Skip to main content
Log in

Top-down nanofabrication approaches toward single-digit-nanometer scale structures

  • Invited Review Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Sub-10 nm nanostructures have received broad interest for their intriguing nano-optical phenomena, such as extreme field localization and enhancement, quantum tunneling effect, and strong coupling. The range of cutting-edge applications based on single-digit-nanometer scale structures has expanded with the development of nanofabrication technologies. However, challenges still remain in overcoming fabrication limits, such as scalability, controllability, and reproducibility for further practical applications of the sub-10 nm nanostructures. In this review, we discuss the recent advances in top-down nanofabrication methods towards single-digit-nanometer-sized structures. The well-known examples include electron beam lithography (EBL), focused ion beam (FIB) milling or lithography, atomic layer deposition (ALD), and other unconventional techniques to obtain sub-10 nm nanostructures or nanogaps. We discuss state-of-the-art applications for sub-10 nm nanophotonics such as optical trapping or sensing devices, imaging devices, and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC-EBL:

Aberration-corrected electron beam lithography

Ag:

Silver

Al:

Aluminum

Al2O3 :

Aluminium oxide, Alumina

ALD:

Atomic layer deposition

ALL:

Atomic layer lithography

Ar:

Argon

Au:

Gold

BCP:

Block copolymer

BSE:

Backscattered electron

CCL:

Capillary-force-induced collapse lithography

CDL:

Cascade domino lithography

Cr:

Chromium

DEP:

Dielectrophoresis

EBL:

Electron beam lithography

EM:

Electromagnetic

FIB:

Focused ion beam

Ga:

Gallium

Ge:

Germanium

GFIS:

Gas field ion source

GIBM:

Ga ion beam milling

He:

Helium

HF:

Hydrogen fluoride

HIBL:

He ion beam lithography

HIBM:

He ion beam milling

HRN:

High resolution nanogroove

HSQ:

Hydrogen silsesquioxane

LIL:

Laser interference lithography

LMIS:

Liquid metal ion source

MIM:

Metal-insulator-metal

MPL:

Multi-stage plasmonic lens

Ne:

Neon

NIBL:

Ne ion beam lithography

NIBM:

Ne ion beam milling

NIL:

Nanoimprint lithography

NPs:

Nanoparticles

PDMS:

Polydimethylsiloxane

PL:

Photoluminescence

PPA:

Polyphthalaldehyde

PS:

Polystyrene

Pt:

Platinum

PU:

Polyurethane

QD:

Quantum dot

RIE:

Reactive ion etching

RTA:

Rapid thermal annealing

SAM:

Self-assembled monolayer

SCL:

Self-collapse lithography

SE:

Secondary electron

SEM:

Scanning electron microscope

Si:

Silicon

SiO2 :

Silicon dioxide

SPL:

Scanning probe lithography

SRR:

Split-ring resonator

SSL:

Secondary sputtering lithography

STEM:

Scanning transmission electron microscope

SWCNTs:

Single-walled carbon nanotubes

ta-C:

Tetrahedral amorphous carbon

TiN:

Titanium nitride

TMDC:

Transition metal dichalcogenide

t-SPL:

Thermal scanning probe lithography

References

  1. S.-Y. Cho, H.-W. Yoo, J. Y. Kim, W.-B. Jung, M. L. Jin, J.-S. Kim, H.-J. Jeon and H.-T. Jung, High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds, Nano Letters, 16(7) (2016) 4508–4515.

    Article  Google Scholar 

  2. Y. Y. Choi, T. Teranishi and Y. Majima, Robust pt-based nanogap electrodes with 10 nm scale ultrafine linewidth, Applied Physics Express, 12(2) (2019) 025002.

    Article  Google Scholar 

  3. A. Cui, H. Dong and W. Hu, Nanogap electrodes towards solid state single-molecule transistors, Small, 11(46) (2015) 6115–6141.

    Article  Google Scholar 

  4. S. J. Lee, J. Kim, T. Tsuda, R. Takano, R. Shintani, K. Nozaki and Y. Majima, Single-molecule single-electron transistor (sm-set) based on n-conjugated quinoidal-fused oligosilole and heteroepitaxial spherical au/pt nanogap electrodes, Applied Physics Express, 12(12) (2019) 125007.

    Article  Google Scholar 

  5. J. Park, D. Das, M. Ahn, S. Park, J. Hur and S. Jeon, Improved optical performance of multi-layer mos2 phototransistor with see-through metal electrode, Nano Convergence, 6(1) (2019) 32.

    Article  Google Scholar 

  6. V. R. Murnal and C. Vijaya, A quasi-ballistic drain current, charge and capacitance model with positional carrier scattering dependency valid for symmetric dg mosfets in nanoscale regime, Nano Convergence, 6(1) (2019) 19.

    Article  Google Scholar 

  7. R.-H. Horng, Y.-C. Lai and L.-H. Lai, Deep-ultraviolet leds fabricated by nanoimprinting, ECS J. of Solid State Science and Technology, 9(1) (2019) 015005.

    Article  Google Scholar 

  8. I. Kim, M. A. Ansari, M. Q. Mehmood, W. S. Kim, J. Jang, M. Zubair, Y. K. Kim and J. Rho, Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators, Advanced Materials, 32(50) (2020) 2004664.

    Article  Google Scholar 

  9. G.-Y. Lee, G. Yoon, S.-Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho and B. Lee, Complete amplitude and phase control of light using broadband holographic metasurfaces, Nanoscale, 10(9) (2018) 4237–4245.

    Article  Google Scholar 

  10. G. Yoon, D. Lee, K. T. Nam and J. Rho, Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility, ACS Photonics, 5(5) (2017) 1643–1647.

    Article  Google Scholar 

  11. I. Kim, G. Yoon, J. Jang, P. Genevet, K. T. Nam and J. Rho, Outfitting next generation displays with optical metasurfaces, ACS Photonics, 5(10) (2018) 3876–3895.

    Article  Google Scholar 

  12. Y.-J. Jung, S.-Y. Cho, J.-W. Jung, S.-Y. Kim and J.-H. Lee, Influence of indium-tin-oxide and emitting-layer thicknesses on light outcoupling of perovskite light-emitting diodes, Nano Convergence, 6(1) (2019) 26.

    Article  Google Scholar 

  13. M. A. Ansari, I. Kim, I. D. Rukhlenko, M. Zubair, S. Yerci, T. Tauqeer, M. Q. Mehmood and J. Rho, Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram, Nanoscale Horizons, 5(1) (2020) 57–64.

    Article  Google Scholar 

  14. G. Yoon, J. Kim, J. Mun, D. Lee, K. T. Nam and J. Rho, Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control, Communications Physics, 2(1) (2019) 129.

    Article  Google Scholar 

  15. M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, M. Q. Mehmood and J. Rho, A spin-encoded all-dielectric metahologram for visible light, Laser & Photonics Reviews, 13(5) (2019) 1900065.

    Article  Google Scholar 

  16. G. Yoon, D. Lee, K. T. Nam and J. Rho, “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses, ACS Nano, 12(7) (2018) 6421–6428.

    Article  Google Scholar 

  17. Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho and C.-W. Qiu, Dielectric metaholograms enabled with dual magnetic resonances in visible light, ACS Nano, 11(9) (2017) 9382–9389.

    Article  Google Scholar 

  18. D. X. Ji, A. Cheney, N. Zhang, H. M. Song, J. Gao, X. Zeng, H. F. Hu, S. H. Jiang, Z. F. Yu and Q. Q. Gan, Efficient mid-infrared light confinement within sub-5-nm gaps for extreme field enhancement, Advanced Optical Materials, 5(17) (2017) 1700223.

    Article  Google Scholar 

  19. D. Yoo, K. L. Gurunatha, H. K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon and S. H. Oh, Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap, Nano Letters, 18(6) (2018) 3637–3642.

    Article  Google Scholar 

  20. W. Zhang, L. Huang, C. Santschi and O. J. F. Martin, Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas, Nano Letters, 10(3) (2010) 1006–1011.

    Article  Google Scholar 

  21. D. Lee, Y. Yang, G. Yoon, M. Kim and J. Rho, Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces, Applied Physics Letters, 115(10) (2019) 101102.

    Article  Google Scholar 

  22. M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu and J. Rho, A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials, Advanced Optical Materials, 5(19) (2017) 1700600.

    Article  Google Scholar 

  23. Y. Ma, B. Dong and C. Lee, Progress of infrared guided-wave nanophotonic sensors and devices, Nano Convergence, 7(1) (2020) 12.

    Article  Google Scholar 

  24. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish and Y. S. Kivshar, Liquid crystal based nonlinear fishnet metamaterials, Applied Physics Letters, 100(12) (2012) 121113.

    Article  Google Scholar 

  25. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov and Y. S. Kivshar, Tunable fishnet metamaterials infiltrated by liquid crystals, Applied Physics Letters, 96(19) (2010) 193103.

    Article  Google Scholar 

  26. T. Badloe, I. Kim and J. Rho, Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning, Physical Chemistry Chemical Physics, 22(4) (2020) 2337–2342.

    Article  Google Scholar 

  27. T. Badloe, I. Kim and J. Rho, Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide, Scientific Reports, 10(1) (2020) 4522.

    Article  Google Scholar 

  28. T. Badloe, J. Mun and J. Rho, Metasurfaces-based absorption and reflection control: Perfect absorbers and reflectors, J. of Nanomaterials, 2017(1) (2017) 2361042.

    Google Scholar 

  29. I. Kim, S. So, A. S. Rana, M. Q. Mehmood and J. Rho, Thermally robust ring-shaped chromium perfect absorber of visible light, Nanophotonics, 7(11) (2018) 1827–1833.

    Article  Google Scholar 

  30. D. Lee, S. Y. Han, Y. Jeong, D. M. Nguyen, G. Yoon, J. Mun, J. Chae, J. H. Lee, J. G. Ok and G. Y. Jung, Polarization-sensitive tunable absorber in visible and near-infrared regimes, Scientific Reports, 8(1) (2018) 12393.

    Article  Google Scholar 

  31. D. M. Nguyen, D. Lee and J. Rho, Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths, Scientific Reports, 7(1) (2017) 2611.

    Article  Google Scholar 

  32. G. Yoon, S. So, M. Kim, J. Mun, R. Ma and J. Rho, Electrically tunable metasurface perfect absorber for infrared frequencies, Nano Convergence, 4(1) (2017) 36.

    Article  Google Scholar 

  33. J. Jang, T. Badloe, Y. Yang, T. Lee, J. Mun and J. Rho, Spectral modulation through the hybridization of mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color, ACS Nano, 14(11) (2020) 15317–15326.

    Article  Google Scholar 

  34. I. Kim, J. Yun, T. Badloe, H. Park, T. Seo, Y. Yang, J. Kim, Y. Chung and J. Rho, Structural color switching with a doped indium-gallium-zinc-oxide semiconductor, Photonics Research, 8(9) (2020) 1409–1415.

    Article  Google Scholar 

  35. M. Kim, I. Kim, J. Jang, D. Lee, K. T. Nam and J. Rho, Active color control in a metasurface by polarization rotation, Applied Sciences, 8(6) (2018) 982.

    Article  Google Scholar 

  36. T. Lee, J. Jang, H. Jeong and J. Rho, Plasmonic-and dielectric-based structural coloring: from fundamentals to practical applications, Nano Convergence, 5(1) (2018) 1.

    Article  Google Scholar 

  37. J. Jang, T. Badloe, Y. C. Sim, Y. Yang, J. Mun, T. Lee, Y.-H. Cho and J. Rho, Full and gradient structural colouration by lattice amplified gallium nitride mie-resonators, Nanoscale, 12(41) (2020) 21392–21400.

    Article  Google Scholar 

  38. N. Farmakidis, N. Youngblood, X. Li, J. Tan, J. L. Swett, Z. Cheng, C. D. Wright, W. H. Pernice and H. Bhaskaran, Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality, Science Advances, 5(11) (2019) eaaw2687.

    Article  Google Scholar 

  39. D. G. Georgiadou, Y. H. Lin, J. Lim, S. Ratnasingham, M. A. McLachlan, H. J. Snaith and T. D. Anthopoulos, High responsivity and response speed single-layer mixed-cation lead mixed-halide perovskite photodetectors based on nanogap electrodes manufactured on large-area rigid and flexible substrates, Advanced Functional Materials, 29(28) (2019) 1901371.

    Article  Google Scholar 

  40. H. Kang, S. Y. Cho, J. Ryu, J. Choi, H. Ahn, H. Joo and H. T. Jung, Multiarray nanopattern electronic nose (e-nose) by high-resolution top-down nanolithography, Advanced Functional Materials, 30(27) (2020) 2002486.

    Article  Google Scholar 

  41. M. Kim, Y. Kim and J. Rho, Spin-valley locked topological edge states in a staggered chiral photonic crystal, New J. of Physics, 22(11) (2020) 113022.

    Article  Google Scholar 

  42. M. Kim, D. Lee, T. H. Kim, Y. Yang, H. J. Park and J. Rho, Observation of enhanced optical spin hall effect in a vertical hyperbolic metamaterial, ACS Photonics, 6(10) (2019) 2530–2536.

    Article  Google Scholar 

  43. M. Kim, D. Lee, B. Ko and J. Rho, Diffraction-induced enhancement of optical spin hall effect in a dielectric grating, APL Photonics, 5(6) (2020) 066106.

    Article  Google Scholar 

  44. K. Yoo, W. Lee, K. Kang, I. Kim, D. Kang, D. K. Oh, M. C. Kim, H. Choi, K. Kim, M. Kim, J. D. Kim, I. Park and J. G. Ok, Low-temperature large-area fabrication of zno nanowires on flexible plastic substrates by solution-processible metal-seeded hydrothermal growth, Nano Convergence, 7(1) (2020) 24.

    Article  Google Scholar 

  45. A. S. Rana, I. Kim, M. A. Ansari, M. S. Anwar, M. Saleem, T. Tauqeer, A. Danner, M. Zubair, M. Q. Mehmood and J. Rho, Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolation, ACS Applied Materials & Interfaces, 12(43) (2020) 48899–48909.

    Article  Google Scholar 

  46. S.-J. Kim, I. Kim, S. Choi, H. Yoon, C. Kim, Y. Lee, C. Choi, J. Son, Y. W. Lee, J. Rho and B. Lee, Reconfigurable all-dielectric fano metasurfaces for strong full-space intensity modulation of visible light, Nanoscale Horizons, 5(7) (2020) 1088–1095.

    Article  Google Scholar 

  47. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz and B. Weiner, Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes, Optics Letters, 31(17) (2006) 2592–2594.

    Article  Google Scholar 

  48. Y. Chen, B. Ai and Z. J. Wong, Soft optical metamaterials, Nano Convergence, 7(1) (2020) 18.

    Article  Google Scholar 

  49. P. N. Navya, A. Kaphle, S. P. Srinivas, S. K. Bhargava, V. M. Rotello and H. K. Daima, Current trends and challenges in cancer management and therapy using designer nanomaterials, Nano Convergence, 6(1) (2019) 23.

    Article  Google Scholar 

  50. J.-H. Lee, E.-J. Chae, S.-J. Park and J.-W. Choi, Label-free detection of γ-aminobutyric acid based on silicon nanowire biosensor, Nano Convergence, 6(1) (2019) 13.

    Article  Google Scholar 

  51. N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nature Materials, 13(2) (2014) 139–150.

    Article  Google Scholar 

  52. X. Yin, Z. Ye, J. Rho, Y. Wang and X. Zhang, Photonic spin hall effect at metasurfaces, Science, 339(6126) (2013) 1405–1407.

    Article  Google Scholar 

  53. H. Ren, X. Fang, J. Jang, J. Burger, J. Rho and S. A. Maier, Complex-amplitude metasurface-based orbital angular momentum holography in momentum space, Nature Nanotechnology, 15(11) (2020) 948–955.

    Article  Google Scholar 

  54. Y. H. Wang, I. Kim, R. C. Jin, H. Jeong, J. Q. Li, Z. G. Dong and J. Rho, Experimental verification of asymmetric transmission in continuous omega-shaped metamaterials, RSC Advances, 8(67) (2018) 38556–38561.

    Article  Google Scholar 

  55. J. Jang, H. Jeong, G. W. Hu, C. W. Qiu, K. T. Nam and J. Rho, Kerker-conditioned dynamic cryptographic nanoprints, Advanced Optical Materials, 7(4) (2019) 1801070–1801070.

    Article  Google Scholar 

  56. C.-W. Lee, H. J. Choi and H. Jeong, Tunable metasurfaces for visible and swir applications, Nano Convergence, 7(1) (2020) 3.

    Article  Google Scholar 

  57. F. I. Allen, N. R. Velez, R. C. Thayer, N. H. Patel, M. A. Jones, G. F. Meyers and A. M. Minor, Gallium, neon and helium focused ion beam milling of thin films demonstrated for polymeric materials: study of implantation artifacts, Nanoscale, 11(3) (2019) 1403–1409.

    Article  Google Scholar 

  58. R. Kumar, M. Chauhan, M. G. Moinuddin, S. K. Sharma and K. E. Gonsalves, Development of nickel-based negative tone metal oxide cluster resists for sub-10 nm electron beam and helium ion beam lithography, ACS Applied Materials & Interfaces, 12(17) (2020) 19616–19624.

    Article  Google Scholar 

  59. D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, and K. K. Berggren, Neon ion beam lithography (nibl), Nano Letters, 11(10) (2011) 4343–4347.

    Article  Google Scholar 

  60. M.-K. Kim, H. Sim, S. J. Yoon, S.-H. Gong, C. W. Ahn, Y.-H. Cho and Y.-H. Lee, Squeezing photons into a point-like space, Nano Letters, 15(6) (2015) 4102–4107.

    Article  Google Scholar 

  61. E. Højlund-Nielsen, J. Clausen, T. Mäkela, L. H. Thamdrup, M. Zalkovskij, T. Nielsen, N. Li Pira, J. Ahopelto, N. A. Mortensen and A. Kristensen, Plasmonic colors: toward mass production of metasurfaces, Advanced Materials Technologies, 1(7) (2016) 1600054.

    Article  Google Scholar 

  62. S. Murthy, H. Pranov, N. A. Feidenhans’l, J. S. Madsen, P. E. Hansen, H. C. Pedersen and R. Taboryski, Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method, Nanoscale, 9(37) (2017) 14280–14287.

    Article  Google Scholar 

  63. J. S. Wi, S. Lee, S. H. Lee, D. K. Oh, K. T. Lee, I. Park, M. K. Kwak and J. G. Ok, Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors, Nanoscale, 9(4) (2017) 1398–1402.

    Article  Google Scholar 

  64. G. Yoon, K. Kim, D. Huh, H. Lee and J. Rho, Single-step manufacturing of hierarchical dielectric metalens in the visible, Nature Communications, 11(1) (2020) 2268.

    Article  Google Scholar 

  65. K. Kim, G. Yoon, S. Baek, J. Rho and H. Lee, Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution, ACS Applied Materials & Interfaces, 11(29) (2019) 26109–26115.

    Article  Google Scholar 

  66. P. Jacquet, B. Bouteille, R. Dezert, J. Lautru, R. Podor, A. Baron, J. Teisseir, J. Jupille, R. Lazzari and I. Gozhyk, Periodic arrays of diamond-shaped silver nanoparticles: From scalable fabrication by template-assisted solid-state dewetting to tunable optical properties, Advanced Functional Materials, 29(28) (2019) 1901119.

    Article  Google Scholar 

  67. T. Das Gupta, L. Martin-Monier, W. Yan, A. Le Bris, T. Nguyen-Dang, A. G. Page, K. T. Ho, F. Yesilkoy, H. Altug, Y. Qu and F. Sorin, Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities, Nature Nanotechnology, 14(4) (2019) 320–327.

    Article  Google Scholar 

  68. C. Matricardi, J. L. Garcia-Pomar, P. Molet, L. A. Perez, M. I. Alonso, M. Campoy-Quiles and A. Mihi, High-throughput nanofabrication of metasurfaces with polarization-dependent response, Advanced Optical Materials, 8(20) (2020) 2000786.

    Article  Google Scholar 

  69. S. Wu, Y. Ye, H. Duan, Y. Gu and L. Chen, Large-area, optical variable-color metasurfaces based on pixelated plasmonic nanogratings, Advanced Optical Materials, 7(7) (2019) 1801302.

    Article  Google Scholar 

  70. V. B. Nam, T. T. Giang, S. Koo, J. Rho and D. Lee, Laser digital patterning of conductive electrodes using metal oxide nanomaterials, Nano Convergence, 7(1) (2020) 23.

    Article  Google Scholar 

  71. T. Lee, C. Lee, D. K. Oh, T. Badloe, J. G. Ok and J. Rho, Scalable and high-throughput top-down manufacturing of optical metasurfaces, Sensors, 20(15) (2020) 4108.

    Article  Google Scholar 

  72. K.-D. Park, T. Jiang, G. Clark, X. Xu and M. B. Raschke, Radiative control of dark excitons at room temperature by nano-optical antenna-tip purcell effect, Nature Nanotechnology, 13(1) (2018) 59–64.

    Article  Google Scholar 

  73. Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang and G. Grinblat, Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures, Nature Communications, 7(1) (2016) 11283.

    Article  Google Scholar 

  74. A. Banerjee, S.-U. H. Khan, S. Broadbent, R. Likhite, R. Looper, H. Kim and C. H. Mastrangelo, Batch-fabricated α-si assisted nanogap tunneling junctions, Nanomaterials, 9(5) (2019) 727.

    Article  Google Scholar 

  75. V. Dubois, S. N. Raja, P. Gehring, S. Caneva, H. S. J. van der Zant, F. Niklaus and G. Stemme, Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices, Nature Communications, 9(1) (2018) 3433.

    Article  Google Scholar 

  76. T. Ohshiro, K. Matsubara, M. Tsutsui, M. Furuhashi, M. Taniguchi and T. Kawai, Single-molecule electrical random resequencing of DNA and rna, Scientific Reports, 2(1) (2012) 501.

    Article  Google Scholar 

  77. D. Bang, E.-J. Jo, S. Hong, J.-Y. Byun, J. Y. Lee, M.-G. Kim and L. P. Lee, Asymmetric nanocrescent antenna on upconversion nanocrystal, Nano Letters, 17(11) (2017) 6583–6590.

    Article  Google Scholar 

  78. K. Santhosh, O. Bitton, L. Chuntonov and G. Haran, Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit, Nature Communications, 7(1) (2016) 11823.

    Article  Google Scholar 

  79. G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll and T. Shegai, Approaching the strong coupling limit in single plasmonic nanorods interacting with j-aggregates, Scientific Reports, 3(1) (2013) 3074.

    Article  Google Scholar 

  80. K.-D. Park, M. A. May, H. Leng, J. Wang, J. A. Kropp, T. Gougousi, M. Pelton and M. B. Raschke, Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter, Science Advances, 5(7) (2019) eaav5931.

    Article  Google Scholar 

  81. D. Ge, S. Marguet, A. Issa, S. Jradi, T. H. Nguyen, M. Nahra, J. Béal, R. Deturche, H. Chen, S. Blaize, J. Plain, C. Fiorini, L. Douillard, O. Soppera, X. Q. Dinh, C. Dang, X. Yang, T. Xu, B. Wei, X. W. Sun, C. Couteau and R. Bachelot, Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field, Nature Communications, 11(1) (2020) 3414.

    Article  Google Scholar 

  82. S. J. Yoon, D. I. Song, J. Lee, M.-K. Kim, Y.-H. Lee and C.-K. Kim, Hopping of single nanoparticles trapped in a plasmonic double-well potential, Nanophotonics, 9(16) (2020) 4729–4735.

    Article  Google Scholar 

  83. H. Cai, Q. Meng, H. Zhao, M. Li, Y. Dai, Y. Lin, H. Ding, N. Pan, Y. Tian, Y. Luo and X. Wang, High-throughput fabrication of ultradense annular nanogap arrays for plasmon-enhanced spectroscopy, ACS Applied Materials & Interfaces, 10(23) (2018) 20189–20195.

    Article  Google Scholar 

  84. X. Chen, C. Ciraci, D. R. Smith and S. H. Oh, Nanogapenhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities, Nano Letters, 15(1) (2015) 107–113.

    Article  Google Scholar 

  85. T. H. Le and T. Tanaka, Plasmonics-nanofluidics hydrid metamaterial: an ultrasensitive platform for infrared absorption spectroscopy and quantitative measurement of molecules, ACS Nano, 11(10) (2017) 9780–9788.

    Article  Google Scholar 

  86. D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N. C. Nguyen, L. Martin-Moreno, J. Peraire, H. Altug and S. H. Oh, High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps, Nano Letters, 18(3) (2018) 1930–1936.

    Article  Google Scholar 

  87. J. Mun, D. Lee, S. So, T. Badloe and J. Rho, Surface-enhanced spectroscopy: Toward practical analysis probe, Applied Spectroscopy Reviews, 54(2) (2019) 142–175.

    Article  Google Scholar 

  88. S. So, M. Kim, D. Lee, D. M. Nguyen and J. Rho, Overcoming diffraction limit: From microscopy to nanoscopy, Applied Spectroscopy Reviews, 53(2–4) (2018) 290–312.

    Article  Google Scholar 

  89. R. Huang, X. Ji, Y. Liao, J. Peng, K. Wang, Y. Xu and F. Yan, Dual-frequency cmos terahertz detector with silicon-based plasmonic antenna, Optics Express, 27(16) (2019) 23250–23261.

    Article  Google Scholar 

  90. H.-R. Park, X. Chen, N.-C. Nguyen, J. Peraire and S.-H. Oh, Nanogap-enhanced terahertz sensing of 1 nm thick (A/106) dielectric films, ACS Photonics, 2(3) (2015) 417–424.

    Article  Google Scholar 

  91. A. Barik, X. Chen and S.H. Oh, Ultralow-power electronic trapping of nanoparticles with sub-10 nm gold nanogap electrodes, Nano Letters, 16(10) (2016) 6317–6324.

    Article  Google Scholar 

  92. L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M.-L. Chu, A. Erbe and C.-F. Chou, Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements, Nano Letters, 14(5) (2014) 2242–2250.

    Article  Google Scholar 

  93. M. Tsutsui, M. Taniguchi, K. Yokota and T. Kawai, Identifying single nucleotides by tunnelling current, Nature Nanotechnology, 5(4) (2010) 286–290.

    Article  Google Scholar 

  94. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy and X. Zhang, Flying plasmonic lens in the near field for high-speed nanolithography, Nature Nanotechnology, 3(12) (2008) 733–737.

    Article  Google Scholar 

  95. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun and D.B. Bogy, Maskless plasmonic lithography at 22 nm resolution, Scientific Reports, 1(1) (2011) 175.

    Article  Google Scholar 

  96. Y. Wang, Z. Du, Y. Park, C. Chen, X. Zhang and L. Pan, Quasi-3d plasmonic coupling scheme for near-field optical lithography and imaging, Optics Letters, 40(16) (2015) 3918–3921.

    Article  Google Scholar 

  97. G. Yoon, I. Kim and J. Rho, Challenges in fabrication towards realization of practical metamaterials, Microelectronic Engineering, 163(1) (2016) 7–20.

    Article  Google Scholar 

  98. N. Mahmood, I. Kim, M. Q. Mehmood, H. Jeong, A. Akbar, D. Lee, M. Saleem, M. Zubair, M. S. Anwar, F. A. Tahir and J. Rho, Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides, Nanoscale, 10(38) (2018) 18323–18330.

    Article  Google Scholar 

  99. G. Yoon, D. Lee, K. T. Nam and J. Rho, Geometric metasurface enabling polarization independent beam splitting, Scientific Reports, 8(1) (2018) 9468.

    Article  Google Scholar 

  100. N. Mahmood, H. Jeong, I. Kim, M. Q. Mehmood, M. Zubair, A. Akbar, M. Saleem, M. S. Anwar, F. A. Tahir and J. Rho, Twisted non-diffracting beams through all dielectric meta-axicons, Nanoscale, 11(43) (2019) 20571–20578.

    Article  Google Scholar 

  101. G. Yoon, I. Kim, S. So, J. Mun, M. Kim and J. Rho, Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay, Scientific Reports, 7(1) (2017) 6668.

    Article  Google Scholar 

  102. V. R. Manfrinato, F. E. Camino, A. Stein, L. Zhang, M. Lu, E. A. Stach and C. T. Black, Patterning si at the 1 nm length scale with aberration-corrected electron-beam lithography: Tuning of plasmonic properties by design, Advanced Functional Materials, 29(52) (2019) 1903429.

    Article  Google Scholar 

  103. N. Pala and M. Karabiyik, Electron Beam Lithography (ebl) for Encyclopedia of Nanotechnology, Springer Netherlands, Dordrecht, Netherlands (2012).

    Google Scholar 

  104. V. R. Manfrinato, A. Stein, L. Zhang, C.-Y. Nam, K. G. Yager, E. A. Stach and C. T. Black, Aberration-corrected electron beam lithography at the one nanometer length scale, Nano Letters, 17(8) (2017) 4562–4567.

    Article  Google Scholar 

  105. V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs, E. A. Stach and K. K. Berggren, Resolution limits of electron-beam lithography toward the atomic scale, Nano Letters, 13(4) (2013) 1555–1558.

    Article  Google Scholar 

  106. H. Duan, H. Hu, K. Kumar, Z. Shen and J. K. W. Yang, Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps, ACS Nano, 5(9) (2011) 7593–7600.

    Article  Google Scholar 

  107. A. S. Gangnaik, Y. M. Georgiev, G. Collins and J. D. Holmes, Novel germanium surface modification for sub-10 nm patterning with electron beam lithography and hydrogen silsesquioxane resist, J. of Vacuum Science & Technology B, 34(4) (2016) 041603.

    Article  Google Scholar 

  108. J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim and M. J. Rooks, Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography, J. of Vacuum Science & Technology B, 27(6) (2009) 2622–2627.

    Article  Google Scholar 

  109. M. Manheller, S. Trellenkamp, R. Waser and S. Karthäuser, Reliable fabrication of 3 nm gaps between nanoelectrodes by electron-beam lithography, Nanotechnology, 23(12) (2012) 125302.

    Article  Google Scholar 

  110. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier and J. K. W. Yang, Nanoplasmonics: classical down to the nanometer scale, Nano Letters, 12(3) (2012) 1683–1689.

    Article  Google Scholar 

  111. W. Zhu and K. B. Crozier, Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced raman scattering, Nature Communications, 5(1) (2014) 5228.

    Article  Google Scholar 

  112. N. Arjmandi, L. Lagae and G. Borghs, Enhanced resolution of poly(methyl methacrylate) electron resist by thermal processing, J. of Vacuum Science & Technology B, 27(4) (2009) 1915–1918.

    Article  Google Scholar 

  113. H. Duan, H. Hu, H. K. Hui, Z. Shen and J. K. W. Yang, Freestanding sub-10 nm nanostencils for the definition of gaps in plasmonic antennas, Nanotechnology, 24(18) (2013) 185301.

    Article  Google Scholar 

  114. Y. Zhu, H. Inada, K. Nakamura and J. Wall, Imaging single atoms using secondary electrons with an aberration-corrected electron microscope, Nature Materials, 8(10) (2009) 808–812.

    Article  Google Scholar 

  115. Y. Chen, Nanofabrication by electron beam lithography and its applications: A review, Microelectronic Engineering, 135(1) (2015) 57–72.

    Article  Google Scholar 

  116. J. K. W. Yang and K. K. Berggren, Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography, J. of Vacuum Science & Technology B, 25(6) (2007) 2025–2029.

    Article  Google Scholar 

  117. M. M. Mirza, H. Zhou, P. Velha, X. Li, K. E. Docherty, A. Samarelli, G. Ternent and D. J. Paul, Nanofabrication of high aspect ratio (∼50:1) sub-10 nm silicon nanowires using inductively coupled plasma etching, J. of Vacuum Science & Technology B, 30(6) (2012) 06FF02.

    Article  Google Scholar 

  118. M. Rommel, B. Nilsson, P. Jedrasik, V. Bonanni, A. Dmitriev and J. Weis, Sub-10 nm resolution after lift-off using hsq/pmma double layer resist, Microelectronic Engineering, 110(1) (2013) 123–125.

    Article  Google Scholar 

  119. A. Vardi and J. A. d. Alamo, Sub-10-nm fin-width self-aligned ingaas finfets, IEEE Electron Device Letters, 37(9) (2016) 1104–1107.

    Article  Google Scholar 

  120. K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun and J. Michl, Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography, Applied Physics Letters, 80(5) (2002) 865–867.

    Article  Google Scholar 

  121. Y. Yang, C. Gu and J. Li, Sub-5 nm metal nanogaps: Physical properties, fabrication methods, and device applications, Small, 15(5) (2019) 1804177.

    Article  Google Scholar 

  122. M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes and P. D. Rack, Review article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams, J. of Vacuum Science & Technology B, 35(3) (2017) 030802.

    Article  Google Scholar 

  123. S. J. Yoon, J. Lee, S. Han, C.-K. Kim, C. W. Ahn, M.-K. Kim and Y.-H. Lee, Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources, Nature Communications, 9(1) (2018) 2218.

    Article  Google Scholar 

  124. A. Cui, Z. Liu, H. Dong, Y. Wang, Y. Zhen, W. Li, J. Li, C. Gu and W. Hu, Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1–2 nm by focused ion beam milling, Advanced Materials, 27(19) (2015) 3002–3006.

    Article  Google Scholar 

  125. M. E. Schmidt, T. Iwasaki, M. Muruganathan, M. Haque, H. Van Ngoc, S. Ogawa and H. Mizuta, Structurally controlled large-area 10 nm pitch graphene nanomesh by focused helium ion beam milling, ACS Applied Materials & Interfaces, 10(12) (2018) 10362–10368.

    Article  Google Scholar 

  126. R. Livengood, S. Tan, Y. Greenzweig, R. Hallstein, D. Shima, K. Klein and A. E. Vladar, A study of helium ion beam substrate interaction volume on nanomachining profiles in bulk substrates and thin film membranes, Microscopy and Microanalysis, 18(S2) (2012) 808–809.

    Article  Google Scholar 

  127. M. M. Marshall, J. Yang and A. R. Hall, Direct and transmission milling of suspended silicon nitride membranes with a focused helium ion beam, Scanning, 34(2) (2012) 101–106.

    Article  Google Scholar 

  128. S. Tan, K. Klein, D. Shima, R. Livengood, E. Mutunga and A. Vladár, Mechanism and applications of helium transmission milling in thin membranes, J. of Vacuum Science & Technology B, 32(6) (2014) 06FA01.

    Article  Google Scholar 

  129. N. Kalhor, S. A. Boden and H. Mizuta, Sub-10nm patterning by focused he-ion beam milling for fabrication of downscaled graphene nano devices, Microelectronic Engineering, 114(1) (2014) 70–77.

    Article  Google Scholar 

  130. M. G. Stanford, B. B. Lewis, V. Iberi, J. D. Fowlkes, S. Tan, R. Livengood and P. D. Rack, In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating, Small, 12(13) (2016) 1779–1787.

    Article  Google Scholar 

  131. Y. Wang, M. Abb, S. A. Boden, J. Aizpurua, C. H. de Groot and O. L. Muskens, Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling, Nano Letters, 13(11) (2013) 5647–5653.

    Article  Google Scholar 

  132. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink and D. Maas, Sub-10-nm nanolithography with a scanning helium beam, J. of Vacuum Science & Technology B, 27(4) (2009) L18–L20.

    Article  Google Scholar 

  133. X. Shi, P. Prewett, E. Huq, D. M. Bagnall, A. P. G. Robinson and S. A. Boden, Helium ion beam lithography on fullerene molecular resists for sub-10nm patterning, Microelectronic Engineering, 155(1) (2016) 74–78.

    Article  Google Scholar 

  134. S. M. Lewis, M. S. Hunt, G. A. DeRose, H. R. Alty, J. Li, A. Wertheim, L. De Rose, G. A. Timco, A. Scherer, S. G. Yeates and R. E. P. Winpenny, Plasma-etched pattern transfer of sub-10 nm structures using a metal-organic resist and helium ion beam lithography, Nano Letters, 19(9) (2019) 6043–6048.

    Article  Google Scholar 

  135. W.-D. Li, W. Wu and R. Stanley Williams, Combined helium ion beam and nanoimprint lithography attains 4nm half-pitch dense patterns, J. of Vacuum Science & Technology B, 30(6) (2012) 06F304.

    Article  Google Scholar 

  136. S. Tan, R. Livengood, P. Hack, R. Hallstein, D. Shima, J. Notte and S. McVey, Nanomachining with a focused neon beam: A preliminary investigation for semiconductor circuit editing and failure analysis, J. of Vacuum Science & Technology B, 29(6) (2011) 06F604.

    Article  Google Scholar 

  137. D. Xia, Y.-B. Jiang, J. Notte and D. Runt, Gaas milling with neon focused ion beam: Comparison with gallium focused ion beam milling and subsurface damage analysis, Applied Surface Science, 538(1) (2021) 147922.

    Article  Google Scholar 

  138. R. W. Johnson, A. Hultqvist and S. F. Bent, A brief review of atomic layer deposition: from fundamentals to applications, Materials Today, 17(5) (2014) 236–246.

    Article  Google Scholar 

  139. S. M. George, Atomic layer deposition: an overview, Chemical Reviews, 110(1) (2010) 111–131.

    Article  Google Scholar 

  140. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes and S. H. Oh, Vertically oriented sub-10-nm plasmonic nanogap arrays, Nano Letters, 10(6) (2010) 2231–2236.

    Article  Google Scholar 

  141. X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim and S. H. Oh, Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves, Nature Communications, 4(1) (2013) 2361.

    Article  Google Scholar 

  142. X. Chen, N. C. Lindquist, D. J. Klemme, P. Nagpal, D. J. Norris and S. H. Oh, Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing, Nano Letters, 16(12) (2016) 7849–7856.

    Article  Google Scholar 

  143. D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen and S. H. Oh, High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography, Nano Letters, 16(3) (2016) 2040–2046.

    Article  Google Scholar 

  144. N. Kim, S. In, D. Lee, J. Rhie, J. Jeong, D.-S. Kim and N. Park, Colossal terahertz field enhancement using split-ring resonators with a sub-10 nm gap, ACS Photonics, 5(2) (2017) 278–283.

    Article  Google Scholar 

  145. H. T. Miyazaki and Y. Kurokawa, Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity, Physical Review Letters, 96(9) (2006) 097401.

    Article  Google Scholar 

  146. M. Kuttge, F. J. Garcia de Abajo and A. Polman, Ultrasmall mode volume plasmonic nanodisk resonators, Nano Letters, 10(5) (2010) 1537–1541.

    Article  Google Scholar 

  147. Y. Q. Cao, K. Qin, L. Zhu, X. Qian, X. J. Zhang, D. Wu and A. D. Li, Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable nanogap for surface-enhanced raman scattering, Scientific Reports, 7(1) (2017) 5161.

    Article  Google Scholar 

  148. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Applied Physics Letters, 67(21) (1995) 3114–3116.

    Article  Google Scholar 

  149. C. Peroz, S. Dhuey, M. Cornet, M. Vogler, D. Olynick and S. Cabrini, Single digit nanofabrication by step-and-repeat nanoimprint lithography, Nanotechnology, 23(1) (2012) 015305.

    Article  Google Scholar 

  150. J. Y. Woo, S. Jo, J. H. Oh, J. T. Kim and C. S. Han, Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates, Applied Surface Science, 484(1) (2019) 317–325.

    Article  Google Scholar 

  151. P. Gao, M. Pu, X. Ma, X. Li, Y. Guo, C. Wang, Z. Zhao and X. Luo, Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm, Nanoscale, 12(4) (2020) 2415–2421.

    Article  Google Scholar 

  152. X. Zhang, X. Zhang, C. Luo, Z. Liu, Y. Chen, S. Dong, C. Jiang, S. Yang, F. Wang and X. Xiao, Volume-enhanced raman scattering detection of viruses, Small, 15(11) (2019) 1805516.

    Article  Google Scholar 

  153. M. A. Verschuuren, M. W. Knight, M. Megens and A. Polman, Nanoscale spatial limitations of large-area substrate conformal imprint lithography, Nanotechnology, 30(34) (2019) 345301.

    Article  Google Scholar 

  154. F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers and A. Shim, Polymer imprint lithography with molecular-scale resolution, Nano Letters, 4(12) (2004) 2467–2471.

    Article  Google Scholar 

  155. M. Nakagawa, A. Nakaya, Y. Hoshikawa, S. Ito, N. Hiroshiba and T. Kyotani, Size-dependent filling behavior of uv-curable di(meth)acrylate resins into carbon-coated anodic aluminum oxide pores of around 20 nm, ACS Applied Materials & Interfaces, 8(44) (2016) 30628–30634.

    Article  Google Scholar 

  156. C. Pina-Hernandez, P. F. Fu and L. J. Guo, Ultrasmall structure fabrication via a facile size modification of nanoimprinted functional silsesquioxane features, ACS Nano, 5(2) (2011) 923–931.

    Article  Google Scholar 

  157. S. Pi, P. Lin and Q. Xia, Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control, Nanotechnology, 27(46) (2016) 464004.

    Article  Google Scholar 

  158. H. Duan and K. K. Berggren, Directed self-assembly at the 10 nm scale by using capillary force-induced nanocohesion, Nano Letters, 10(9) (2010) 3710–3716.

    Article  Google Scholar 

  159. H. Duan, J. K. Yang and K. K. Berggren, Controlled collapse of high-aspect-ratio nanostructures, Small, 7(18) (2011) 2661–2668.

    Article  Google Scholar 

  160. C. Zhao, X. Xu, Q. Yang, T. Man, S. J. Jonas, J. J. Schwartz, A. M. Andrews and P. S. Weiss, Self-collapse lithography, Nano Letters, 17(8) (2017) 5035–5042.

    Article  Google Scholar 

  161. Y. Xue, D. Kang, Y. Ma, X. Feng, J. A. Rogers and Y. Huang, Collapse of microfluidic channels/reservoirs in thin, soft epidermal devices, Extreme Mechanics Letters, 11(1) (2017) 18–23.

    Article  Google Scholar 

  162. S. Gottlieb, M. Lorenzoni, L. Evangelio, M. Fernandez-Regulez, Y. K. Ryu, C. Rawlings, M. Spieser, A. W. Knoll and F. Perez-Murano, Thermal scanning probe lithography for the directed self-assembly of block copolymers, Nanotechnology, 28(17) (2017) 175301.

    Article  Google Scholar 

  163. X. Y. Liu, M. Kumar, A. Calo, E. Albisetti, X. R. Zheng, K. B. Manning, E. Elacqua, M. Weck, R. V. Ulijn and E. Riedo, Sub-10 nm resolution patterning of pockets for enzyme immobilization with independent density and quasi-3d topography control, ACS Applied Materials & Interfaces, 11(44) (2019) 41780–41790.

    Article  Google Scholar 

  164. H. Wolf, C. Rawlings, P. Mensch, J. L. Hedrick, D. J. Coady, U. Duerig and A. W. Knoll, Sub-20nm silicon patterning and metal lift-off using thermal scanning probe lithography, J. of Vacuum Science & Technology B, 33(2) (2014) 02B102.

    Article  Google Scholar 

  165. Y. K. R. Cho, C. D. Rawlings, H. Wolf, M. Spieser, S. Bisig, S. Reidt, M. Sousa, S. R. Khanal, T. D. B. Jacobs and A. W. Knoll, Sub-10 nanometer feature size in silicon using thermal scanning probe lithography, ACS Nano, 11(12) (2017) 11890–11897.

    Article  Google Scholar 

  166. W. B. Jung, S. Jang, S. Y. Cho, H. J. Jeon and H. T. Jung, Recent progress in simple and cost-effective top-down lithography for approximate to 10 nm scale nanopatterns: From edge lithography to secondary sputtering lithography, Advanced Materials, 32(35) (2020) 1907101.

    Article  Google Scholar 

  167. H. J. Jeon, J. Y. Kim, W. B. Jung, H. S. Jeong, Y. H. Kim, D. O. Shin, S. J. Jeong, J. Shin, S. O. Kim and H. T. Jung, Complex high-aspect-ratio metal nanostructures by secondary sputtering combined with block copolymer self-assembly, Advanced Materials, 28(38) (2016) 8439–8445.

    Article  Google Scholar 

  168. J. Baek, S. Y. Cho, H. Kang, H. Ahn, W. B. Jung, Y. Cho, E. Lee, S. W. Cho, H. T. Jung and S. G. Im, Distinct mechanosensing of human neural stem cells on extremely limited anisotropic cellular contact, ACS Applied Materials & Interfaces, 10(40) (2018) 33891–33900.

    Article  Google Scholar 

  169. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography, Applied Physics Letters, 84(26) (2004) 5299–5301.

    Article  Google Scholar 

  170. B. Song, Y. Yao, R. E. Groenewald, Y. Wang, H. Liu, Y. Wang, Y. Li, F. Liu, S. B. Cronin, A. M. Schwartzberg, S. Cabrini, S. Haas and W. Wu, Probing gap plasmons down to subnanometer scales using collapsible nanofingers, ACS Nano, 11(6) (2017) 5836–5843.

    Article  Google Scholar 

  171. F. Liu, B. Song, G. Su, O. Liang, P. Zhan, H. Wang, W. Wu, Y. Xie and Z. Wang, Sculpting extreme electromagnetic field enhancement in free space for molecule sensing, Small, 14(33) (2018) 1801146.

    Article  Google Scholar 

  172. I. Kim, J. Mun, W. Hwang, Y. Yang and J. Rho, Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures, Microsystems & Nanoengineering, 6(1) (2020) 65.

    Article  Google Scholar 

  173. I. Kim, J. Mun, K. M. Baek, M. Kim, C. Hao, C.-W. Qiu, Y. S. Jung and J. Rho, Cascade domino lithography for extreme photon squeezing, Materials Today, 39(1) (2020) 89–97.

    Article  Google Scholar 

  174. K. H. Nam, I. H. Park and S. H. Ko, Patterning by controlled cracking, Nature, 485(7397) (2012) 221–224.

    Article  Google Scholar 

  175. V. Dubois, F. Niklaus and G. Stemme, Design and fabrication of crack-junctions, Microsystems & Nanoengineering, 3(1) (2017) 17042.

    Article  Google Scholar 

  176. V. Dubois, F. Niklaus and G. Stemme, Crack-defined electronic nanogaps, Advanced Materials, 28(11) (2016) 2178–2182.

    Article  Google Scholar 

  177. Q. Zhao, W. Wang, J. Shao, X. Li, H. Tian, L. Liu, X. Mei, Y. Ding and B. Lu, Nanoscale electrodes for flexible electronics by swelling controlled cracking, Advanced Materials, 28(30) (2016) 6337–6344.

    Article  Google Scholar 

  178. Y. Chen, Q. Xiang, Z. Li, Y. Wang, Y. Meng and H. Duan, “Sketch and peel” lithography for high-resolution multiscale patterning, Nano Letters, 16(5) (2016) 3253–3259.

    Article  Google Scholar 

  179. D. J. Beesley, J. Semple, L. Krishnan Jagadamma, A. Amassian, M. A. McLachlan, T. D. Anthopoulos and J. C. deMello, Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography, Nature Communications, 5(1) (2014) 3933.

    Article  Google Scholar 

  180. J. Semple, D. G. Georgiadou, G. Wyatt-Moon, M. Yoon, A. Seitkhan, E. Yengel, S. Rossbauer, F. Bottacchi, M. A. McLachlan, D. D. C. Bradley and T. D. Anthopoulos, Large-area plastic nanogap electronics enabled by adhesion lithography, npj Flexible Electronics, 2(1) (2018) 18.

    Article  Google Scholar 

  181. T. W. Park, M. Byun, H. Jung, G. R. Lee, J. H. Park, H. I. Jang, J. W. Lee, S. H. Kwon, S. Hong, J. H. Lee, Y. S. Jung, K. H. Kim and W. I. Park, Thermally assisted nanotransfer printing with sub-20-nm resolution and 8-inch wafer scalability, Science Advances, 6(31) (2020) eabb6462.

    Article  Google Scholar 

  182. W. Liu, Q. Zou, C. Zheng and C. Jin, Metal-assisted transfer strategy for construction of 2d and 3d nanostructures on an elastic substrate, ACS Nano, 13(1) (2019) 440–448.

    Article  Google Scholar 

  183. Y. U. Lee, G. B. M. Wisna, S.-W. Hsu, J. Zhao, M. Lei, S. Li, A. R. Tao and Z. Liu, Imaging of nanoscale light confinement in plasmonic nanoantennas by brownian optical microscopy, ACS Nano, 14(6) (2020) 7666–7672.

    Article  Google Scholar 

  184. M. Byun, D. Lee, M. Kim, Y. Kim, K. Kim, J. G. Ok, J. Rho and H. Lee, Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging, Scientific Reports, 7(1) (2017) 46314.

    Article  Google Scholar 

  185. D. Lee, Y. D. Kim, M. Kim, S. So, H.-J. Choi, J. Mun, D. M. Nguyen, T. Badloe, J. G. Ok and K. Kim, Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging, ACS Photonics, 5(7) (2017) 2549–2554.

    Article  Google Scholar 

  186. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal and X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies, Nature Communications, 1(1) (2010) 143.

    Article  Google Scholar 

  187. S. So and J. Rho, Geometrically flat hyperlens designed by transformation optics, J. of Physics D: Applied Physics, 52(19) (2019) 194003.

    Article  Google Scholar 

  188. M. A. May, D. Fialkow, T. Wu, K. D. Park, H. Leng, J. A. Kropp, T. Gougousi, P. Lalanne, M. Pelton and M. B. Raschke, Nano-cavity qed with tunable nano-tip interaction, Advanced Quantum Technologies, 3(2) (2020) 1900087.

    Article  Google Scholar 

  189. X. Han, K. Wang, X. Xing, M. Wang and P. Lu, Rabi splitting in a plasmonic nanocavity coupled to a ws2 monolayer at room temperature, ACS Photonics, 5(10) (2018) 3970–3976.

    Article  Google Scholar 

  190. M. Uemoto and H. Ajiki, Large and well-defined rabi splitting in a semiconductor nanogap cavity, Optics Express, 22(19) (2014) 22470–22478.

    Article  Google Scholar 

  191. Y.-H. Hsieh, B.-W. Hsu, K.-N. Peng, K.-W. Lee, C. W. Chu, S.-W. Chang, H.-W. Lin, T.-J. Yen and Y.-J. Lu, Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold, ACS Nano, 14(9) (2020) 11670–11676.

    Article  Google Scholar 

  192. J.-B. Kwon, S.-W. Kim, B.-H. Kang, S.-H. Yeom, W.-H. Lee, D.-H. Kwon, J.-S. Lee and S.-W. Kang, Air-stable and ultrasensitive solution-cast swir photodetectors utilizing modified core/shell colloidal quantum dots, Nano Convergence, 7(1) (2020) 28.

    Article  Google Scholar 

  193. X. Yan and H. Wei, Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer wse 2, Nanoscale, 12(17) (2020) 9708–9716.

    Article  Google Scholar 

  194. A. Das, K. Bae and W. Park, Enhancement of upconversion luminescence using photonic nanostructures, Nanophotonics, 9(6) (2020) 1359–1371.

    Article  Google Scholar 

  195. C. Gong, W. Liu, N. He, H. Dong, Y. Jin and S. He, Upconversion enhancement by a dual-resonance all-dielectric metasurface, Nanoscale, 11(4) (2019) 1856–1862.

    Article  Google Scholar 

  196. C. Wurth, P. Manley, R. Voigt, D. Ahiboz, C. Becker and U. Resch-Genger, Metasurface enhanced sensitized photon up-conversion: toward highly efficient low power upconversion applications and nanoscale e-field sensors, Nano Letters, 20(9) (2020) 6682–6689.

    Article  Google Scholar 

  197. S. Kim, H. Jung, Y. Kim, J. Jang and J. W. Hahn, Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch, Advanced Materials, 24(44) (2012) OP337–OP344.

    Google Scholar 

  198. A. Gee, A. H. Jaafar, B. Brachnakova, J. Massey, C. H. Marrows, I. Salitros and N. T. Kemp, Multilevel resistance switching and enhanced spin transition temperature in single and double molecule spin crossover nanogap devices, The J. of Physical Chemistry C, 124(24) (2020) 13393–13399.

    Article  Google Scholar 

  199. X. Ji, K. Y. Pang and R. Zhao, Decoding the metallic bridging dynamics in nanogap atomic switches, Nanoscale, 11(46) (2019) 22446–22455.

    Article  Google Scholar 

  200. Y.-W. Cho, J.-H. Park, K.-H. Lee, T. Lee, Z. Luo and T.-H. Kim, Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells, Nano Convergence, 7(1) (2020) 40.

    Article  Google Scholar 

  201. C. Jung, Y. Yang, J. Jang, T. Badloe, T. Lee, J. Mun, S.-W. Moon and J. Rho, Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability, Nanophotonics, 10(2) (2021) 919–926.

    Article  Google Scholar 

  202. G. Yoon, K. Kim, S.-U. Kim, S. Han, H. Lee and J. Rho, Printable nanocomposite metalens for high-contrast near-infrared imaging, ACS Nano (2021) (Article ASAP) DOI: https://doi.org/10.1021/acsnano.0c06968.

Download references

Acknowledgments

This work was financially supported by the National Research Foundation (NRF) grant (CAMM-2019M3A6B3030637) funded by the Ministry of Science and ICT of the Korean government. I.K. acknowledges the NRF Global Ph.D. fellowship (NRF-2016H1A2A1906519) funded by the Ministry of Education of the Korean government. Y.K acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsuk Rho.

Additional information

Recommended by Editor Chang-Soo Han

Dong Kyo Oh obtained his B.S. (2017) and M.S. (2019) in Mechanical and Automotive Engineering from Seoul National University of Science and Technology (SEOULTECH). Currently, he is a Ph.D. student in Mechanical Engineering at Pohang University of Science and Technology (POSTECH), Republic of Korea. His research is mainly focused on flat optics based on metasurfaces, nanofabrication of metamaterials, and alternative nanofabrication.

Joohoon Kim obtained his B.S. (2021) in Mechanical Engineering from POSTECH. Currently, he is an M.S./Ph.D. student in Mechanical Engineering at POSTECH. His research is mainly focused on nano-fabrication, metasurface holography, and active metasurfaces.

Heonyeong Jeong obtained his B.S. (2017) in Mechanical Engineering from POSTECH. Currently, he is a Ph.D. candidate in Mechanical Engineering at POSTECH. His research is mainly focused on nanofabrication, dielectric metasurfaces.

Yeseul Kim obtained her B.S. (2020) in Materials Science and Engineering from POSTECH. Currently, she is an M.S./Ph.D. student in Mechanical Engineering at POSTECH. Her research is mainly focused on topological photonics and flat optics based on metasurface.

Inki Kim obtained his B.S. (2015) in Mechanical Engineering from Ulsan National Institute of Science and Technology (UNIST) and Ph.D. (2021) in Mechanical Engineering at POSTECH. His research is mainly focused on metamaterials, metasurfaces, holograms, dynamic metasurfaces, and nanofabrication process.

Jong G. Ok is currently an Associate Professor of Mechanical and Automotive Engineering at SEOULTECH. He received his B.S. (2002) and M.S. (2007) in Mechanical and Aerospace Engineering at Seoul National University and Ph.D. (2013) in Mechanical Engineering at the University of Michigan, Ann Arbor. His research focuses on smart and scalable nanomanufacturing and multiscale hybrid nanoarchitecturing.

Junsuk Rho is currently a Mu-En-Jae endowed chair Associate Professor with a joint appointment in Mechanical Engineering and Chemical Engineering at POSTECH. His research is focused on developing novel nanophotonic materials and devices based on fundamental physics and experimental studies of deep sub-wavelength light-matter interaction. He received his B.S. (2007), M.S (2008), Ph.D. (2013) all in Mechanical Engineering at Seoul National University, University of Illinois, Urbana-Champaign, University of California, Berkeley, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, D.K., Jeong, H., Kim, J. et al. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. J Mech Sci Technol 35, 837–859 (2021). https://doi.org/10.1007/s12206-021-0243-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0243-7

Keywords

Navigation