Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Approaches for deep-ultraviolet surface plasmon resonance sensors

Not Accessible

Your library or personal account may give you access

Abstract

Aluminum (Al) is a preferred metal for designing deep-ultraviolet (DUV) surface plasmon resonance (SPR)-based sensors. The native oxide layer (alumina), which grows when the Al film is exposed to air, adds an extra layer to the multilayer stack and consequently affects the DUV-SPR sensing performance. To mitigate the performance loss in DUV-SPR-based sensing, new, to the best of our knowledge, approaches are considered here. We first consider chromium, indium (In), nickel, and platinum as alternative plasmonic materials to Al. In-film-based DUV-SPR sensors exhibit the best performance parameters compared to these alternative materials. We next consider the approach of replacing the native oxide layer by an ultrathin gold (Au) layer on top of bare Al or In. With an optimal Au thickness, higher sensitivity as compared to oxidized metals is observed. The next approach adds one or more graphene layers on top of the bare metal film. In this case, the performance depends on the number of graphene layers, but improvement in sensor characteristics in the DUV is also obtained. The use of Au or graphene overlayers increases the refractive index sensing dynamic range, which can be significant for In with these overlayers under certain operating conditions.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Fiber optic surface plasmon resonance sensor based on a silver-coated large-core suspended-core fiber

Xian Zhang, Xiao-Song Zhu, and Yi-Wei Shi
Opt. Lett. 44(18) 4550-4553 (2019)

Surface plasmon resonance gas sensor with a nanoporous gold film

Chenglong Zhang, Ziwei Liu, Chen Cai, Zehao Yang, and Zhi-Mei Qi
Opt. Lett. 47(16) 4155-4158 (2022)

Supplementary Material (1)

Name Description
Supplement 1       Additional details for the theoretical model and a simple experimental comparison.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.