Skip to main content

Carbon Nanotubes as Electrical Interfaces with Neurons

  • Chapter
  • First Online:
Brain Protection in Schizophrenia, Mood and Cognitive Disorders

Abstract

Carbon nanotubes (CNTs) are emerging as promising nanomaterials for biomedical applications. Due to their unique structural, mechanical and electronic properties, CNTs can be used as electrical interfaces with the brain in particular with neurons. CNT-based neural interfaces/electrodes have been employed in cell culture and in vivo; they offer advantages over standard metal-based electrodes in terms of monitoring and stimulation of neuronal activity. One of the challenges for interfacing brain and machine is the biocompatibility of the materials used for electrode construction. While CNTs appear biocompatible, the exposure limits have not been set thus far. An appropriate (inter)national standards/rules for the use of CNTs need to be established before CNT-based electrodes/devices can be used in human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

blood-brain barrier

CNTs:

carbon nanotubes

DRG:

dorsal root ganglion

EEG:

electroencephalogram

ERP:

event-related potentials

MEA:

microelectrode array

MWNTs:

multi-walled CNTs

PPy:

polypyrole

RGCs:

retinal ganglion cells

SWNTs:

single-walled CNTs

TiN:

titanium nitride

VACNFs:

vertically aligned carbon nanofibers

3D:

three-dimensional

References

  1. Bekyarova E, Haddon RC, Parpura V. Biofunctionalization of Carbon Nanotubes, In: Kumar CSSR (ed) Biofunctionalization of Nanomaterials (Nanotechnologies for the Life Sciences). Wiley-VCH, Wienhein-Berlin, Germany, 2005; pp. 41–71

    Google Scholar 

  2. Bekyarova E, Ni Y, Malarkey EB, et al. Applications of Carbon Nanotubes in Biotechnology and Biomedicine. J Biomed Nanotechnol 2005; 1:3–17

    Article  PubMed  CAS  Google Scholar 

  3. Qin L-C, Zhao X, Hirahara K, et al. The smallest carbon nanotube. Nature 2000; 408:50

    Article  PubMed  CAS  Google Scholar 

  4. Wang N, Tang ZK, Li GD, et al. Single-walled 4 A carbon nanotube arrays. Nature 2000; 408:50–51

    Article  PubMed  CAS  Google Scholar 

  5. Zheng LX, O’Connell MJ, Doorn SK, et al. Ultralong single-wall carbon nanotubes. Nat Mater 2004; 3(10):673–676

    Article  PubMed  CAS  Google Scholar 

  6. Cogan SR. Neural stimulation and recording electrodes. Annu Rev Biomed Eng 2008; 10:275–309

    Article  PubMed  CAS  Google Scholar 

  7. Krishnan A, Dujardin E, Ebbesen TW, et al. Young’s modulus of single-walled nanotubes. Phys Rev B 1998; 58(20):14013–14019

    Article  CAS  Google Scholar 

  8. Schwartz AB, Cui XT, Weber DJ, et al. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 2006; 52(1):205–220

    Article  PubMed  CAS  Google Scholar 

  9. Liopo AV, Stewart MP, Hudson J, et al. Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface. J Nanosci Nanotechnol 2006; 6(5):1365–1374

    Article  PubMed  CAS  Google Scholar 

  10. Mazzatenta A, Giugliano M, Campidelli S, et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 2007; 27(26):6931–6936

    Article  PubMed  CAS  Google Scholar 

  11. Cellot G, Cilia E, Cipollone S, et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 2009; 4(2):126–133

    Article  PubMed  CAS  Google Scholar 

  12. Gheith MK, Pappas TC, Liopo AV, et al. Stimulation of neural cells by lateral layer-by-layer films of single-walled currents in conductive carbon nanotubes. Adv Mater 2006; 18(22):2975–2979

    Article  CAS  Google Scholar 

  13. Kam NWS, Jan E, Kotov NA. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett 2009; 9(1):273–278

    Article  PubMed  CAS  Google Scholar 

  14. Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 2005; 5(6):1107–1110

    Article  PubMed  CAS  Google Scholar 

  15. Wang K, Fishman HA, Dai HJ, et al. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 2006; 6(9):2043–2048

    Article  PubMed  CAS  Google Scholar 

  16. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000; 14(3):175–182

    Article  PubMed  CAS  Google Scholar 

  17. Hu H, Ni YC, Montana V, et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004; 4(3):507–511

    Article  PubMed  CAS  Google Scholar 

  18. Yu Z, McKnight TE, Ericson MN, et al. Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices. Nano Lett 2007; 7(8):2188–2195

    Article  PubMed  CAS  Google Scholar 

  19. Heuschkel MO, Fejtl M, Raggenbass M, et al. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Meth 2002; 114(2):135–148

    Article  Google Scholar 

  20. Balgude AP, Yu X, Szymanski A, et al. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 2001; 22(10):1077–1084

    Article  PubMed  CAS  Google Scholar 

  21. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310(5751):1139–1143

    Article  PubMed  CAS  Google Scholar 

  22. Nguyen-Vu TD, Chen H, Cassell AM, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans Biomed Eng 2007; 54(6 Pt 1):1121–1128

    Google Scholar 

  23. Keefer EW, Botterman BR, Romero MI, et al. Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 2008; 3(7):434–439

    Article  PubMed  CAS  Google Scholar 

  24. Shoval A, Adams C, David-Pur M, et al. Carbon nanotube electrodes for effective interfacing with retinal tissue. Front Neuroengineering 2009; 2(4):8

    Google Scholar 

  25. Gabay T, Ben-David M, Kalifa I, et al. Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays. Nanotechnology 2007; 18(3):035201 (6pp)

    Google Scholar 

  26. Sorkin R, Gabay T, Blinder P, et al. Compact self-wiring in cultured neural networks. J Neural Eng 2006; 3(2):95–101

    Article  PubMed  CAS  Google Scholar 

  27. Cui X, Wiler J, Dzaman M, et al. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 2003; 24(5):777–787

    Article  PubMed  CAS  Google Scholar 

  28. Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006; 442(7099):164–171

    Article  PubMed  CAS  Google Scholar 

  29. Miller RF, Dowling JE. Intracellular responses of the Muller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J Neurophysiol 1970; 33(3):323–341

    PubMed  CAS  Google Scholar 

  30. Ruffini G, Dunne S, Fuentemilla L, et al. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sensors and Actuators a-Physical 2008; 144(2):275–279

    Article  Google Scholar 

  31. Helland A, Wick P, Koehler A, et al. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 2007; 115(8):1125–1131

    Article  PubMed  CAS  Google Scholar 

  32. Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci 2008; 101(1):4–21

    Article  PubMed  CAS  Google Scholar 

  33. Klumpp C, Kostarelos K, Prato M, et al. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 2006; 1758(3):404–412

    Article  PubMed  CAS  Google Scholar 

  34. Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 2006; 103(50):18882–18886

    Article  PubMed  CAS  Google Scholar 

  35. Liu Z, Cai W, He L, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007; 2(1):47–52

    Article  PubMed  CAS  Google Scholar 

  36. Liu Z, Davis C, Cai W, et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 2008; 105(5):1410–1415

    Article  PubMed  CAS  Google Scholar 

  37. Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006; 103(9):3357–3362

    Article  PubMed  CAS  Google Scholar 

  38. Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155(1):73–85

    Article  PubMed  CAS  Google Scholar 

  39. Manna SK, Sarkar S, Barr J, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 2005; 5(9):1676–1684

    Article  PubMed  CAS  Google Scholar 

  40. Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155(3):377–384

    Article  PubMed  CAS  Google Scholar 

  41. Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005; 39(5):1378–1383

    Article  PubMed  CAS  Google Scholar 

  42. Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2):121–126

    Article  PubMed  CAS  Google Scholar 

  43. Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006; 6(6):1121–1125

    Article  PubMed  CAS  Google Scholar 

  44. Kagan VE, Tyurina YY, Tyurin VA, et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 2006; 165(1):88–100

    Article  PubMed  CAS  Google Scholar 

  45. Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 168(1):58–74

    Article  PubMed  CAS  Google Scholar 

  46. Sato Y, Yokoyama A, Shibata K, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 2005; 1(2):176–182

    Article  PubMed  CAS  Google Scholar 

  47. Dubin RA, Callegari GC, Kohn J, et al. Carbon nanotube fibers are compatible with mammalian cells and neurons. IEEE Trans Nanobiosci 2008; 7(1):11–14

    Article  CAS  Google Scholar 

  48. Parpura V. Instrumentation: carbon nanotubes on the brain. Nat Nanotechnol 2008; 3(7):384–385

    Article  PubMed  CAS  Google Scholar 

  49. Hubel DH. Tungsten microelectrode for recording from single units. Science 1957; 125(3247):549–550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Robert Grammer for his comments on previous versions of this manuscript. The authors’ work is supported by a grant from the National Institute of Mental Health (MH 069791) and National Science Foundation (CBET 0943343). We dedicate this chapter to the late Glenn I. Hatton, whose work inspired new views of astrocyte-neuronal interactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Parpura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, W., Parpura, V. (2010). Carbon Nanotubes as Electrical Interfaces with Neurons. In: Ritsner, M. (eds) Brain Protection in Schizophrenia, Mood and Cognitive Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8553-5_11

Download citation

Publish with us

Policies and ethics