ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Pushing the High-Energy Limit of Plasmonics

View Author Information
CNR-SPIN, C.so Perrone 24, I-16152 Genova, Italy
Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
§ Dipartimento di Fisica, Università di Genova and CNISM, Sede Consorziata di Genova, via Dodecaneso 33, I-16146 Genova, Italy
Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
CNR-Istituto Officina Materiali, I-34149 Trieste, Italy
*Address correspondence to [email protected]
Cite this: ACS Nano 2014, 8, 9, 9239–9247
Publication Date (Web):September 2, 2014
https://doi.org/10.1021/nn503035b
Copyright © 2014 American Chemical Society

    Article Views

    1663

    Altmetric

    -

    Citations

    53
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The localized surface plasmon resonance of metal nanoparticles allows confining the eletromagnetic field in nanosized volumes, creating high-field “hot spots”, most useful for enhanced nonlinear optical spectroscopies. The commonly employed metals, Au and Ag, yield plasmon resonances only spanning the visible/near-infrared range. Stretching upward, the useful energy range of plasmonics requires exploiting different materials. Deep-ultraviolet plasmon resonances happen to be achievable with one of the cheapest and most abundant materials available: aluminum indeed holds the promise of a broadly tunable plasmonic response, theoretically extending far into the deep-ultraviolet. Complex nanofabrication and the unavoidable Al oxidation have so far prevented the achievement of this ultimate high-energy response. A nanofabrication technique producing purely metallic Al nanoparticles has at last allowed to overcome these limits, pushing the plasmon resonance to 6.8 eV photon energy (≈180 nm) and thus significantly broadening the spectral range of plasmonics’ numerous applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Spatial maps of magnetic fields and currents calculated in longitudinal geometry, extinction-efficiency spectra calculated for Al NPs neglecting the interparticle EM interactions, electric-field enhancement factor vs photon energy and sets of extinction spectra calculated for perturbative variations of the NP shape. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Chengchao He, Yanhong Li, Yuxiang Yang, Huaikun Fan, Dawei Li, Xue Han. Sensitive Aluminum SPR Sensors Prepared by Thermal Evaporation Deposition. ACS Omega 2023, 8 (45) , 43188-43196. https://doi.org/10.1021/acsomega.3c06855
    2. Alemayehu Nana Koya, Xiangchao Zhu, Nareg Ohannesian, A. Ali Yanik, Alessandro Alabastri, Remo Proietti Zaccaria, Roman Krahne, Wei-Chuan Shih, Denis Garoli. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano 2021, 15 (4) , 6038-6060. https://doi.org/10.1021/acsnano.0c10945
    3. Xiangchao Zhu, Golam Md. Imran Hossain, Matthew George, Arash Farhang, Ahmet Cicek, Ahmet Ali Yanik. Beyond Noble Metals: High Q-Factor Aluminum Nanoplasmonics. ACS Photonics 2020, 7 (2) , 416-424. https://doi.org/10.1021/acsphotonics.9b01368
    4. Aleksandr Barulin, Jean-Benoît Claude, Satyajit Patra, Antonin Moreau, Julien Lumeau, Jérôme Wenger. Preventing Aluminum Photocorrosion for Ultraviolet Plasmonics. The Journal of Physical Chemistry Letters 2019, 10 (19) , 5700-5707. https://doi.org/10.1021/acs.jpclett.9b02137
    5. Paolo Ponzellini, Giorgia Giovannini, Sandro Cattarin, Remo Proietti Zaccaria, Sergio Marras, Mirko Prato, Andrea Schirato, Francesco D’Amico, Eugenio Calandrini, Francesco De Angelis, Wei Yang, Hai-Jun Jin, Alessandro Alabastri, Denis Garoli. Metallic Nanoporous Aluminum–Magnesium Alloy for UV-Enhanced Spectroscopy. The Journal of Physical Chemistry C 2019, 123 (33) , 20287-20296. https://doi.org/10.1021/acs.jpcc.9b04230
    6. Alexandre Fafin, Sophie Camelio, Frédéric Pailloux, David Babonneau. Surface Plasmon Resonances and Local Field Enhancement in Aluminum Nanoparticles Embedded in Silicon Nitride. The Journal of Physical Chemistry C 2019, 123 (22) , 13908-13917. https://doi.org/10.1021/acs.jpcc.9b03050
    7. Xi Chen, Jia Fang, Xiaodan Zhang, Ying Zhao, and Min Gu . Optical/Electrical Integrated Design of Core–Shell Aluminum-Based Plasmonic Nanostructures for Record-Breaking Efficiency Enhancements in Photovoltaic Devices. ACS Photonics 2017, 4 (9) , 2102-2110. https://doi.org/10.1021/acsphotonics.7b00396
    8. Manuela Oliverio, Sara Perotto, Gabriele C. Messina, Laura Lovato, and Francesco De Angelis . Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Applied Materials & Interfaces 2017, 9 (35) , 29394-29411. https://doi.org/10.1021/acsami.7b01583
    9. Satoshi Kawata, Taro Ichimura, Atsushi Taguchi, and Yasuaki Kumamoto . Nano-Raman Scattering Microscopy: Resolution and Enhancement. Chemical Reviews 2017, 117 (7) , 4983-5001. https://doi.org/10.1021/acs.chemrev.6b00560
    10. Richard G. Hobbs, Vitor R. Manfrinato, Yujia Yang, Sarah A. Goodman, Lihua Zhang, Eric A. Stach, and Karl K. Berggren . High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures. Nano Letters 2016, 16 (7) , 4149-4157. https://doi.org/10.1021/acs.nanolett.6b01012
    11. Vladimir Liberman, Kenneth Diest, Corey W. Stull, Matthew T. Cook, Donna M. Lennon, Mordechai Rothschild, and Stefan Schoeche . Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition. ACS Photonics 2016, 3 (5) , 796-805. https://doi.org/10.1021/acsphotonics.5b00751
    12. Remo Proietti Zaccaria, Francesco Bisio, Gobind Das, Giulia Maidecchi, Michael Caminale, Chinh Duc Vu, Francesco De Angelis, Enzo Di Fabrizio, Andrea Toma, and Maurizio Canepa . Plasmonic Color-Graded Nanosystems with Achromatic Subwavelength Architectures for Light Filtering and Advanced SERS Detection. ACS Applied Materials & Interfaces 2016, 8 (12) , 8024-8031. https://doi.org/10.1021/acsami.6b00726
    13. Giulia Maidecchi, Chinh Vu Duc, Renato Buzio, Andrea Gerbi, Gianluca Gemme, Maurizio Canepa, and Francesco Bisio . Electronic Structure of Core–Shell Metal/Oxide Aluminum Nanoparticles. The Journal of Physical Chemistry C 2015, 119 (47) , 26719-26725. https://doi.org/10.1021/acs.jpcc.5b07678
    14. Minah Lee, Jong Uk Kim, Ki Joong Lee, SooHoon Ahn, Yong-Beom Shin, Jonghwa Shin, and Chan Beum Park . Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting. ACS Nano 2015, 9 (6) , 6206-6213. https://doi.org/10.1021/acsnano.5b01541
    15. Kevin M. McPeak, Sriharsha V. Jayanti, Stephan J. P. Kress, Stefan Meyer, Stelio Iotti, Aurelio Rossinelli, and David J. Norris . Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2 (3) , 326-333. https://doi.org/10.1021/ph5004237
    16. Alessandro Alabastri, Andrea Toma, Mario Malerba, Francesco De Angelis, and Remo Proietti Zaccaria . High Temperature Nanoplasmonics: The Key Role of Nonlinear Effects. ACS Photonics 2015, 2 (1) , 115-120. https://doi.org/10.1021/ph500326c
    17. Xiaojin Jiao, Eric M. Peterson, Joel M. Harris, and Steve Blair . UV Fluorescence Lifetime Modification by Aluminum Nanoapertures. ACS Photonics 2014, 1 (12) , 1270-1277. https://doi.org/10.1021/ph500267n
    18. Roberta D'Agata, Noemi Bellassai, Giuseppe Spoto. Exploiting the design of surface plasmon resonance interfaces for better diagnostics: A perspective review. Talanta 2024, 266 , 125033. https://doi.org/10.1016/j.talanta.2023.125033
    19. Manisha Rautela, Jitendra Kumar. Efficiency enhancement of GaAs nanowire array-based solar cell by plasmonic Al nanoparticles. Materials Today Communications 2023, 37 , 106984. https://doi.org/10.1016/j.mtcomm.2023.106984
    20. Jianhua Huang, Wei Wang, Xuan Xu, Shuai Zhou, Chaojun Tang, Fan Gao, Jing Chen. Ultraviolet ultranarrow second-order magnetic plasmon induced reflection of lifted 3D metamaterials for slow light and optical sensing. Results in Physics 2023, 47 , 106354. https://doi.org/10.1016/j.rinp.2023.106354
    21. Yan Zhao, Shuo‐Hui Cao, Jia‐Dai Wang, Na Li, Guo‐Chun Lin, Yao‐Qun Li. Polarization‐ and Angle‐Dependent Plasmonic Synchronous Fluorescence Spectroscopy to Probe Molecular Vibrational Couplings on an Aluminum Nano‐Film. Advanced Optical Materials 2022, 10 (8) https://doi.org/10.1002/adom.202101973
    22. Atsushi TAGUCHI. UV Plasmonics and Nanophotonics. Journal of the Japan Society for Precision Engineering 2021, 87 (9) , 725-729. https://doi.org/10.2493/jjspe.87.725
    23. Maximilian Paleschke, Cheng-Tien Chiang, Liane Brandt, Niklas Liebing, Georg Woltersdorf, Wolf Widdra. Plasmonic spin-Hall effect of propagating surface plasmon polaritons in Ni 80 Fe 20 microstructures. New Journal of Physics 2021, 23 (9) , 093006. https://doi.org/10.1088/1367-2630/ac1c83
    24. Alemayehu Nana Koya, Denis Garoli, , , . Nanoporous metals, plasmonic properties and applications. 2021, 32. https://doi.org/10.1117/12.2589708
    25. Zhendong Yan, Qi Zhu, Xue Lu, Wei Du, Xingting Pu, Taoping Hu, Lili Yu, Zhong Huang, Pinggen Cai, Chaojun Tang. Multipolar Plasmonic Resonances of Aluminum Nanoantenna Tuned by Graphene. Nanomaterials 2021, 11 (1) , 185. https://doi.org/10.3390/nano11010185
    26. Mina Mirzaei, Javad Hasanzadeh, Ali Abdolahzadeh Ziabari. Efficiency Enhancement of CZTS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of Size and Period of Nanoparticles. Journal of Electronic Materials 2020, 49 (12) , 7168-7178. https://doi.org/10.1007/s11664-020-08524-w
    27. Ichiro Tanabe, Yoshito Y. Tanaka, Koji Watari, Wataru Inami, Yoshimasa Kawata, Yukihiro Ozaki. Enhanced Surface Plasmon Resonance Wavelength Shifts by Molecular Electronic Absorption in Far- and Deep-Ultraviolet Regions. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-66949-z
    28. Maria Sygletou, Francesco Bisio, Stefania Benedetti, Piero Torelli, Alessandro di Bona, Aleksandr Petrov, Maurizio Canepa. Transparent conductive oxide-based architectures for the electrical modulation of the optical response: A spectroscopic ellipsometry study. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2019, 37 (6) https://doi.org/10.1116/1.5122175
    29. Song Yue, Yu Hou, Ran Wang, Song Liu, Man Li, Zhe Zhang, Maojing Hou, Yu Wang, Zichen Zhang. CMOS-compatible plasmonic hydrogen sensors with a detection limit of 40 ppm. Optics Express 2019, 27 (14) , 19331. https://doi.org/10.1364/OE.27.019331
    30. Ichiro Tanabe, Yoshito Y. Tanaka. Far‐ and Deep‐Ultraviolet Surface Plasmon Resonance Sensor. The Chemical Record 2019, 19 (7) , 1210-1219. https://doi.org/10.1002/tcr.201800078
    31. Atsushi Taguchi, Jun Yu, Kohta Saitoh. Tip Enhanced Raman Microscopy. 2019, 13-32. https://doi.org/10.1016/B978-0-12-803581-8.10443-6
    32. Barun Ghosh, Francesca Alessandro, Marilena Zappia, Rosaria Brescia, Chia-Nung Kuo, Chin Shan Lue, Gennaro Chiarello, Antonio Politano, Lorenzo S. Caputi, Amit Agarwal, Anna Cupolillo. Broadband excitation spectrum of bulk crystals and thin layers of PtTe 2 . Physical Review B 2019, 99 (4) https://doi.org/10.1103/PhysRevB.99.045414
    33. Giuseppe Nicotra, Edo van Veen, Ioannis Deretzis, Lin Wang, Jin Hu, Zhiqiang Mao, Vito Fabio, Corrado Spinella, Gennaro Chiarello, Alexander Rudenko, Shengjun Yuan, Antonio Politano. Anisotropic ultraviolet-plasmon dispersion in black phosphorus. Nanoscale 2018, 10 (46) , 21918-21927. https://doi.org/10.1039/C8NR05502E
    34. Mohammed Bouabdellaoui, Simona Checcucci, Thomas Wood, Meher Naffouti, Robert Paria Sena, Kailang Liu, Carmen M. Ruiz, David Duche, Judikael le Rouzo, Ludovic Escoubas, Gerard Berginc, Nicolas Bonod, Mimoun Zazoui, Luc Favre, Leo Metayer, Antoine Ronda, Isabelle Berbezier, David Grosso, Massimo Gurioli, Marco Abbarchi. Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces. Physical Review Materials 2018, 2 (3) https://doi.org/10.1103/PhysRevMaterials.2.035203
    35. P. Patsalas, N. Kalfagiannis, S. Kassavetis, G. Abadias, D.V. Bellas, Ch. Lekka, E. Lidorikis. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Materials Science and Engineering: R: Reports 2018, 123 , 1-55. https://doi.org/10.1016/j.mser.2017.11.001
    36. Tino Töpper, Samuel Lörcher, Hans Deyhle, Bekim Osmani, Vanessa Leung, Thomas Pfohl, Bert Müller. Time‐Resolved Plasmonics used to On‐Line Monitor Metal/Elastomer Deposition for Low‐Voltage Dielectric Elastomer Transducers. Advanced Electronic Materials 2017, 3 (8) https://doi.org/10.1002/aelm.201700073
    37. Antonio Politano, Gennaro Chiarello, Corrado Spinella. Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Materials Science in Semiconductor Processing 2017, 65 , 88-99. https://doi.org/10.1016/j.mssp.2016.05.002
    38. John Hennessy, Christopher S. Moore, Kunjithapatham Balasubramanian, April D. Jewell, Kevin France, Shouleh Nikzad. Enhanced atomic layer etching of native aluminum oxide for ultraviolet optical applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2017, 35 (4) https://doi.org/10.1116/1.4986945
    39. Dmitry Khlopin, Frédéric Laux, William P. Wardley, Jérôme Martin, Gregory A. Wurtz, Jérôme Plain, Nicolas Bonod, Anatoly V. Zayats, Wayne Dickson, Davy Gérard. Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays. Journal of the Optical Society of America B 2017, 34 (3) , 691. https://doi.org/10.1364/JOSAB.34.000691
    40. Vida Nooshnab, Saeed Golmohammadi. Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters. Optics Communications 2017, 382 , 354-360. https://doi.org/10.1016/j.optcom.2016.08.010
    41. Po-Shuan Yang, Po-Hsien Cheng, C. Robert Kao, Miin-Jang Chen. Novel Self-shrinking Mask for Sub-3 nm Pattern Fabrication. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29625
    42. , , , , Alessandro Alabastri, Andrea Toma, Mario Malerba, Francesco De Angelis, Remo Proietti Zaccaria. High temperature nanoplasmonics. 2016, 99190O. https://doi.org/10.1117/12.2238546
    43. Wanbo Li, Kangning Ren, Jianhua Zhou. Aluminum-based localized surface plasmon resonance for biosensing. TrAC Trends in Analytical Chemistry 2016, 80 , 486-494. https://doi.org/10.1016/j.trac.2015.08.013
    44. Wanbo Li, Yongcai Qiu, Li Zhang, Lelun Jiang, Zhangkai Zhou, Huanjun Chen, Jianhua Zhou. Aluminum nanopyramid array with tunable ultraviolet–visible–infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199. Biosensors and Bioelectronics 2016, 79 , 500-507. https://doi.org/10.1016/j.bios.2015.12.038
    45. Waseem Raja, Angelo Bozzola, Pierfrancesco Zilio, Ermanno Miele, Simone Panaro, Hai Wang, Andrea Toma, Alessandro Alabastri, Francesco De Angelis, Remo Proietti Zaccaria. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24539
    46. Yi-Hsin Tai, Dao-Ming Chang, Ming-Yang Pan, Ding-Wei Huang, Pei-Kuen Wei. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis. Sensors 2016, 16 (3) , 303. https://doi.org/10.3390/s16030303
    47. Francesco Bisio, Christian Martella, Luca Anghinolfi, Maria Caterina Giordano, Michael Caminale, Maurizio Canepa, Francesco Buatier de Mongeot. Plasmonics in Self-Organized Media. 2016, 3303-3318. https://doi.org/10.1007/978-94-017-9780-1_100979
    48. Chen-Chieh Yu, Keng-Te Lin, Pao-Yun Su, En-Yun Wang, Yu-Ting Yen, Hsuen-Li Chen. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions. Nanoscale 2016, 8 (6) , 3647-3659. https://doi.org/10.1039/C5NR06555K
    49. Davy Gérard, Stephen K Gray. Aluminium plasmonics. Journal of Physics D: Applied Physics 2015, 48 (18) , 184001. https://doi.org/10.1088/0022-3727/48/18/184001
    50. Francesco Bisio, Grazia Gonella, Giulia Maidecchi, Renato Buzio, Andrea Gerbi, Riccardo Moroni, Angelo Giglia, Maurizio Canepa. Broadband plasmonic response of self-organized aluminium nanowire arrays. Journal of Physics D: Applied Physics 2015, 48 (18) , 184003. https://doi.org/10.1088/0022-3727/48/18/184003
    51. Xiaojin Jiao, Yunshan Wang, Steve Blair. UV fluorescence enhancement by Al and Mg nanoapertures. Journal of Physics D: Applied Physics 2015, 48 (18) , 184007. https://doi.org/10.1088/0022-3727/48/18/184007
    52. Francesco Bisio, Christian Martella, Luca Anghinolfi, Maria Caterina Giordano, Michael Caminale, Maurizio Canepa, Francesco Buatier de Mongeot. Plasmonics in Self-Organized Media. 2015, 1-17. https://doi.org/10.1007/978-94-007-6178-0_100979-1
    53. Wanbo Li, Li Zhang, Jianhua Zhou, Hongkai Wu. Well-designed metal nanostructured arrays for label-free plasmonic biosensing. Journal of Materials Chemistry C 2015, 3 (25) , 6479-6492. https://doi.org/10.1039/C5TC00553A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect