles hybrids and their SERS activities. Applied Surface Science 2016, 387 , 707-719. https://doi.org/10.1016/j.apsusc.2016.06.161
    81. P. A. D. Gonçalves, E. J. C. Dias, Yu. V. Bludov, N. M. R. Peres. Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach. Physical Review B 2016, 94 (19) https://doi.org/10.1103/PhysRevB.94.195421
    82. Julia Prinz, Aleksandar Matković, Jelena Pešić, Radoš Gajić, Ilko Bald. Hybrid Structures for Surface‐Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene. Small 2016, 12 (39) , 5458-5467. https://doi.org/10.1002/smll.201601908
    83. Salmaan R. Syed, Guh-Hwan Lim, Stuart J. Flanders, Adam B. Taylor, Byungkwon Lim, James W. M. Chon. Single layer graphene band hybridization with silver nanoplates: Interplay between doping and plasmonic enhancement. Applied Physics Letters 2016, 109 (10) https://doi.org/10.1063/1.4962401
    84. Cornelia Hintze, Koji Morita, Ralf Riedel, Emanuel Ionescu, Gabriela Mera. Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. Journal of the European Ceramic Society 2016, 36 (12) , 2923-2930. https://doi.org/10.1016/j.jeurceramsoc.2015.11.033
    85. Rafael Ramírez-Jíménez, Leo Álvarez-Fraga, Félix Jimenez-Villacorta, Esteban Climent-Pascual, Carlos Prieto, Alicia de Andrés. Interference enhanced Raman effect in graphene bubbles. Carbon 2016, 105 , 556-565. https://doi.org/10.1016/j.carbon.2016.04.076
    86. Niclas S. Mueller, Sebastian Heeg, Stephanie Reich. Surface-enhanced Raman scattering as a higher-order Raman process. Physical Review A 2016, 94 (2) https://doi.org/10.1103/PhysRevA.94.023813
    87. Ferdows B. Zarrabi, Mohammad Naser-Moghadasi, Samaneh Heydari, Mahshid Maleki, Afsaneh Saee Arezomand. Cross-slot nano-antenna with graphene coat for bio-sensing application. Optics Communications 2016, 371 , 34-39. https://doi.org/10.1016/j.optcom.2016.03.048
    88. Behnood G Ghamsari, Pierre Berini. Surface plasmon near-field back-action and displacement of enhanced Raman scattering spectrum in graphene. Journal of Optics 2016, 18 (7) , 074008. https://doi.org/10.1088/2040-8978/18/7/074008
    89. Ado Jorio, Antonio G. Souza Filho. Raman Studies of Carbon Nanostructures. Annual Review of Materials Research 2016, 46 (1) , 357-382. https://doi.org/10.1146/annurev-matsci-070115-032140
    90. Tiancheng Gong, Jie Zhang, Yong Zhu, Xinyu Wang, Xiaolei Zhang, Jing Zhang. Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene. Carbon 2016, 102 , 245-254. https://doi.org/10.1016/j.carbon.2016.02.050
    91. C Melios, S Spencer, A Shard, W Strupiński, S R P Silva, O Kazakova. Surface and interface structure of quasi-free standing graphene on SiC. 2D Materials 2016, 3 (2) , 025023. https://doi.org/10.1088/2053-1583/3/2/025023
    92. Ibrahim Khalil, Nurhidayatullaili Julkapli, Wageeh Yehye, Wan Basirun, Suresh Bhargava. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. Materials 2016, 9 (6) , 406. https://doi.org/10.3390/ma9060406
    93. F. Jimenez-Villacorta, E. Climent-Pascual, R. Ramirez-Jimenez, J. Sanchez-Marcos, C. Prieto, A. de Andrés. Graphene–ultrasmall silver nanoparticle interactions and their effect on electronic transport and Raman enhancement. Carbon 2016, 101 , 305-314. https://doi.org/10.1016/j.carbon.2016.02.006
    94. Jie Zhang, Xiaolei Zhang, Simeng Chen, Tiancheng Gong, Yong Zhu. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon 2016, 100 , 395-407. https://doi.org/10.1016/j.carbon.2016.01.025
    95. B. Amorim, A. Cortijo, F. de Juan, A.G. Grushin, F. Guinea, A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R. Roldán, P. San-Jose, J. Schiefele, M. Sturla, M.A.H. Vozmediano. Novel effects of strains in graphene and other two dimensional materials. Physics Reports 2016, 617 , 1-54. https://doi.org/10.1016/j.physrep.2015.12.006
    96. Vincenzo Amendola. Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method. Physical Chemistry Chemical Physics 2016, 18 (3) , 2230-2241. https://doi.org/10.1039/C5CP06121K
    97. Shuyuan Xiao, Tao Wang, Yuebo Liu, Chen Xu, Xu Han, Xicheng Yan. Tunable light trapping and absorption enhancement with graphene ring arrays. Physical Chemistry Chemical Physics 2016, 18 (38) , 26661-26669. https://doi.org/10.1039/C6CP03731C
    98. Niloofar Haghighian, Francesco Bisio, Vaidotas Miseikis, Gabriele C. Messina, Francesco De Angelis, Camilla Coletti, Alberto Morgante, Maurizio Canepa. Morphological modulation of graphene-mediated hybridization in plasmonic systems. Physical Chemistry Chemical Physics 2016, 18 (39) , 27493-27499. https://doi.org/10.1039/C6CP05107C
    99. Xuanhua Li, Jinmeng Zhu, Bingqing Wei. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45 (11) , 3145-3187. https://doi.org/10.1039/C6CS00195E
    100. A. Ben Gouider Trabelsi, F. V. Kusmartsev, D. M. Forrester, O. E. Kusmartseva, M. B. Gaifullin, P. Cropper, M. Oueslati. The emergence of quantum capacitance in epitaxial graphene. Journal of Materials Chemistry C 2016, 4 (24) , 5829-5838. https://doi.org/10.1039/C6TC02048H
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect