Skip to main content
Log in

New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The helium ion microscope (HelM) holds immense promise for nano-engineering and imaging with scope for in-situ chemical analysis. Here we will examine the potential of secondary electron hyperspectral imaging (SEHI) as a new route to exploring chemical variations in both two and three dimensions. We present a range of early applications in the context of image interpretation in wider materials science and process control in ion beam-based nano-engineering. Necessary steps for SEHI in the HelM to evolve into a reliable technique which can be fully embedded into nano-engineering workflows are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. N. Sasaki: An ion microscope with a transverse magnetic field. J. Appl. Phys. 19, 1050–1053 (1948), doi: 10.1063/1.1698008.

    Article  CAS  Google Scholar 

  2. M. Komuro, N. Atoda, and H. Kawakatsu: Ion beam exposure of resist materials. J. Electrochem. Soc. 126, 483–490 (1979).

    Article  CAS  Google Scholar 

  3. V.E. Krohn and G.R. Ringo: Ion source of high brightness using liquid metal. Appl. Phys. Lett. 27, 479–481 (1975).

    Article  CAS  Google Scholar 

  4. R. Levi-Setti: Proton scanning microscopy: feasibility and promise. In Scanning Electron Microscopy 1st ed.; O. Johari ed.; IITRI, Chicago, USA, 1974, pp. 125–135.

    Google Scholar 

  5. R.L. Seliger, J.W. Ward, V. Wang, and R.L. Kubena: A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34, 310–312 (1979).

    Article  Google Scholar 

  6. L.W. Swanson: Liquid metal ion sources: mechanism and applications. Nucl. Instruments Methods Phys. Res. 218, 347–353 (1983).

    Article  CAS  Google Scholar 

  7. B.W. Ward, J.A. Notte, and N.P. Economou: Helium ion microscope: a new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 24, 2871–2874 (2006).

    Article  CAS  Google Scholar 

  8. R.H. Livengood, S. Tan, R. Hallstein, J. Notte, S. McVey, and F.H. M. Faridur Rahman: The neon gas field ion source—a first characterization of neon nanomachining properties. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 645, 136–140 (2011), doi: https://doi.org/10.1016/j.nima.2010.12.220.

    Article  CAS  Google Scholar 

  9. F.H.M. Rahman, S. McVey, L Farkas, J.A. Notte, S. Tan, and R.H. Livengood: The prospects of a subnanometer focused neon ion beam. Scanning, 34, 129–134 (2012), doi: 10.1002/sca.20268.

    Article  CAS  Google Scholar 

  10. D. Fox, Y. Chen, C.C. Faulkner, and H. Zhang: Nano-structuring, surface and bulk modification with a focused helium ion beam. Beilstein J. Nanotechnol. 3, 579 (2012).

    Article  CAS  Google Scholar 

  11. Y. Zhou, P. Maguire, J. Jadwiszczak, M. Muruganathan, H. Mizuta, and H. Zhang: Precise milling of nano-gap chains in graphene with a focused helium ion beam. Nanotechnology 27, 325302 (2016).

    Article  CAS  Google Scholar 

  12. M.C. Lemme, D.C. Bell, J.R. Williams, L.A. Stern, B.W.H. Baugher, P. Jarillo-Herrero, and C.M. Marcus: Etching of graphene devices with a helium ion beam. ACS Nano 3, 2674–2676 (2009).

    Article  CAS  Google Scholar 

  13. D.C. Bell, M.C. Lemme, L.A. Stern, J.R. Williams, and C.M. Marcus: Precision cutting and patterning of graphene with helium ions. Nanotechnology 20, 455301 (2009).

    Article  CAS  Google Scholar 

  14. D.S. Fox, Y. Zhou, P. Maguire, A. O’Neill, C. Ó’Coileain, R. Gatensby, A.M. Glushenkov, T. Tao, G.S. Duesberg, and I.V. Shvets: Nanopatteming and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett. 15, 5307–5313 (2015).

    Article  CAS  Google Scholar 

  15. P. Philipp, L. Rzeznik, and T. Wirtz: Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy. Beilstein J. Nanotechnol. 7, 1749 (2016).

    Article  CAS  Google Scholar 

  16. M.S. Joens, C. Huynh, J.M. Kasuboski, D. Ferranti, Y.J. Sigal, F. Zeitvogel, M. Obst, C.J. Burkhardt, K.P. Curran, and S.H. Chalasani: Helium ion microscopy (HIM) for the imaging of biological samples at subnanometer resolution. Sci. Rep. 3, 3514 (2013).

    Article  Google Scholar 

  17. S. Tan, R. Livengood, P. Hack, R. Hallstein, D. Shima, J. Notte, and S. McVey: Nanomachining with a focused neon beam: a preliminary investigation for semiconductor circuit editing and failure analysis. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 06F604 (2011).

    Google Scholar 

  18. L. Rzeznik, Y. Fleming, T. Wirtz, and P. Philipp: Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy. Beilstein J. Nanotechnol. 7, 1113 (2016).

    Article  CAS  Google Scholar 

  19. P. Maguire, D.S. Fox, Y. Zhou, Q. Wang, M. O’Brien, J. Jadwiszczak, J. McManus, N. McEvoy, G.S. Duesberg, and H. Zhang: Defect sizing, distance and substrate effects in ion-irradiated monolayer 2D materials. arXiv (2017), http://arxiv.org/abs/1707.08893.

    Google Scholar 

  20. J. Melngailis: Focused ion beam lithography. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact, with Mater. Atoms 80, 1271–1280 (1993).

    Article  Google Scholar 

  21. X. Shi, P. Prewett, E. Huq, D.M. Bagnall, A.P.G. Robinson, and S.A. Boden: Helium ion beam lithography on fullerene molecular resists for sub-10nm patterning. Microelectron. Eng. 155, 74–78 (2016).

    Article  CAS  Google Scholar 

  22. H. Wu, L.A. Stern, D. Xia, D. Ferranti, B. Thompson, K.L. Klein, C.M. Gonzalez, and P.D. Rack: Focused helium ion beam deposited low resistivity cobalt metal lines with 10 nm resolution: implications for advanced circuit editing. J. Mater. Sci. Mater. Electron. 25, 587–595 (2014).

    Article  CAS  Google Scholar 

  23. M.G. Stanford, B.B. Lewis, K. Mahady, J.D. Fowlkes, and P.D. Rack: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 30802 (2017).

    Google Scholar 

  24. A. Belianinov, M.J. Burch, S. Kim, S. Tan, G. Hlawacek, and O.S. Ovchinnikova: Noble gas ion beams in materials science for future applications and devices. MRS Bull. 42, 660–666 (2017), doi: 10.1557/mrs.2017.185.

    Article  CAS  Google Scholar 

  25. M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, and G. Fantner: Focused electron beam induced deposition: a perspective. Beilstein J. Nanotechnol. 3, 597 (2012).

    Article  CAS  Google Scholar 

  26. D.C. Joy, and B.J. Griffin: Is microanalysis possible in the helium ion microscope?. Microsc. Microanal. 17, 643–649 (2011).

    Article  CAS  Google Scholar 

  27. R. Ramachandra, B. Griffin, and D. Joy: A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109, 748–757 (2009).

    Article  CAS  Google Scholar 

  28. L. Scipioni, C.A. Sanford, J. Notte, B. Thompson, and S. McVey: Understanding imaging modes in the helium ion microscope. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 27, 3250–3255 (2009), doi: 10.1116/1.3258634.

    Article  CAS  Google Scholar 

  29. S. Sijbrandij, B. Thompson, J. Notte, B.W. Ward, and N.P. Economou: Elemental analysis with the helium ion microscope. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 26, 2103–2106 (2008).

    CAS  Google Scholar 

  30. N. Klingner, R. Heller, G. Hlawacek, J. von Borany, J. Notte, J. Huang, and S. Facsko: Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry. Ultramicroscopy 162, 91–97 (2016), doi: 10.1016/j.ultramic.2015.12.005.

    Article  CAS  Google Scholar 

  31. V. Veligura, G. Hlawacek, R. Van Gastel, H.J.W. Zandvliet, and B. Poelsema: Channeling in helium ion microscopy: mapping of crystal orientation. Beilstein J. Nanotechnol. 3, 501 (2012).

    Article  CAS  Google Scholar 

  32. T. Wirtz, P. Philipp, J.N. Audinot, D. Dowsett, and S. Eswara: High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy. Nanotechnology 26, 434001 (2015).

    Article  CAS  Google Scholar 

  33. T. Wirtz, N. Vanhove, L. Pillatsch, D. Dowsett, S. Sijbrandij, and J. Notte: Towards secondary ion mass spectrometry on the helium ion microscope: an experimental and simulation based feasibility study with He +and Ne+bombardment. Appl. Phys. Lett. 101, 41601 (2012).

    Article  CAS  Google Scholar 

  34. D. Dowsett and T. Wirtz: Co-registered in situ secondary electron and mass spectral imaging on the helium ion microscope demonstrated using lithium titanate and magnesium oxide nanoparticles. Anal. Chem. 89, 8957–8965 (2017).

    Article  CAS  Google Scholar 

  35. F. Vollnhals, J.-N. Audinot, T. Wirtz, M. Mercier-Bonin, I. Fourquaux, B. Schroeppel, U. Kraushaar, V. Lev-Ram, M.H. Ellisman, and S. Eswara: Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity-hue-saturation and Laplacian pyramid methods for image fusion. Anal. Chem. 89, 10702–10710 (2017).

    Article  CAS  Google Scholar 

  36. P. Gratia, G. Grancini, J.-N. Audinot, X. Jeanbourquin, E. Mosconi, I. Zimmermann, D. Dowsett, Y. Lee, M. Gratzel, and F. De Angelis: Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016).

    Article  CAS  Google Scholar 

  37. P. Gratia, I. Zimmermann, P. Schouwink, J.-H. Yum, J.-N. Audinot, K. Sivula, T. Wirtz, and M.K. Nazeeruddin: The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett. 2, 2686–2693 (2017), doi: 10.1021/acsenergylett.7b00981.

    Article  CAS  Google Scholar 

  38. T.E. Everhart and R.F.M. Thornley: Wide-band detector for micro-microampere low-energy electron currents. J. Sci. Instrum. 37, 246 (1960).

    Article  Google Scholar 

  39. S.Y. Lai, A. Brown, J.C. Vickerman, and D. Briggs: The relationship between electron and ion induced secondary electron imaging: a review with new experimental observations. Surf. Interface Anal. 8, 93–111 (1986).

    Article  CAS  Google Scholar 

  40. R.A. Baragiola, E. VAIonso, J. Ferron, and A. Oliva-Florio: Ion-induced electron emission from clean metals. Surf. Sci. 90, 240–255 (1979).

    Article  CAS  Google Scholar 

  41. J. Ferron, E. VAIonso, R.A. Baragiola, and A. Oliva-Florio: Electron emission from molybdenum under ion bombardment. J. Phys. D. Appl. Phys. 14, 1707 (1981).

    Article  CAS  Google Scholar 

  42. R. Hill and F.H.M.F. Rahman: Advances in helium ion microscopy. Nucl. Instruments Methods Phys. Res. Sect. A. Accel. Spectrometers, Detect. Assoc. Equip. 645, 96–101 (2011).

    Article  CAS  Google Scholar 

  43. J. Notte, B. Ward, N. Economou, R. Hill, R. Percival, L. Farkas, and S. McVey: An introduction to the helium ion microscope. AIP Conf. Proc. 931, 489–496 (2007).

    Article  CAS  Google Scholar 

  44. C. Rodenburg, P. Viswanathan, M.A.E. Jepson, X. Liu, and G. Battaglia: Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion. Ultramicroscopy 139, 13–19 (2014).

    Article  CAS  Google Scholar 

  45. K. Tsuji, H. Suleiman, J.H. Miner, J.M. Daley, D.E. Capen, T.G. Paunescu, and H.A.J. Lu: Ultrastructural characterization of the glomerulopathy in Alport mice by helium ion scanning microscopy (HIM). Sci. Rep. 7, 11696 (2017).

    Article  CAS  Google Scholar 

  46. K. Tsuji, T.G. Paunescu, H. Suleiman, D. Xie, F.A. Mamuya, J.H. Miner, and H.A.J. Lu: Re-characterization of the glomerulopathy in CD2AP deficient mice by high-resolution helium ion scanning microscopy. Sci. Rep. 7, 8321 (2017).

    Article  CAS  Google Scholar 

  47. W.L. Rice, A.N. Van Hoek, T.G. Paunescu, C. Huynh, B. Goetze, B. Singh, L. Scipioni, L.A. Stern, and D. Brown: High resolution helium ion scanning microscopy of the rat kidney. PLoS ONE 8, e57051 (2013), doi: 10.1371/journal.pone.0057051.

    Article  CAS  Google Scholar 

  48. D. Bazou, G. Behan, C. Reid, J.J. Boland, and H.Z. Zhang: Imaging of human colon cancer cells using He-Ion scanning microscopy. J. Microsc. 242, 290–294 (2011).

    Article  CAS  Google Scholar 

  49. C. Rodenburg, X. Liu, M.A.E. Jepson, Z. Zhou, W.M. Rainforth, and J.M. Rodenburg: The role of helium ion microscopy in the characterisation of complex three-dimensional nanostructures. Ultramicroscopy 110, 1178–1184 (2010).

    Article  CAS  Google Scholar 

  50. D.C. Joy and C.S. Joy: Low voltage scanning electron microscopy. Micron 27, 247–263 (1996).

    Article  Google Scholar 

  51. D.C. Joy: Control of charging in low-voltage SEM. Scanning 11, 1–4 (1989).

    Article  Google Scholar 

  52. M.A.E. Jepson, B.J. Inkson, C. Rodenburg, and D.C. Bell: Dopant contrast in the helium ion microscope. Europhys. Lett. 85, 46001 (2009).

    Article  CAS  Google Scholar 

  53. C. Rodenburg, M.A.E. Jepson, B.J. Inkson, and X. Liu: Dopant contrast in the helium ion microscope: contrast mechanism. J. Phys. Conf. Ser. 241, 12076 (2010).

    Article  CAS  Google Scholar 

  54. V. Iberi, I. Vlassiouk, X.G. Zhang, B. Matola, A. Linn, D.C. Joy, and A.J. Rondinone: Maskless lithography and in situ visualization of conductivity of graphene using helium ion microscopy. Sci. Rep. 5, 11952 (2015), doi: 10.1038/srep11952.

    Article  Google Scholar 

  55. Y.V. Petrov, O.F. Vyvenko, and A.S. Bondarenko: Scanning helium ion microscope: distribution of secondary electrons and ion channeling. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 4, 792–795 (2010).

    Article  Google Scholar 

  56. V.Y. Mikhailovskii, Y. V. Petrov, and O.F. Vyvenko: Energy filtration of secondary and backscattered electrons by the method of the retarding potential in scanning electron and ion microscopy. J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 9, 196–202 (2015), doi: 10.1134/S1027451014060378.

    Article  CAS  Google Scholar 

  57. Y.V. Petrov, and O.F. Vyvenko: Secondary electron generation in the helium ion microscope: basics and imaging. In Helium Ion Microscopy, 1st ed.; G. Hlawacek, A. Gölzhäuser eds.; Springer International Publishing, Cham, Switzerland, 2016, pp. 119–146, doi: 10.1007/978-3-319-41990-9_5.

    Chapter  Google Scholar 

  58. K. Ohya, T. Yamanaka, K. Inai, and T. Ishitani: Comparison of secondary electron emission in helium ion microscope with gallium ion and electron microscopes. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267, 584–589 (2009).

    Article  CAS  Google Scholar 

  59. M.K.T. Suzuki, Y. Sakai, and T. Ichinokawa: Material contrast of scanning electron and ion microscope images of metals. Micros. Today 16, 6–10 (2008).

    Article  CAS  Google Scholar 

  60. V. Kumar, W.L. Schmidt, G. Schileo, R.C. Masters, M. Wong-Stringer, D.C. Sinclair, I.M. Reaney, D. Lidzey, and C. Rodenburg: Nanoscale mapping of bromide segregation on the cross sections of complex hybrid perovskite photovoltaic films using secondary electron hyperspectral imaging in a scanning electron microscope. ACS Omega 2, 2126–2133 (2017).

    Article  CAS  Google Scholar 

  61. D.H. Bruining: 5 - Variation of Secondary Emission Yield Caused by The External Adsorption of Ions and Atoms. In Physics and Applications of Secondary Electron Emission, 2nd ed.; Pergamon Press, London, England, 1962, pp. 69–77, doi: 10.1016/B978-0-08-009014-6.50008-9.

    Chapter  Google Scholar 

  62. R.F. Willis, B. Fitton, and D.K. Skinner: Study of carbon-fiber surfaces using Auger and secondary electron emission spectroscopy. J. Appl. Phys. 43, 4412–4419 (1972).

    Article  CAS  Google Scholar 

  63. D.C. Joy, M.S. Prasad, and H.M. Meyer: Experimental secondary electron spectra under SEM conditions. J. Microsc. 215, 77–85 (2004).

    Article  CAS  Google Scholar 

  64. M.S. Chung and T.E. Everhart: Simple calculation of energy distribution of low-energy secondary electrons emitted from metals under electron bombardment. J. Appl. Phys. 45, 707–709 (1974).

    Article  CAS  Google Scholar 

  65. C. Schbnjahn, C.J. Humphreys, and M. Glick: Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors. J. Appl. Phys. 92, 7667–7671 (2002), doi: 10.1063/1.1525862.

    Article  CAS  Google Scholar 

  66. P. Kazemian, S.A.M. Mentink, C. Rodenburg, and C.J. Humphreys: High resolution quantitative two-dimensional dopant mapping using energy-filtered secondary electron imaging. J. Appl. Phys. 100, 54901 (2006).

    Article  CAS  Google Scholar 

  67. M.A.E. Jepson, B.J. Inkson, X. Liu, L. Scipioni, and C. Rodenburg: Quantitative dopant contrast in the helium ion microscope. Europhys. Lett. 86, 26005 (2009).

    Article  CAS  Google Scholar 

  68. R. O’Connell, Y. Chen, H. Zhang, Y. Zhou, D. Fox, P. Maguire, J.J. Wang, and C. Rodenburg: Comparative study of image contrast in scanning electron microscope and helium ion microscope. J. Microsc. 268, 313–320 (2017).

    Article  CAS  Google Scholar 

  69. B.J. Griffin: A comparison of conventional Everhart-Thornley style and in-lens secondary electron detectors—a further variable in scanning electron microscopy. Scanning 33, 162–173 (2011).

    Article  CAS  Google Scholar 

  70. C. Rodenburg, M.A.E. Jepson, E.G.T. Bosch, and M. Dapor: Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping. Ultramicroscopy 110, 1185–1191 (2010).

    Article  CAS  Google Scholar 

  71. Y. Zhou, D.S. Fox, P. Maguire, R. O’Connell, R. Masters, C. Rodenburg, H. Wu, M. Dapor, Y. Chen, and H. Zhang: Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene. Sci. Rep. 6, 21045 (2016).

    Article  CAS  Google Scholar 

  72. P. Kazemian, S.A.M. Mentink, C. Rodenburg, and C.J. Humphreys: Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. Ultramicroscopy 107, 140–150 (2007).

    Article  CAS  Google Scholar 

  73. M. Dapor, R.C. Masters, I. Ross, D.G. Lidzey, A. Pearson, I. Abril, R. Garcia-Molina, J. Sharp, M. Uncovsky, T. Vystavel, F. Mika, and C. Rodenburg: “Secondary electron spectra of semi-crystalline polymers - A novel polymer characterisation tool?” J. Electron Spectros. Relat. Phenomena 222, 95–105 (2018), doi: 10.1016/j.elspec.2017.08.001.

    Article  CAS  Google Scholar 

  74. R.H. Livengood, Y. Greenzweig, T. Liang, and M. Grumski: Helium ion microscope invasiveness and imaging study for semiconductor applications. J. Vac. Sci. Technol. B. Microelectron. Nanom. Struct. Process. Meas. Phenom. 25, 2547–2552 (2007), doi: 10.1116/1.2794319.

    Article  CAS  Google Scholar 

  75. Q. Wan, K.J. Abrams, R.C. Masters, A. Talari, I.U. Rehman, F. Claeyssens, C. Holland, and C. Rodenburg: Mapping nanostructural variations in silk by secondary electron hyperspectral imaging. Adv. Mater. 29, 1703510 (2017), doi: 10.1002/adma.201703510.

    Article  CAS  Google Scholar 

  76. M.G. Strauss, I. Naday, I.S. Sherman, and N.J. Zaluzec: CCD-based parallel detection system for electron energy-loss spectroscopy and imaging. Ultramicroscopy 22, 117–123 (1987), doi: 10.1016/0304-3991(87)90055-6.

    Article  CAS  Google Scholar 

  77. J.L. Hart, A.C. Lang, A.C. Leff, P. Longo, C. Trevor, R.D. Twesten, and M.L. Taheri: Direct detection electron energy-loss spectroscopy: a method to push the limits of resolution and sensitivity. Sci. Rep. 7, 8243 (2017), doi: 10.1038/S41598-017-07709-4.

    Article  CAS  Google Scholar 

  78. A. Khursheed: Scanning Electron Microscope Optics and Spectrometers, 1st ed.; World Scientific Co Pte, Singapore, 2010.

    Book  Google Scholar 

  79. R.C. Masters, A.J. Pearson, T.S. Glen, F.-C. Sasam, L. Li, M. Dapor, A.M. Donald, D.G. Lidzey, and C. Rodenburg: Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nat. Commun. 6, (2015).

  80. K.J. Abrams, Q. Wan, N.A. Stehling, C. Jiao, A.C.S. Talari, I. Rehman, and C. Rodenburg: Nanoscale mapping of semi-crystalline polypropylene. Phys. Status Solidi 14, 1700153 (2017).

    Google Scholar 

  81. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014), doi: 10.1038/ncomms6293.

    Article  CAS  Google Scholar 

  82. D.C. Bell: Contrast mechanisms and image formation in helium ion microscopy. Microsc. Microanal. 15, 147–153 (2009).

    Article  CAS  Google Scholar 

  83. D. Hasselkamp: Kinetic electron emission from solid surfaces under ion bombardment. In Particle Induced Electron Emission II; D. Hasselkamp, H. Rothard, K.-O. Groeneveld, J. Kemmler, P. Varga, H. Winter eds.; Springer, Berlin, Germany, 1992, pp. 1–95, doi: 10.1007/BFb0038298.

    Chapter  Google Scholar 

  84. R. Noriega, J. Rivnay, K. Vandewal, F.P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038 (2013), doi: 10.1038/nmat3722.

    Article  CAS  Google Scholar 

  85. H.-E. Joe, W.-S. Lee, M.B.G. Jun, N.-C. Park, and B.-K. Min: Material interface detection based on secondary electron images for focused ion beam machining. Ultramicroscopy 184, 37–43 (2018), doi: 10.1016/j.ultramic.2017.10.012.

    Article  CAS  Google Scholar 

  86. J. Ferron, R.A. Vidal, N. Bajales, L. Cristina, and R.A. Baragiola: Role of HOPG density of empty electronic states above vacuum on electron emission spectra induced by ions and UV photons. Surf. Sci. 622, 83–86 (2014).

    Article  CAS  Google Scholar 

  87. D. Fox, Y.B. Zhou, A. O’Neill, S. Kumar, J.J. Wang, J.N. Coleman, G.S. Duesberg, J.F. Donegan, and H.Z. Zhang: Helium ion microscopy of graphene: beam damage, image quality and edge contrast. Nanotechnology 24, 335702 (2013).

    Article  CAS  Google Scholar 

  88. C.J. Barnett, C.E. Gowenlock, K. Welsby, A. Orbaek White, and A.R. Barron: Spatial and contamination-dependent electrical properties of carbon nanotubes. Nano Lett. 18, 695–700 (2017), doi: 10.1021/ acs.nanolett.7b03390.

    Article  CAS  Google Scholar 

  89. A. Hoffman: Fine structure in the secondary electron emission spectrum as a spectroscopic tool for carbon surface characterization. Diam. Relat. Mater. 3, 691–695 (1994).

    Article  CAS  Google Scholar 

  90. A.J. Pearson, S.A. Boden, D.M. Bagnall, D.G. Lidzey, and C. Rodenburg: Imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy. Nano Lett. 11, 4275–4281 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fritz Vollrath and Alex Greenhalgh providing the spider silk sample. CR and CH would like to thank the EPSRC for funding (EP/N008065/1 and EP/K005693/1). The authors also thank The Royal Society international exchanges grant number IE140211 and The Leverhulme Trust for the PicoFib network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Rodenburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stehling, N., Masters, R., Zhou, Y. et al. New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Communications 8, 226–240 (2018). https://doi.org/10.1557/mrc.2018.75

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.75

Navigation