Understanding the influence of carbon addition on

the corrosion behavior and mechanical properties

of Al alloy "covetics"

Jason A. Varnell,¹ Mete Bakir,² Angela M. DiAscro,¹ Xinyi Chen,¹ Sabrina Nilufar,³ Iwona Jasiuk,^{2,*} and Andrew A. Gewirth^{1,*}

¹Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States

²Department of Mechanical Science and Engineering, University of Illinois at Urbana-

Champaign, Urbana, Illinois 61801, United States

³ Department of Mechanical Engineering and Energy Processes Engineering, Southern Illinois University, Carbondale, Illinois 62901, United States

*corresponding authors

Supporting Figures & Tables:

Figure S1. Open circuit potential (OCP) recorded for 60 minutes in 1M NaCl (a) and 0.1M HCl (b).

Figure S2. Degradation rate (DTG) curves for the 2.3% covetic.

Table S1. Corrosion potentials obtained from averaging OCP values over the final 30 minutes of measurement.

Aluminum Alloy Sample	E _{OCP} NaCl (V vs SCE)	E _{OCP} HCl (V vs SCE)
AI 3003	-0.74	-0.67
Al 6061 T6	-0.75	-0.68
Al Covetic 0% C	-0.75	-0.69
Al Covetic 2.3% C	-0.70	-0.64

Table S2. Comparison of corrosion potentials for reference materials obtained by averaging OCP values over the final 30 minutes of measurement and given values from literature using the same method.

Aluminum Alloy Sample	Measured E _{OCP} NaCl (SCE)	Reference E _{OCP} NaCl (SCE)[1]
AI 3003	-0.74	-0.74
AI 6061 T6	-0.75	-0.74

References:

[1] T.D. Burleigh, R.C. Rennick, F.S. Bovard, Technical note: Corrosion potential for aluminum alloys measured by ASTM G 69, CORROSION, 49 (1993) 683-685.