ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Screening the Cytotoxicity of Single-Walled Carbon Nanotubes Using Novel 3D Tissue-Mimetic Models

View Author Information
† ‡ Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Chemistry, §School of Medicine, and School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2011, 5, 11, 9278–9290
Publication Date (Web):October 21, 2011
https://doi.org/10.1021/nn203659m
Copyright © 2011 American Chemical Society

    Article Views

    1566

    Altmetric

    -

    Citations

    54
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Single-walled carbon nanotubes (SWNTs) are promising candidates for a wide range of biomedical applications due to their fascinating properties. However, safety concerns are raised on their potential human toxicity and on the techniques that need to be used to assess such toxicity. Here, we integrate for the first time 3D tissue-mimetic models in the cytotoxicity assessment of purified (p-) and oxidized (o-) SWNTs. An established ultrasound standing wave trap was used to generate the 3D cell aggregates, and results were compared with traditional 2D cell culture models. Protein-based (bovine serum albumin) and surfactant-based (Pluronic F68) nanotube dispersions were tested and compared to a reference suspension in dimethyl sulfoxide. Our results indicated that p- and o-SWNTs were not toxic in the 3D cellular model following a 24 h exposure. In contrast, 2D cell cultures were significantly affected by exposure to p- and o-SWNTs after 24 h, as assessed by high-content screening and analysis (HCSA). Finally, cytokine (IL-6 and TNF-α) secretion levels were elevated in the 2D but remained essentially unchanged in the 3D cell models. Our results strongly indicate that 3D cell aggregates can be used as alternative in vitro models providing guidance on nanomaterial toxicity in a tissue-mimetic manner, thus offering future cost-effective solutions for toxicity screening assays under the experimental conditions more closely related to the physiological scenario in 3D tissue microenvironments.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Tables of p values; summary of in vitro studies on macrophages exposed to SWNTs; schematic representation of the protocol employed for the preparation of SWNT dispersions; flow cytometry graphs; changes in cellular parameters in 2D cell cultures after exposure to surfactants; characterization of 3D cell aggregates in culture; control experiments for the ELISA assays. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. Leanne M. Pasquini, Ryan C. Sekol, André D. Taylor, Lisa D. Pfefferle, and Julie B. Zimmerman . Realizing Comparable Oxidative and Cytotoxic Potential of Single- and Multiwalled Carbon Nanotubes through Annealing. Environmental Science & Technology 2013, 47 (15) , 8775-8783. https://doi.org/10.1021/es401786s
    2. Gulnaz Faezovna Gabidinova, Gyuzel A. Timerbulatova, Ekaterina V. Ubeykina, Alsou A. Sayagfarova, Liliya M. Fatkhutdinova. New 3D in vitro models for assessing the toxicity of carbon nanotubes. Toxicological Review 2023, 31 (6) , 352-362. https://doi.org/10.47470/0869-7922-2023-31-6-352-362
    3. Abbad Al Baroot, Khaled A. Elsayed, Firdos Alam Khan, Shamsuddeen A. Haladu, Filiz Ercan, Emre Çevik, Q. A. Drmosh, M. A. Almessiere. Anticancer Activity of Au/CNT Nanocomposite Fabricated by Nanosecond Pulsed Laser Ablation Method on Colon and Cervical Cancer. Micromachines 2023, 14 (7) , 1455. https://doi.org/10.3390/mi14071455
    4. Winfried Neuhaus, Birgit Reininger-Gutmann, Beate Rinner, Roberto Plasenzotti, Doris Wilflingseder, Joery De Kock, Tamara Vanhaecke, Vera Rogiers, Dagmar Jírová, Kristina Kejlová, Lisbeth E. Knudsen, Rasmus Normann Nielsen, Burkhard Kleuser, Vivian Kral, Christa Thöne-Reineke, Thomas Hartung, Giorgia Pallocca, Costanza Rovida, Marcel Leist, Stefan Hippenstiel, Annemarie Lang, Ida Retter, Stephanie Krämer, Peter Jedlicka, Katharina Ameli, Ellen Fritsche, Julia Tigges, Eliška Kuchovská, Manuela Buettner, Andre Bleich, Nadine Baumgart, Jan Baumgart, Marcus W. Meinhardt, Rainer Spanagel, Sabine Chourbaji, Bettina Kränzlin, Bettina Seeger, Maren von Köckritz-Blickwede, José M. Sánchez-Morgado, Viola Galligioni, Daniel Ruiz-Pérez, Dania Movia, Adriele Prina-Mello, Arti Ahluwalia, Valeria Chiono, Arno C. Gutleb, Marthe Schmit, Bea van Golen, Leane van Weereld, Anne Kienhuis, Erica van Oort, Jan van der Valk, Adrian Smith, Joanna Roszak, Maciej Stępnik, Zuzanna Sobańska, Edyta Reszka, I. Anna S. Olsson, Nuno Henrique Franco, Bogdan Sevastre, Helena Kandarova, Sara Capdevila, Jessica Johansson, Emma Svensk, Christopher R. Cederroth, Jenny Sandström, Ian Ragan, Nataliia Bubalo, Jens Kurreck, Horst Spielmann. The Current Status and Work of Three Rs Centres and Platforms in Europe*. Alternatives to Laboratory Animals 2022, 50 (6) , 381-413. https://doi.org/10.1177/02611929221140909
    5. Stefania Lettieri, Marta d'Amora, Silvia Giordani. Carbon Nanomaterials for Imaging. 2022, 242-277. https://doi.org/10.1039/9781782624028-00242
    6. Rafaela P. Gazzi, Caroline Portela Peruzzi, Ingrid Mullich Flesch, Giovana Onzi, Luiza Abrahão Frank, Solange Cristina Garcia. Pharmaceutical Nanocarriers: Nanotoxicology. 2022, 840-853. https://doi.org/10.1007/978-3-030-84860-6_106
    7. Rafaela P. Gazzi, Caroline Portela Peruzzi, Ingrid Mullich Flesch, Giovana Onzi, Luiza Abrahão Frank, Solange Cristina Garcia. Pharmaceutical Nanocarriers: Nanotoxicology. 2021, 1-13. https://doi.org/10.1007/978-3-030-51519-5_106-1
    8. Eran Ivanir, Yonatan Shachaf, Iris Mironi‐Harpaz, Daniella Yeheskely‐Hayon, Lena Hazanov, Shlomit Harpaz‐Segev, Tamara Birman, Limor Minai, Sonia Melino, Dvir Yelin, Dror Seliktar. A Gel‐Based Model of Selective Cell Motility: Implications for Cell Sorting, Diagnostics, and Screening. Advanced Functional Materials 2020, 30 (18) https://doi.org/10.1002/adfm.201807106
    9. Daniel A. Heller, Prakrit V. Jena, Matteo Pasquali, Kostas Kostarelos, Lucia G. Delogu, Rachel E. Meidl, Slava V. Rotkin, David A. Scheinberg, Robert E. Schwartz, Mauricio Terrones, YuHuang Wang, Alberto Bianco, Ardemis A. Boghossian, Sofie Cambré, Laurent Cognet, Simon R. Corrie, Philip Demokritou, Silvia Giordani, Tobias Hertel, Tetyana Ignatova, Mohammad F. Islam, Nicole M. Iverson, Anand Jagota, Dawid Janas, Junichiro Kono, Sebastian Kruss, Markita P. Landry, Yan Li, Richard Martel, Shigeo Maruyama, Anton V. Naumov, Maurizio Prato, Susan J. Quinn, Daniel Roxbury, Michael S. Strano, James M. Tour, R. Bruce Weisman, Wim Wenseleers, Masako Yudasaka. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology 2020, 15 (3) , 164-166. https://doi.org/10.1038/s41565-020-0656-y
    10. Nadim Ahamad, Prateek Bhardwaj, Eshant Bhatia, Rinti Banerjee. Clinical Toxicity of Nanomedicines. 2020, 533-560. https://doi.org/10.1007/978-981-15-6255-6_20
    11. M. Tsintou, P.P. Wróbel, K. Dalamagkas. Central nervous system responses to biomaterials. 2020, 507-554. https://doi.org/10.1016/B978-0-08-102967-1.00023-2
    12. Pål A. Olsvik, Liv Søfteland. Mixture toxicity of chlorpyrifos-methyl, pirimiphos-methyl, and nonylphenol in Atlantic salmon (Salmo salar) hepatocytes. Toxicology Reports 2020, 7 , 547-558. https://doi.org/10.1016/j.toxrep.2020.03.008
    13. Xia Yuan, Xiangxian Zhang, Lu Sun, Yuquan Wei, Xiawei Wei. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Particle and Fibre Toxicology 2019, 16 (1) https://doi.org/10.1186/s12989-019-0299-z
    14. Esfandyar Askari, Seyed Morteza Naghib, Amir Seyfoori, Ali Maleki, Mehdi Rahmanian. Ultrasonic-assisted synthesis and in vitro biological assessments of a novel herceptin-stabilized graphene using three dimensional cell spheroid. Ultrasonics Sonochemistry 2019, 58 , 104615. https://doi.org/10.1016/j.ultsonch.2019.104615
    15. Kyung-Taek Rim. In vitro Models for Chemical Toxicity: Review of their Applications and Prospects. Toxicology and Environmental Health Sciences 2019, 11 (2) , 94-103. https://doi.org/10.1007/s13530-019-0402-8
    16. Stefania Lettieri, Silvia Giordani. Carbon Nanomaterials for Deep‐Tissue Imaging in the NIR Spectral Window. 2019, 87-114. https://doi.org/10.1002/9781119373476.ch5
    17. Eleonore Fröhlich. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46 (sup2) , 1091-1107. https://doi.org/10.1080/21691401.2018.1479709
    18. Dania Movia, Adriele Prina-Mello. Nanotoxicity in Cancer Research: Technical Protocols and Considerations for the Use of 3D Tumour Spheroids. 2018https://doi.org/10.5772/intechopen.69447
    19. Marta d’Amora, Silvia Giordani. Carbon Nanomaterials for Nanomedicine. 2018, 103-113. https://doi.org/10.1016/B978-0-12-814156-4.00007-0
    20. Jörg J. Schneider. Vertically Aligned Carbon Nanotubes as Platform for Biomimetically Inspired Mechanical Sensing, Bioactive Surfaces, and Electrical Cell Interfacing. Advanced Biosystems 2017, 1 (11) https://doi.org/10.1002/adbi.201700101
    21. Laetitia Gonzalez, Enrico Cundari, Luc Leyns, Micheline Kirsch‐Volders. Towards a New Paradigm in Nano‐Genotoxicology: Facing Complexity of Nanomaterials’ Cellular Interactions and Effects. Basic & Clinical Pharmacology & Toxicology 2017, 121 (S3) , 23-29. https://doi.org/10.1111/bcpt.12698
    22. Brittany N. Eldridge, Fei Xing, Cale D. Fahrenholtz, Ravi N. Singh. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane. Toxicology in Vitro 2017, 41 , 223-231. https://doi.org/10.1016/j.tiv.2017.03.002
    23. Rosa Garriga, Izabela Jurewicz, Shayan Seyedin, Niki Bardi, Stella Totti, Brigitta Matta-Domjan, Eirini G. Velliou, Mohammed A. Alkhorayef, Vicente L. Cebolla, Joselito M. Razal, Alan B. Dalton, Edgar Muñoz. Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings. Nanoscale 2017, 9 (23) , 7791-7804. https://doi.org/10.1039/C6NR09482A
    24. Michele Baldrighi, Massimo Trusel, Raffaella Tonini, Silvia Giordani. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Frontiers in Neuroscience 2016, 10 https://doi.org/10.3389/fnins.2016.00250
    25. Chor Yong Tay, Madaswamy S. Muthu, Sing Ling Chia, Kim Truc Nguyen, Si‐Shen Feng, David Tai Leong. Reality Check for Nanomaterial‐Mediated Therapy with 3D Biomimetic Culture Systems. Advanced Functional Materials 2016, 26 (23) , 4046-4065. https://doi.org/10.1002/adfm.201600476
    26. Sachin Kumar, Dilkash Azam, Shammy Raj, Elayaraja Kolanthai, K.S. Vasu, A.K. Sood, Kaushik Chatterjee. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2016, 104 (4) , 732-749. https://doi.org/10.1002/jbm.b.33549
    27. Luisana Di Cristo, Dania Movia, Massimiliano G. Bianchi, Manfredi Allegri, Bashir M. Mohamed, Alan P. Bell, Caroline Moore, Silvana Pinelli, Kirsten Rasmussen, Juan Riego-Sintes, Adriele Prina-Mello, Ovidio Bussolati, Enrico Bergamaschi. Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells. Toxicological Sciences 2016, 150 (1) , 40-53. https://doi.org/10.1093/toxsci/kfv258
    28. Carl A Webster, Desire Di Silvio, Aarthi Devarajan, Paolo Bigini, Edoardo Micotti, Chiara Giudice, Mario Salmona, Grant N Wheeler, Victoria Sherwood, Francesca Baldelli Bombelli. An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine 2016, 11 (6) , 643-656. https://doi.org/10.2217/nnm.15.219
    29. Marco Frasconi, Roberto Marotta, Lyn Markey, Kevin Flavin, Valentina Spampinato, Giacomo Ceccone, Luis Echegoyen, Eoin M. Scanlan, Silvia Giordani. Multi‐Functionalized Carbon Nano‐onions as Imaging Probes for Cancer Cells. Chemistry – A European Journal 2015, 21 (52) , 19071-19080. https://doi.org/10.1002/chem.201503166
    30. Marco Frasconi, Viviana Maffeis, Juergen Bartelmess, Luis Echegoyen, Silvia Giordani. Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods and Applications in Fluorescence 2015, 3 (4) , 044005. https://doi.org/10.1088/2050-6120/3/4/044005
    31. John W. Wills, Nicole Hondow, Adam D. Thomas, Katherine E. Chapman, David Fish, Thierry G. Maffeis, Mark W. Penny, Richard A. Brown, Gareth J. S. Jenkins, Andy P. Brown, Paul A. White, Shareen H. Doak. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Particle and Fibre Toxicology 2015, 13 (1) https://doi.org/10.1186/s12989-016-0161-5
    32. Morteza Azhdarzadeh, Amir Ata Saei, Shahriar Sharifi, Mohammad J Hajipour, Alaaldin M Alkilany, Mohammad Sharifzadeh, Fatemeh Ramazani, Sophie Laurent, Alireza Mashaghi, Morteza Mahmoudi. Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine 2015, 10 (18) , 2931-2952. https://doi.org/10.2217/nnm.15.130
    33. Valentina Marchesano, Alfredo Ambrosone, Juergen Bartelmess, Federica Strisciante, Angela Tino, Luis Echegoyen, Claudia Tortiglione, Silvia Giordani. Impact of Carbon Nano-Onions on Hydra vulgaris as a Model Organism for Nanoecotoxicology. Nanomaterials 2015, 5 (3) , 1331-1350. https://doi.org/10.3390/nano5031331
    34. Davide Staedler, Solène Passemard, Thibaud Magouroux, Andrii Rogov, Ciaran Manus Maguire, Bashir M. Mohamed, Sebastian Schwung, Daniel Rytz, Thomas Jüstel, Stéphanie Hwu, Yannick Mugnier, Ronan Le Dantec, Yuri Volkov, Sandrine Gerber-Lemaire, Adriele Prina-Mello, Luigi Bonacina, Jean-Pierre Wolf. Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2015, 11 (4) , 815-824. https://doi.org/10.1016/j.nano.2014.12.018
    35. Bianca M. Rotoli, Rita Gatti, Dania Movia, Massimiliano G. Bianchi, Luisana Di Cristo, Ivana Fenoglio, Fabio Sonvico, Enrico Bergamaschi, Adriele Prina-Mello, Ovidio Bussolati. Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay. Nanotoxicology 2015, 9 (2) , 230-241. https://doi.org/10.3109/17435390.2014.918203
    36. J. Bartelmess, S. J. Quinn, S. Giordani. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chemical Society Reviews 2015, 44 (14) , 4672-4698. https://doi.org/10.1039/C4CS00306C
    37. JaeHo Lee, SeungJun Lee, ByungMan Lee, KyungBaeg Roh, DeokHoon Park, EunSun Jung. Development of Tyrosinase Promoter-Based Fluorescent Assay for Screening of Anti-melanogenic Agents. Biological & Pharmaceutical Bulletin 2015, 38 (10) , 1542-1547. https://doi.org/10.1248/bpb.b15-00305
    38. David T. Leong, Kee Woei Ng. Probing the relevance of 3D cancer models in nanomedicine research. Advanced Drug Delivery Reviews 2014, 79-80 , 95-106. https://doi.org/10.1016/j.addr.2014.06.007
    39. Jasmina Stojkovska, Danijela Kostić, Željka Jovanović, Maja Vukašinović-Sekulić, Vesna Mišković-Stanković, Bojana Obradović. A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels. Carbohydrate Polymers 2014, 111 , 305-314. https://doi.org/10.1016/j.carbpol.2014.04.063
    40. Shiyun Meng. Nerve cell differentiation using constant and programmed electrical stimulation through conductive non-functional graphene nanosheets film. Tissue Engineering and Regenerative Medicine 2014, 11 (4) , 274-283. https://doi.org/10.1007/s13770-014-0011-1
    41. Magdalena Obarzanek-Fojt, Yvonne Elbs-Glatz, Erlantz Lizundia, Liliane Diener, Jose-Ramon Sarasua, Arie Bruinink. From implantation to degradation — are poly (l-lactide)/multiwall carbon nanotube composite materials really cytocompatible?. Nanomedicine: Nanotechnology, Biology and Medicine 2014, 10 (5) , e1041-e1051. https://doi.org/10.1016/j.nano.2013.12.012
    42. Jasleen Kaur, Anita Kumari. Exigency for fusion of graphene and carbon nanotube with biomaterials. Toxicological & Environmental Chemistry 2014, 96 (5) , 699-721. https://doi.org/10.1080/02772248.2014.978127
    43. Anna G. Cattaneo, Rosalba Gornati, Giovanni Bernardini, Enrico Sabbioni, Luigi Manzo, Mario Di Gioacchino. Testing Nanotoxicity: An Update of New and Traditional Methods. 2014, 3-34. https://doi.org/10.1002/9781118856017.ch1
    44. Dania Movia, Valerie Gerard, Ciaran Manus Maguire, Namrata Jain, Alan P. Bell, Valeria Nicolosi, Tiina O'Neill, Dimitri Scholz, Yurii Gun'ko, Yuri Volkov, Adriele Prina-Mello. A safe-by-design approach to the development of gold nanoboxes as carriers for internalization into cancer cells. Biomaterials 2014, 35 (9) , 2543-2557. https://doi.org/10.1016/j.biomaterials.2013.12.057
    45. Y. Williams, A. Prina-Mello, Y. Volkov. High Content Screening and Analysis with Nanotechnologies. 2014, 379-389. https://doi.org/10.1016/B978-0-444-53632-7.00425-1
    46. Lili Li, Rui Lin, Hua He, Meiling Sun, Li Jiang, Mengmeng Gao. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods. Journal of Luminescence 2014, 145 , 125-131. https://doi.org/10.1016/j.jlumin.2013.07.008
    47. E.L. da Rocha, L.M. Porto, C.R. Rambo. Nanotechnology meets 3D in vitro models: Tissue engineered tumors and cancer therapies. Materials Science and Engineering: C 2014, 34 , 270-279. https://doi.org/10.1016/j.msec.2013.09.019
    48. Jie Li, Changlun Chen, Shouwei Zhang, Xiangke Wang. Surface functional groups and defects on carbon nanotubes affect adsorption–desorption hysteresis of metal cations and oxoanions in water. Environ. Sci.: Nano 2014, 1 (5) , 488-495. https://doi.org/10.1039/C4EN00044G
    49. Bashir Mustafa Mohamed, Dania Movia, Anton Knyazev, Dominique Langevin, Anthony Mitchell Davies, Adriele Prina-Mello, Yuri Volkov. Citrullination as early-stage indicator of cell response to Single-Walled Carbon Nanotubes. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01124
    50. Xiaoning Cai, Rajkumar Ramalingam, Hau San Wong, Jinping Cheng, Paul Ajuh, Shuk Han Cheng, Yun Wah Lam. Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomedicine: Nanotechnology, Biology and Medicine 2013, 9 (5) , 583-593. https://doi.org/10.1016/j.nano.2012.09.004
    51. Marina V. Pryzhkova. Concise Review: Carbon Nanotechnology: Perspectives in Stem Cell Research. Stem Cells Translational Medicine 2013, 2 (5) , 376-383. https://doi.org/10.5966/sctm.2012-0151
    52. Freya Joris, Bella B. Manshian, Karen Peynshaert, Stefaan C. De Smedt, Kevin Braeckmans, Stefaan J. Soenen. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chemical Society Reviews 2013, 42 (21) , 8339. https://doi.org/10.1039/c3cs60145e
    53. Adriele Prina-Mello, Kieran Crosbie-Staunton, Gorka Salas, Maria del Puerto Morales, Yuri Volkov. Multiparametric Toxicity Evaluation of SPIONs by High Content Screening Technique: Identification of Biocompatible Multifunctional Nanoparticles for Nanomedicine. IEEE Transactions on Magnetics 2013, 49 (1) , 377-382. https://doi.org/10.1109/TMAG.2012.2225024
    54. Karl S. Coleman. Nanotubes. Annual Reports Section "A" (Inorganic Chemistry) 2012, 108 , 478. https://doi.org/10.1039/c2ic90014a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect