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INTRODUCTION: Neuromodulators, such as
dopamine, norepinephrine, or serotonin, exert
powerful control over neural circuit dynamics
that give rise to diverse neural function and
behavior. Altered neuromodulator signaling is
a key feature of virtually all humanneurological
and psychiatric disorders, including Parkinson’s
disease, schizophrenia, depression, and addic-
tion. Hence, drugs that mimic or block neuro-
modulators have become important components
in the treatment of these disorders. Much work
is devoted to determining exactly what informa-
tion neuromodulatory neurons represent, but

very little is known about how these signals
alter the function of their target circuits.

RATIONALE: To address this problem, scien-
tists need to be able to monitor the spatio-
temporal dynamics of neuromodulatory signals
in target circuits while also measuring and
manipulating the elements of the circuit dur-
ing natural behavior. However, existing tech-
nologies for detecting neuromodulators, such
as analytic chemical or cell-based approaches,
have limited spatial or temporal resolution, thus
preventing high-resolution measurement of

neuromodulator release in behaving animals.
We recognized the potential of combining ge-
netically encoded indicatorsbasedon fluorescent
proteins with modern microscopy to support
direct and specificmeasurement of diverse types
of neuromodulators with needed spatial and
temporal resolution.

RESULTS: We report the development and
validation of dLight1, a novel suite of intensity-
based genetically encoded dopamine indicators
that enables ultrafast optical recording of neu-
ronal dopamine dynamics in behaving mice.
dLight1works bydirectly coupling the conforma-
tional changes of an inert human dopamine

receptor to changes in the
fluorescence intensity of a
circularly permuted green
fluorescent protein. The
high sensitivity and tem-
poral resolutionofdLight1
permit robust detection of

physiologically or behaviorally relevant dopa-
mine transients. In acute striatum slices, dLight1
faithfully and directly reports the time course
and concentration of local dopamine release
evoked by electrical stimuli, as well as drug-
dependent modulatory effects on dopamine
release. In freelymovingmice, dLight1 permits
deep-brain recording of dopamine dynamics
simultaneouslywith optogenetic stimulation or
calcium imaging of local neuronal activity. We
were also able to use dLight1 to chronicallymea-
sure learning-induced dynamic changes within
dopamine transients in the nucleus accumbens
at subsecond resolution. Finally, we show that
two-photon imaging with dLight1 revealed a
high-resolution (cellular level) dopamine tran-
sient map of the cortex showing spatially dis-
tributed, functionally heterogeneous dopamine
signals during a visuomotor learning task.

CONCLUSION: To overcome the major bar-
riers of current methods and permit high-
resolution imaging of dopamine dynamics
in the mammalian brain, we developed and
applied a new class of genetically encoded
indicators. This work validates our sensor de-
sign platform, which could also be applied to
developing sensors for other neuromodulators,
including norepinephrine, serotonin, mela-
tonin, and opioid neuropeptides. In combina-
tion with calcium imaging and optogenetics,
our sensors are well poised to permit direct
functional analysis of how the spatiotemporal
coding of neuromodulatory signaling medi-
ates the plasticity and function of target
circuits.▪
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High-resolution dopamine imaging in vivo. dLight1 permits robust detection of physiolog-
ically and behaviorally relevant dopamine (DA) transients with high sensitivity and spatio-
temporal resolution, including dynamic learning-induced dopamine changes in the nucleus
accumbens (bottom) and task-specific dopamine transients in the cortex (top).
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Neuromodulatory systems exert profound influences on brain function. Understanding how
these systems modify the operating mode of target circuits requires spatiotemporally precise
measurement of neuromodulator release.We developed dLight1, an intensity-based genetically
encoded dopamine indicator, to enable optical recording of dopamine dynamics with high
spatiotemporal resolution in behaving mice.We demonstrated the utility of dLight1 by
imaging dopamine dynamics simultaneously with pharmacological manipulation,
electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity.
dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine
transients in mouse striatum. Further, we used dLight1 to image spatially distinct, functionally
heterogeneous dopamine transients relevant to learning and motor control in mouse cortex.
We also validated our sensor design platform for developing norepinephrine, serotonin,
melatonin, and opioid neuropeptide indicators.

A
nimal behavior is influenced by the release
of neuromodulators such as dopamine
(DA), which signal behavioral variables that
are relevant to the functioning of circuits
brainwide. Projections from dopaminergic

nuclei to the striatum and cortex, for example,
play important roles in reinforcement learning,
decision-making, and motor control. Loss of DA
or dysfunction of its target circuits has been
linked to disorders such as Parkinson’s disease,
schizophrenia, and addiction (1–3).
Much work has been devoted to determining

how neural representations of behavioral states
are encoded in the firing patterns of neuro-
modulatory neurons (4–9), but very little is
known about how the precise release of neuro-
modulators alters the function of their target
circuits (10, 11). To address this problem, an
essential step is to monitor the spatiotemporal
dynamics of neuromodulatory signals in target

circuits while also measuring and manipulating
the elements of the circuit during behavior.
Analytical techniques such as microdialysis

and electrochemical microsensors have provided
useful insights about neuromodulator presence
(12, 13) but suffer from poor spatial and/or tem-
poral resolution and cannot be targeted to cells
of interest. Optical approaches such as injected
cell-based systems (CNiFERs) (14) and reporter
gene–based iTango (15) can reveal DA release
with highmolecular specificity. However, these
systems are limited by poor temporal resolution
(seconds to hours), preventing direct detection
of DA release events that occur on a subsecond
time scale (16, 17).
High-quality single fluorescence protein (FP)–

based sensors that report calcium or glutamate
transients with subsecond temporal resolution
have recently been developed and are widely
used (18, 19). Here, we report the development
of a set of single FP–based DA sensors, named
dLight1, that enables imaging of DA transients
with high spatiotemporal resolution in behav-
ing animals.

Sensor engineering

Sensitive optical readout of changes in DA con-
centration was achieved by directly coupling the
DA binding–induced conformational changes in
human DA receptors to changes in the fluores-
cence intensity of circularly permuted green fluo-
rescent protein (cpGFP). We did this by replacing
the third intracellular loop (IL3) of the human
dopamine D1 receptor (DRD1), D2 receptor

(DRD2), and D4 receptor (DRD4) with a cpGFP
module from the genetically encoded calcium
indicator GCaMP6 (Fig. 1A).
To determine the insertion site of cpGFP in

IL3 that produces maximal coupling of ligand-
induced conformational changes to cpGFP fluo-
rescence, we aligned the sequences of DRD1 and
DRD4 with that of the b2 adrenergic receptor
(B2AR) (Fig. 1B), for which both active and in-
active structure are available (20). The initial
variant, obtained by inserting a cpGFP module
with original linker sequences (LSSLE-cpGFP-
LPDQL) between Lys232 and Lys269 of DRD1, was
well expressed at the plasmamembrane of human
embryonic kidney (HEK293) cells and showed a
fluorescence decrease (DF/Fmax = –19.4 ± 0.02%)
in response to puffed DA (fig. S1A). To obtain a
positive-response sensor, we screened a library of
585 variants in HEK cells (Fig. 1C and fig. S1B).
The variant with the largest positive fluorescence
response (max DF/Fmax = 230 ± 9%) and excel-
lentmembrane localizationwas named dLight1.1
(Fig. 1D). In situDA titration onHEK cells revealed
submicromolar apparent affinity of dLight1.1
(affinity constant Kd = 330 ± 30 nM; Fig. 1E).
We next sought to further tune the dynamic

range and affinity of the sensor. Mutation of
Phe129, a highly conserved residue among many
G protein–coupled receptors (GPCRs) (21), into
Ala (dLight1.2) slightly increased dynamic range
(max DF/Fmax = 340 ± 20%, Kd = 770 ± 10 nM;
Fig. 1, D and E). Optimizing the cpGFP insertion
site in dLight1.1 and dLight1.2 (fig. S1, C to G)
greatly increased the dynamic range but also re-
duced the affinity tomicromolar range (dLight1.3a:
DF/Fmax = 660 ± 30%,Kd = 2300 ± 20 nM, fig. S2,
A and B; dLight1.3b: DF/Fmax = 930 ± 30%, Kd =
1680 ± 10 nM; Fig. 1, D and E). Insertion of the
cpGFP module into DRD4 and DRD2 produced
dLight1.4 and dLight1.5, respectively, which ex-
hibited nanomolar affinity with a relatively small
dynamic range [dLight1.4: DF/Fmax = 170 ± 10%,
Kd = 4.1 ± 0.2 nM, Fig. 1, B, D, and E; dLight1.5:
DA, DF/Fmax = 180 ± 10%, Kd = 110 ± 10 nM; quin-
pirole (synthetic agonist of D2 dopamine recep-
tors), DF/Fmax = 124 ± 19%, fig. S2, A to C]. In
addition, we engineered a control sensor by in-
corporating a D103A mutation in dLight1.1 to
abolish DA binding (control sensor: DF/F = 0.4 ±
4%, Fig. 1E) (22). Because dLight1.1 and dLight1.2
produced large responses at low DA concentra-
tion (e.g., 100 nM)without approaching response
saturation (Fig. 1E, inset) and had submicro-
molar affinity, we further characterized these two
sensors.

Sensor characterization

These two sensors showed peak emissions at
516 nm and 920 nm for one- and two-photon
illumination in HEK cells, respectively (fig. S3).
In situ titration on dissociated hippocampal neu-
rons and on HEK293 cells showed similar ap-
parent affinities to DA (Fig. 1E and fig. S4, A to C).
Single 5-ms pulses of uncaged DA were robustly
detected on the dendrites of cultured neurons,
and the fluorescence response tracked uncaging
pulse duration (fig. S4, D to F). In cultured
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hippocampal slices, dLight1 could reliably detect
submicromolar DA concentration changes at
dendrites and single dendritic spines (fig. S4,
G to I).
We then investigated the endogenous andphar-

macological molecular specificity of the sensor.
dLight1 was less sensitive to norepinephrine
and epinephrine than to DA by factors of ~70
and ~40, respectively; negligible responses were
observed to all other neuromodulators tested
(fig. S5). The amplitude of the response to each
pharmacological compound reflected the efficacy
of drugs on the wild-type receptors, with the
largest response to the full agonist dihydrexidine
(DF/F = 300 ± 10%), followed by partial agonists
(Fig. 1F). The response to DA was abolished in

the presence of the DRD1 antagonists SKF-83566
and SCH-23390 but was unaffected by the DRD2
antagonists haloperidol and sulpiride (Fig. 1F).
To investigate the possible interference of

sensor expression with G protein signaling, we
first measured the effect of sensor expression
on the ligand-induced cyclic adenosine mono-
phosphate (cAMP) response (fig. S6) (23). Tran-
siently transfecteddLight1.1 anddLight1.2 triggered
no significant cAMP response in HEK cells, sim-
ilar to the negative control (EGFP), whereas wild-
type DRD1 receptor significantly did (fig. S6A).
The conversion of DRD1 to a fluorescent sensor
thus apparently blocked the scaffold’s ability to
bind G protein and trigger the signaling cascade.
When introduced into a cell line that endoge-

nously expressed DRD1 (U2OS), dLight1 did not
significantly alter the dose-response curve for DA
(P = 0.96, fig. S6B). dLight1 also showed a signif-
icant reduction in agonist-induced internaliza-
tion, a readout of DRD1 engagement of b-arrestin
(24), when compared towild-typeDRD1 (fig. S6C).
Total internal reflectance fluorescence (TIRF)
imaging verified that dLight1 remained diffusely
distributed in the plasmamembrane, without any
detectable internalization, during a complete cycle
of ligand-dependent fluorescence change (fig. S6,
D to F). Taken together, these results indicate
that the dLight sensors are suitable for use on
the cellmembranewithout affecting endogenous
signaling through G proteins or engagement of
b-arrestins.
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Fig. 1. Development and characterization of dLight1. (A) Simulated
structure of dLight1 consisting of DRD1 and cpGFP module. (B) Sequence
alignment of transmembrane (TM) domain 5 and 6 in b2AR, DRD1, and DRD4.
Library design is shown. Amino acid abbreviations: A, Ala; D, Asp; E, Glu;
F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; Q, Gln; R, Arg; S, Ser; T, Thr;
V, Val; W, Trp; Y, Tyr. (C) Screening result of 585 linker variants. Red and
blue vertical bars indicate fluorescence changes (DF/F) in response to 10 mM
DA; significance values of DF/F are shown by colored bars and scale (n = 3
trials, two-tailed t test). (D) Expression of dLight variants in HEK cells.

Fluorescence intensity and signal-to-noise ratio of apo and sat state are shown.
Scale bars, 10 mm. (E) In situ titration of DA on HEK cells. Data were fitted
with the Hill equation (n = 5). (F) Pharmacological specificity of dLight1.1.
DRD1 full agonist (dihydrexidine, 295 ± 8%, n = 5); DRD1 partial agonists
(SKF-81297, 230 ± 7.7%, n = 5; A77636, 153 ± 7.8%, n = 7; apomorphine, 22 ±
0.8%, n = 6); DRD1 antagonists (SCH-23390, –0.04 ± 0.01%, n = 7; SKF-
83566, 0.04 ± 0.03%, n = 7); DRD2 antagonists (sulpiride, 213 ± 5.1%, n = 5;
haloperidol, 219 ± 11%, n = 6). Data are means ± SEM. ****P < 0.0001
[one-way analysis of variance (ANOVA), Dunnett posttest]; n.s., not significant.
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Versatile application to
other neuromodulators
We next applied the design strategy of dLight1
to modularly develop a class of intensity-based
sensors for various neuromodulators and neuro-
peptides. We selected a subset of GPCRs, includ-
ing Gs-coupled b1 and b2 adrenergic receptors
(B1AR and B2AR); Gi-coupled k- and m-type

opioid receptors (KOR, MOR) and a2 adre-
nergic receptor (A2AR); and Gq-coupled 5-
hydroxytryptamine (serotonin) receptor-2A
(5HT2A) and melatonin type-2 receptor (MT2).
As with dLight1, we replaced IL3 with cpGFP,
with insertion sites chosen to preserve the con-
served positive charges (fig. S7A). All sensors
localized to the membrane and showed positive

fluorescence responses to their respective agonists
(fig. S7B).

Two-photon imaging of DA release in
dorsal striatum ex vivo and in vivo

We next used dLight1 to measure the time course
and concentration of endogenous DA release
triggered by electrical stimulation and drug
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Fig. 2. Imaging electrically evoked and pharmacologically
modulated dopamine release in acute dorsal striatum
slices. (A) Schematics of experimental setup. (B) Single-trial
fluorescence response (average in black) in response to a single
stimulus (0.5 ms). Images were acquired at 15 Hz using two-
photon light at 920 nm. AveragedDF/F= 182± 21%across seven
trials, mean ± SEM. (C) Representative hotspot (DF/F) for line
scan. Scale bar, 20 mm. (D) Individual fluorescence traces during
line scan (500 Hz) in response to a single stimulus (average in
black across 13 trials). Inset shows zoomed-in view of the
fluorescence plateau. (E) Fluorescence responses to low- and
high-frequency stimuli (left, 0.2 Hz; right, 1 Hz). (F) Quantification
of data in (E) [relative (fold) change in DF/F = 0.506 ± 0.061 at
1 Hz across five trials]. (G) Single-trial fluorescence response in
the presence of cocaine (10 mM) triggered by a single stimulus,
overlaid with trace without cocaine. (H) Quantification of fold
change in peak fluorescence amplitude (1.056 ± 0.095, n = 7,
P = 0.056) and duration (3.15 ± 0.213, n = 4). (I) Estimation of
released DA concentration (single-trial trace shown). (J) Quanti-
fication of fold change in peak fluorescence in the presence of
1 mMquinpirole (0.437 ± 0.052, n = 5), 400 nM sulpiride and 1 mM
quinpirole (quin+sulp, 0.926 ± 0.070, n = 5), 1 mM U69,593
(0.838 ± 0.042, n = 4), and 1 mM naloxone (1.022 ± 0.053, n = 4),
all bath-applied. (K) Single-trial fluorescence response to either
a single pulse (black) or a train of five pulses at 40 Hz (red) in the
absence (left) and presence (right) of the nicotinic acetylcholine
receptor blocker hexamethonium (200 mM). (L) Quantification
of fold change in peak fluorescence response in (K) (Hex/Control:
0.561 ± 0.038, n = 10; control 5stim/1stim: 1.13 ± 0.069, P =
0.06, n = 7; Hex 5stim/1stim: 1.76 ± 0.16, n = 6). *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 (paired t test).
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modification in acute striatal slices with two-
photon imaging (Fig. 2A). Two to four weeks after
injection of an adeno-associated virus encod-
ing dLight1 (AAV9.hSynapsin1.dLight1.2) into
the dorsal striatum, we observed both broadly
distributed and localized fluorescence transients
across the field of view (Fig. 2, B and C, and fig.
S8, A to C) in response to a single electrical sti-
mulus. Fast line scan at these hotspots (Fig. 2C)
revealed a rapid onset of fluorescence increase
(rise t1/2 = 9.5 ± 1.1 ms) followed by a plateaued
peak (averaged DF/F = 220 ± 50%) for about
150 ms, which decayed to baseline in about
400 ms (decay t1/2 = 90 ± 11 ms, Fig. 2D). We ob-
served robust and reproducible fluorescent tran-
sients to low-frequency stimuli over a prolonged
imaging period, whereas subsequent higher-

frequency stimuli elicited significantly smaller
responses (Fig. 2, E and F), indicating strong
depression from an initially high probability of
release. Blockade of DA reuptake with cocaine
significantly prolonged the decay of fluorescence
from peak to baseline (Fig. 2, G and H), but with
equivocal effect on response amplitude (Fig. 2, G
andH). Application of the competitive antagonist
SKF83566 eliminated the responses (fig. S8F),
confirming that fluorescent signals are indeed
attributable to DA binding.
We next used dLight1 to estimate released DA

concentration induced by a brief electrical stim-
ulus. By comparisonwith a concentration-response
curve (fig. S8, D, E, and G), the fluorescence
response suggested a DA release of 10 to 30 mM
(Fig. 2I), which is one to two orders ofmagnitude

higher than previously reported in ventral stri-
atum using fast-scan cyclic voltammetry (FSCV)
(25) and is similar to that reported bymeasuring
DRD2 activation (26). Addition of saturating
amphetamine (10 mM in the presence of 400 mM
sulpiride) increased tonic DA to 3.3 mM (fig. S8,
F and G).
We then examined the action of known mod-

ulators of DA release using dLight1 (Fig. 2, J to L).
Activation of D2 autoreceptors with quinpirole
decreased the electrically evoked fluorescence
transients; this effect was significantly reversed
by the application of sulpiride (Fig. 2J). Perfusion
with a k-opioid receptor agonist (U69,593) caused
a small decrease in the amplitude, which was
completely blocked by naloxone (Fig. 2J).We then
imaged the effects of nicotinic receptor activation
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Fig. 3. Deep brain imaging of DA release triggered by optogenetic
stimulation and combined with calcium imaging in freely behaving
mice. (A) Schematics showing fiber photometry recording of dLight1.1 or
control sensor in NAc while stimulating VTA DA neurons by optogenetics.
(B) Expression of dLight1.1 in NAc around fiber tip location and
ChrimsonR-expressing axons from midbrain. (C) ChrimsonR-expressing
TH+DA neurons in VTA. (D) Averaged fluorescence increase in response
to optogenetic stimuli (n = 5 mice). (E) Quantification of peak fluorescence
at 20 Hz. (F) Fluorescence fold changes relative to 5 Hz. (G and
H) Optogenetically induced fluorescence increase of dLight1.1 after systemic
administration of saline, D1 antagonist (SCH-23390, 0.25 mg/kg), and
DA reuptake inhibitor (GBR-12909, 10 mg/kg) (n = 5 mice). (I) Schematics
showing fiber photometry recording of dLight1.1 in NAc and optogenetic

stimulation of VTA GABA neurons that inhibits VTA DA neurons. (J and
K) Averaged fluorescence decrease in response to optogenetic stimulation
at 40 Hz (n = 4 mice) and quantification of mean fluorescence. (L) Dual-
color fiber photometry recording of DA release with dLight1.1 and local
neuronal activity with jRGECO1a. (M and N) Increase of dLight1.1 (green)
and jRGECO1a (magenta) fluorescence during 5% sucrose consumption
with lick rate (black, n = 5 mice) and quantification of mean fluorescence.
(O and P) Fluorescence decrease in dLight1.1 (green) and increase in
jRGECO1a (magenta) during unpredictable footshock delivery (0.6 mA for 1 s,
n = 5 mice) and quantification of mean fluorescence. Data shown are
means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 (paired or unpaired
t tests for two-group comparisons; one-way ANOVA by post hoc Tukey test
for multiple-group comparisons).
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in mediating the probability of DA release.
Blockade of nicotinic receptors with hexametho-
nium profoundly reduced the fluorescence tran-
sient, which depended on the number of stimuli
(Fig. 2, K and L). In the absence of hexametho-
nium, the amplitude of the fluorescence remained

consistent regardless of the stimulation protocol
(Fig. 2, K and L) (27).
Next, we asked whether dLight1 could reliably

report DA signals associated with mouse loco-
motion in dorsal striatum, which was labeled
with AAV1.hSynapsin1.dLight1.1/1.2 and AAV1.

hSynapsin1.flex.tdTomato.WemeasuredDA tran-
sients with two-photon imaging during rest and
self-initiated locomotion (fig. S9). Consistent with
in vivo two-photon calcium imaging of substantia
nigra pars compacta (SNc) axon terminals in
dorsal striatum (10), dLight1 reliably showed
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Fig. 4. Dynamic changes of NAc DA signaling during appetitive
Pavlovian conditioning and reward prediction error. (A) Pavlovian
conditioning procedures involved learning to associate neutral cues
(CS; house light and 5-kHz tone) with a sucrose reward (US; 50 ml of
5% sucrose) and subsequent extinction. (B) Change of CS-evoked licks
across cue-reward learning (left) and extinction (right). (C and D) dLight1.1
dynamics in response to CS and US in first and last sessions of cue-reward
learning, shown in single (gray) and averaged (blue) trials (n = 20 trials)
from a single animal (C) or averaged across all trials and animals (n =
5 mice) (D). Lick rate is shown in black. (E) Same as (D) for cue-reward
extinction (n = 5 mice). In (D) and (E), dotted lines indicate CS onset, US
onset, and CS offset, respectively. (F to H) Evolution of CS-evoked (F)

and US-evoked [(G), left] average fluorescence and US-triggered licks [(G),
right] across learning and extinction sessions. (H) Quantification of peak
fluorescence across learning and extinction. (I) Reward prediction error
procedure. (J) Fluorescence response during expected (red) versus
unexpected (black) reward consumption (n = 4 mice). (K) Peak fluores-
cence evoked by expected (red) and unexpected (black) reward con-
sumption. (L) Fluorescence response during expected (red) versus
unexpected (brown) reward omission (n = 4 mice). Second and third
dotted lines indicate US onset and CS offset, respectively. (M) Mean
fluorescence during baseline and after unexpected reward omission.
Data are means ± SEM. **P < 0.01 (Pearson correlation coefficient and
paired t test).
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widespread and synchronous subsecond
transients associated with spontaneous locomo-
tion, which was clearly distinguishable from
motion artifacts (fig. S9, A to E). The DA tran-
sients were rapidly and bidirectionally modu-
lated with respect to locomotion. Accelerations
were associated with an increase and deceler-
ationswith a decrease in fluorescence (peakmean
cross-correlation 240 ms fig. S9, F to L).
In summary, dLight1 faithfully and directly

reports the time course and concentration of
local DA release and drug-dependent modula-
tory effects on DA release in an acute striatum

slice. In addition, dLight1 enables direct visual-
ization of locomotion-triggered DA release in
behaving mice.

Deep-brain recording of DA dynamics
simultaneously with optogenetics or
calcium imaging

The nucleus accumbens (NAc) receives projec-
tions from dopaminergic neurons in the ventral
tegmental area (VTA). To directly probe DA re-
lease in freely moving mice, we delivered AAV9.
CAG.dLight1.1 or AAV9.CAG.control_sensor in
NAc, followed by fiber photometry imaging (Fig. 3

and fig. S10, A and B). dLight1 revealed visible
spontaneous DA transients, which were absent
in the imaging sessions using the control sensor
(fig. S10C).
To optically activate VTA dopaminergic neu-

rons, we infected VTA of TH::IRES-Cre mice
with AAV5.hSynapsin1.flex.ChrimsonR.tdTomato
(28) (Fig. 3, A to C, fig. S11, A and B, and fig. S12, A
and D). The high temporal resolution of dLight1
enabled detection of individual peaks of DA
transients in response to 5-, 10-, and 20-Hz
photostimulation (Fig. 3D and fig. S13, A to C).
The amplitude of fluorescence increase was

Patriarchi et al., Science 360, eaat4422 (2018) 29 June 2018 6 of 8

Fig. 5. Spatially resolved imaging of cortical dopamine release during a
visuomotor association task. (A) Schematics of experimental setup.
(B) A trial was initiated when mice were required to stand still for 10 s after a
visual cue (blue square). If mice started to run during the stimulus phase (“hit
trials”), a water reward was given. In 20% of randomly selected hit trials, the
rewardwaswithheld. If no runwas triggered by stimulus presentation, the trials
were counted as “miss trials.” Erroneous or spontaneous runs during the
standstill phase ended the trial (no “Go”cue or reward). (C) Top: Dorsal view of
mouse cortex with the chronic cranial window (circle) and imaging location
indicated (square). Bottom: Heat map of dLight1.2 expression pattern in
layer 2/3 of M1 cortex.The image is overlaid with computationally defined
regions of interest (ROIs, ~17 mm × 17 mm). Colored ROIs indicate the type of
fluorescence responses observed during the task. (D) Population data
(N = 4mice, n = 19 recording sessions) showing average task-related dLight1.2

transients (bottom) andmouse running velocity (top) aligned to trial/standstill
cue onset (0 s).The solid vertical line indicates “Go” cue onset.The dashed
line marks the end of the reward expectation phase during unrewarded hit and
miss trials.The period during which running velocity–dependent reward
consumption occurred is indicated by the horizontal line. Left: ROIs showing
significantly increased responses during reward expectation/locomotion.
Right: ROIs showing significant fluorescence increases to reward (dark green)
but not unexpected reward omission (light green). Shaded areas of DF/F
traces indicate SD. (E) Population data realigned to running onset (vertical
black line). ROIswith “Go”cue responses [(D), left] can be subdivided intoROIs
responsive to locomotion in all trials (left) and responsive to reward
expectation only (center), with no fluorescence increases during spontaneous
runs (pink). P < 0.05 (Wilcoxon test, Bonferroni-corrected for multiple
comparisons).
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correlated with the frequency of photostimula-
tion (Fig. 3, D and F). In contrast, no fluorescence
changes were observed with the control sensor
using 20-Hz stimuli (Fig. 3, D and E). Relative to
saline-injected controls, systemic administration
of SCH-23390 significantly reduced optogeneti-
cally induced dLight1 responses, whereas the re-
uptake inhibitor GBR-12909 enhanced them
(Fig. 3, G and H).
Next, we examined whether dLight1 can re-

port inhibition of DA transients. To induce tran-
sient inhibition of VTAdopaminergic neurons, we
optogenetically stimulated VTA g-aminobutyric
acid–releasing (GABAergic) neurons in VGAT::
IRES-Cremice (29) (Fig. 3I). Histology confirmed
ChrimsonR expression in VTA GABAergic neu-
rons (fig. S12, B, C, and E). We observed rapid
and reversible reductions in dLight1 fluorescence
in response to VTA GABAergic neuron photo-
activation at 40Hz (Fig. 3, J and K, and fig. S13D),
indicating that dLight1 can report bidirectional
changes in local DA release.
Motivationally salient stimuli modify DA neu-

ron firing and downstreamNAc activity (9, 29, 30).
To link the DA release to local neuronal activity,
we performed dual-color measurements with
dLight1 and the red-shifted calcium indicator
jRGECO1a (31) in lateral core/shell regions (Fig.
3L and figs. S10B, S11A, and S12F). When mice
voluntarily consumed a reward (50 ml of 5% suc-
rose), we observed a concordant increase of DA
concentration and local population activity (Fig. 3,
M and N, and fig. S13E), similar to a class of NAc
single units showing excitation upon reward (32).
In contrast, footshocks suppressed DA release
while enhancing local neuronal activity, indicat-
ing dissociation between DA dynamics and local
circuit activity (Fig. 3, O and P, and fig. S13F).

Chronic imaging of DA dynamics
throughout cue-reward learning

We next examined the utility of dLight1 in re-
porting modulation of DA signaling in response
to conditioned stimuli (CS) and unconditioned
stimuli (US) throughout Pavlovian conditioning
(Fig. 4A) (8, 33, 34). Mice successfully learned to
associate the predictive cues to the reward, as
shown by increasing numbers of licks during CS
over the course of training and by decreasing
numbers of licks during extinction learning
(Fig. 4B).
Repeated fiber photometry recordings in NAc

revealed two types of DA transients modulated
during associative learning: increased DA re-
sponse to the predictive cues and decreased re-
sponse to reward consumption across sessions. In
the first session, a small and time-locked phasic
DA signal was present at the CS onset, whereas
after US the DA signal was larger and also more
temporally spread (Fig. 4, C and D), consistent
with US consumption onsets being highly vari-
able at early stages (fig. S14, A and B). Aligning to
consumption onset revealed large DA signal to
the US at the first session (Fig. 4C and fig. S14A).
Upon repeated cue-reward pairings, the ampli-
tude of CS response significantly increased (Fig. 4,
C, D, F, and H, and fig. S14C). On the other hand,

US response, when aligned to the consumption
onset, showed amonotonic decrease across learn-
ing sessions (Fig. 4, G andH, and fig. S14D) (9, 33).
During extinction, we observed an attenuated
phasic CS response (Fig. 4, E, F, and H). The am-
plitude of the phasic CS response was correlated
with CS-triggered licking behavior during both
learning and extinction sessions (fig. S14E).
We further investigated whether dLight1 can

report signals correlatedwith “reward prediction
error” (4). After the animals had fully learned
CS-US association, mice underwent “unexpected
reward availability” sessions (in which the US
was occasionally made available without the CS)
between normal paired trials (Fig. 4I). Unexpected
availability of reward elicited significantly higher
fluorescence than did expected consumption
(Fig. 4, J and K). In the “unexpected reward omis-
sion” session, where the US was occasionally
omitted after the predictive CS, fluorescence de-
creased below the pre-CS baseline after the time
at which the US would have normally become
available after CS presentation (Fig. 4, L and M).

Cellular-level imaging of functionally
heterogeneous DA transients in
mouse cortex

Finally, we tested whether two-photon imaging
with dLight1 could reveal the spatiotemporal re-
lease of DA associated with reward in the cortex.
The cortex receives projection axons from both
SNc and VTA. Inputs from these nuclei carry
distinct dopaminergic signals influencing motor
control and reward learning, respectively (10, 35).
To demonstrate the utility of dLight1 in detecting
behavior-related DA signals, we broadly labeled
frontal/motor cortex with AAV9.hSynapsin1.
dLight1.2, followed by two-photon imaging
of dLight1-expressing layer 2/3 neurons in head-
fixed mice. The animals had fully learned a
visuomotor association task that required them
to run in response to a visual “Go” cue in order
to receive a water reward (Fig. 5, A and B). We
observed task-related DA transients, distinguish-
able from motion artifacts (fig. S15), across cell-
sized regions of interest (ROIs) across the field of
view (Fig. 5C and fig. S16).
Aligning the DA transients to trial/standstill

phase onset, we found two types of task-relevant
DA responses during the reward expectation and
reward delivery intervals. An average of 63% of
responsive ROIs showed significantly increased
DA transients that correlatedwith reward, which
were abolished by unexpected reward omission
(20% of randomly selected trials) (Fig. 5D, right).
A subset of ROIs (~37%) showed significantly in-
creased DA transients that lasted during the
short phase of “Go” stimulus presentation for
both rewarded and nonrewarded trials (Fig. 5D,
left). These transient increases during the stim-
ulus presentation phase were not caused by the
stimulus appearance itself, because no significant
increase in DA levels was observed during miss
trials during which the animal saw the stimulus
but did not respond (Fig. 5D, yellow traces).
To investigate whether these early responses

shown in 37% of ROIs reflect increased DA levels

during reward expectation or correlatewith loco-
motion, we aligned the trials at running onset
(Fig. 5E, group averages; fig. S16G, single ROIs)
and compared the DA transients of runs trig-
gered by the “Go” stimulus (when the animals
expected a reward) with spontaneous runs that
erroneously occurred during the standstill phase
(with no reward expectation). A small subset of
responsive ROIs (5%) showed significant increases
in DA transients during reward expectation but
not spontaneous running (Fig. 5E, center), whereas
the other 32% of ROIs correlated with locomotion
(Fig. 5E, left). The 63% of ROIs responsive to
reward only (Fig. 5D, right) also showed increased
DA transients during the early stimulus pre-
sentation phase consisting of both locomotion-
and reward expectation–related responses (Fig.
5E, right). All three types of responses were
consistently seen across animals. Comparing the
heterogeneity of response transients between
layer 1 and layers 2/3 of cortical areaM1 (fig. S16,
E and F), we found that layer 2/3 showed more
ROIs active during reward. A similar number of
ROIs responded to locomotion and reward ex-
pectation in both layers (fig. S16H). Mesocortical
dopaminergic projections are thus spatially inter-
mingled, and activation of these inputs leads to
spatiotemporally heterogeneous DA signals in
the cortex whose dynamics depends on motor
behavior, reward expectation, and consumption.

Conclusion

We developed and applied a new class of ge-
netically encoded indicators that overcomemajor
barriers of current methods to permit high-
resolution imaging of DA dynamics in acute
brain slices and in behaving mice. The sub-
micromolar affinity and fast kinetics of dLight1
offer fast temporal resolution (10 ms on, 100 ms
off) to detect the physiologically or behaviorally
relevant DA transients with higher molecular
specificity relative to existing electrochemical
or cell-based probes (14). For example, in NAc of
freely behaving mice, longitudinal measurements
revealed different changes in time-resolved DA
signals encoding either predictive cue or reward
consumption across learning.
The disparate contributions of synaptic, extra-

synaptic, and spillover DA events to circuit func-
tion are not addressable without fast, robust, and
genetically encoded sensors. In a dorsal striatal
slice, dLight1 reliably detected the concentration
and time course of DA transients and their mod-
ifications by pharmacological compounds. The
rapid rise of fluorescence (10 ms) and the peak
concentration (10 to 30 mM) of DA after electrical
stimulation indicates that the initial measures of
DA are closely associated with the site of release
(26). The decline of fluorescence, particularly in
the presence of cocaine, results primarily from re-
uptake and diffusion of DA away from release
sites.
dLight1 also permits measurement of func-

tionally heterogeneous DA transients at the cel-
lular level with high spatial resolution. In the
cortex, two-photon imagingwith dLight1 revealed
a DA transient map with spatially distributed,
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functionally heterogeneous DA signals during a
visuomotor learning task. Simultaneous cal-
cium imaging can further determine how
spatiotemporal differences in DA levels relate to
ongoing neural activity and influence associa-
tive learning or goal-directed behavior.
dLight1.1 and dLight1.2 are optimized sensor

variants that can be immediately applied to
ex vivo or in vivo studies, as they offer a good
balance between dynamic range and affinity.
Other dLight variants may be suitable for mea-
suring synaptic release (dLight1.3) or tonic DA
transients (dLight1.4). Given the broadly tunable
affinity and dynamic range of dLight1, protein
engineering and high-throughput screening ef-
forts can further optimize the signal-to-noise
ratio and molecular specificity (36) as well as the
performance of other neuromodulator indicators.
In combination with calcium imaging and op-

togenetics, our sensors are well poised to permit
direct functional analysis of how the spatio-
temporal coding of neuromodulatory signaling
mediates the plasticity and function of target
circuits.
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