ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes

View Author Information
Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
Department of Electrical Engineering and Computer Sciences and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
§ Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
Department of Chemistry, Department of Material Science & NanoEngineering, and The Smalley Institute for Nanoscale Science & Technology, Rice University, Houston, Texas 77005, United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2015, 9, 4, 4465–4474
Publication Date (Web):March 24, 2015
https://doi.org/10.1021/acsnano.5b01060
Copyright © 2015 American Chemical Society

    Article Views

    6954

    Altmetric

    -

    Citations

    229
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of microelectrodes capable of safely stimulating and recording neural activity is a critical step in the design of many prosthetic devices, brain–machine interfaces, and therapies for neurologic or nervous-system-mediated disorders. Metal electrodes are inadequate prospects for the miniaturization needed to attain neuronal-scale stimulation and recording because of their poor electrochemical properties, high stiffness, and propensity to fail due to bending fatigue. Here we demonstrate neural recording and stimulation using carbon nanotube (CNT) fiber electrodes. In vitro characterization shows that the tissue contact impedance of CNT fibers is remarkably lower than that of state-of-the-art metal electrodes, making them suitable for recording single-neuron activity without additional surface treatments. In vivo chronic studies in parkinsonian rodents show that CNT fiber microelectrodes stimulate neurons as effectively as metal electrodes with 10 times larger surface area, while eliciting a significantly reduced inflammatory response. The same CNT fiber microelectrodes can record neural activity for weeks, paving the way for the development of novel multifunctional and dynamic neural interfaces with long-term stability.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional figures and experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 229 publications.

    1. Mengying Yan, Lulu Wang, Yiyong Wu, Xin Liao, Cheng Zhong, Liping Wang, Yi Lu. Conducting Polymer-Hydrogel Interpenetrating Networks for Improving the Electrode–Neural Interface. ACS Applied Materials & Interfaces 2023, 15 (35) , 41310-41323. https://doi.org/10.1021/acsami.3c07189
    2. Gerardo Montoya, Klaudia Wagner, Gregory Ryder, Aida Shoushtari Zadeh Naseri, Shaikh Nayeem Faisal, Vitor Sencadas, Marc in het Panhuis, Geoffrey M. Spinks, Gordon G. Wallace, Gursel Alici, David L. Officer. Edge-Functionalized Graphene/Polydimethylsiloxane Composite Films for Flexible Neural Cuff Electrodes. ACS Applied Materials & Interfaces 2023, 15 (32) , 38833-38845. https://doi.org/10.1021/acsami.3c07525
    3. Guangzhao Tian, Dan Yang, Chunrong Chen, Xiaoge Duan, Dong-Hwan Kim, Hailan Chen. Simultaneous Presentation of Dexamethasone and Nerve Growth Factor via Layered Carbon Nanotubes and Polypyrrole to Interface Neural Cells. ACS Biomaterials Science & Engineering 2023, 9 (8) , 5015-5027. https://doi.org/10.1021/acsbiomaterials.3c00593
    4. Sumin Kim, Yong Won Kwon, Hunkyu Seo, Won Gi Chung, Enji Kim, Wonjung Park, Hayoung Song, Dong Ha Lee, Jakyoung Lee, Sanghoon Lee, Kyeonghee Lim, Inhea Jeong, Dong-Yeon Jo, Jang-Ung Park. Materials and Structural Designs for Neural Interfaces. ACS Applied Electronic Materials 2023, 5 (4) , 1926-1946. https://doi.org/10.1021/acsaelm.2c01608
    5. Chuanrui Chen, Jianyou Feng, Jiaxin Li, Yue Guo, Xiang Shi, Huisheng Peng. Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews 2023, 123 (2) , 613-662. https://doi.org/10.1021/acs.chemrev.2c00192
    6. André F. Girão, María Concepcion Serrano, António Completo, Paula A. A. P. Marques. Is Graphene Shortening the Path toward Spinal Cord Regeneration?. ACS Nano 2022, 16 (9) , 13430-13467. https://doi.org/10.1021/acsnano.2c04756
    7. Chethani K. Ruhunage, Vaishnavi Dhawan, Tucker J. McKenzie, Abdul Hoque, Connor E. Rahm, Chaminda P. Nawarathne, Neil Ayres, Xinyan Tracy Cui, Noe T. Alvarez. Hydrophilic Micro- and Macroelectrodes with Antibiofouling Properties for Biomedical Applications. ACS Biomaterials Science & Engineering 2022, 8 (7) , 2920-2931. https://doi.org/10.1021/acsbiomaterials.2c00173
    8. Shuangjie Liu, Ling Liu, Yue Zhao, Yang Wang, Yingpeng Wu, Xiao-Dong Zhang, Dong Ming. A High-Performance Electrode Based on van der Waals Heterostructure for Neural Recording. Nano Letters 2022, 22 (11) , 4400-4409. https://doi.org/10.1021/acs.nanolett.2c00848
    9. Yoonseok Park, Ted S. Chung, Geumbee Lee, John A. Rogers. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews 2022, 122 (5) , 5277-5316. https://doi.org/10.1021/acs.chemrev.1c00639
    10. Lauren W. Taylor, Steven M. Williams, J. Stephen Yan, Oliver S. Dewey, Flavia Vitale, Matteo Pasquali. Washable, Sewable, All-Carbon Electrodes and Signal Wires for Electronic Clothing. Nano Letters 2021, 21 (17) , 7093-7099. https://doi.org/10.1021/acs.nanolett.1c01039
    11. Pankaj Gupta, Connor E. Rahm, Benjamin Griesmer, Noe T. Alvarez. Carbon Nanotube Microelectrode Set: Detection of Biomolecules to Heavy Metals. Analytical Chemistry 2021, 93 (20) , 7439-7448. https://doi.org/10.1021/acs.analchem.1c00360
    12. Manishkumar D. Yadav, Kinshuk Dasgupta. Kinetics of Carbon Nanotube Aerogel Synthesis using Floating Catalyst Chemical Vapor Deposition. Industrial & Engineering Chemistry Research 2021, 60 (5) , 2187-2196. https://doi.org/10.1021/acs.iecr.0c05742
    13. Noe T. Alvarez, Elke Buschbeck, Sydney Miller, Anh Duc Le, Vandna K. Gupta, Chethani Ruhunage, Ilya Vilinsky, Yishan Ma. Carbon Nanotube Fibers for Neural Recording and Stimulation. ACS Applied Bio Materials 2020, 3 (9) , 6478-6487. https://doi.org/10.1021/acsabm.0c00861
    14. Linlin Lu, Xuefeng Fu, Yijuin Liew, Yongyi Zhang, Siyuan Zhao, Zheng Xu, Jingna Zhao, Da Li, Qingwen Li, Garrett B. Stanley, Xiaojie Duan. Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers. Nano Letters 2019, 19 (3) , 1577-1586. https://doi.org/10.1021/acs.nanolett.8b04456
    15. Melinda Hersey, Shane N. Berger, Jordan Holmes, Alyssa West, Parastoo Hashemi. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Analytical Chemistry 2019, 91 (1) , 27-43. https://doi.org/10.1021/acs.analchem.8b05151
    16. Rahul Rao, Cary L. Pint, Ahmad E. Islam, Robert S. Weatherup, Stephan Hofmann, Eric R. Meshot, Fanqi Wu, Chongwu Zhou, Nicholas Dee, Placidus B. Amama, Jennifer Carpena-Nuñez, Wenbo Shi, Desiree L. Plata, Evgeni S. Penev, Boris I. Yakobson, Perla B. Balbuena, Christophe Bichara, Don N. Futaba, Suguru Noda, Homin Shin, Keun Su Kim, Benoit Simard, Francesca Mirri, Matteo Pasquali, Francesco Fornasiero, Esko I. Kauppinen, Michael Arnold, Baratunde A. Cola, Pavel Nikolaev, Sivaram Arepalli, Hui-Ming Cheng, Dmitri N. Zakharov, Eric A. Stach, Jin Zhang, Fei Wei, Mauricio Terrones, David B. Geohegan, Benji Maruyama, Shigeo Maruyama, Yan Li, W. Wade Adams, A. John Hart. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12 (12) , 11756-11784. https://doi.org/10.1021/acsnano.8b06511
    17. Nicolette Driscoll, Andrew G. Richardson, Kathleen Maleski, Babak Anasori, Oladayo Adewole, Pavel Lelyukh, Lilia Escobedo, D. Kacy Cullen, Timothy H. Lucas, Yury Gogotsi, Flavia Vitale. Two-Dimensional Ti3C2 MXene for High-Resolution Neural Interfaces. ACS Nano 2018, 12 (10) , 10419-10429. https://doi.org/10.1021/acsnano.8b06014
    18. Junchuan Yang, Mingde Du, Le Wang, Sixiang Li, Guorui Wang, Xinglong Yang, Lijuan Zhang, Ying Fang, Wenfu Zheng, Guang Yang, Xingyu Jiang. Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Interfaces 2018, 10 (39) , 33049-33059. https://doi.org/10.1021/acsami.8b12083
    19. Mohammed Adnan, Daniel M. Marincel, Olga Kleinerman, Sang-Hyon Chu, Cheol Park, Samuel J.A. Hocker, Catharine Fay, Sivaram Arepalli, Yeshayahu Talmon, Matteo Pasquali. Extraction of Boron Nitride Nanotubes and Fabrication of Macroscopic Articles Using Chlorosulfonic Acid. Nano Letters 2018, 18 (3) , 1615-1619. https://doi.org/10.1021/acs.nanolett.7b04335
    20. Jingjing Zhang, Junyu Zhou, Rongrong Pan, Dechen Jiang, James D. Burgess, and Hong-Yuan Chen . New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sensors 2018, 3 (2) , 242-250. https://doi.org/10.1021/acssensors.7b00711
    21. Flavia Vitale, Daniel G. Vercosa, Alexander V. Rodriguez, Sushma Sri Pamulapati, Frederik Seibt, Eric Lewis, J. Stephen Yan, Krishna Badhiwala, Mohammed Adnan, Gianni Royer-Carfagni, Michael Beierlein, Caleb Kemere, Matteo Pasquali, and Jacob T. Robinson . Fluidic Microactuation of Flexible Electrodes for Neural Recording. Nano Letters 2018, 18 (1) , 326-335. https://doi.org/10.1021/acs.nanolett.7b04184
    22. Fengluan Wu, Long Jin, Xiaotong Zheng, Bingyun Yan, Pandeng Tang, Huikai Yang, Weili Deng, and Weiqing Yang . Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation. ACS Applied Materials & Interfaces 2017, 9 (44) , 38323-38335. https://doi.org/10.1021/acsami.7b12854
    23. Ruixin Li, Xiaomeng Liu, Wanling Qiu, and Meining Zhang . In Vivo Monitoring of H2O2 with Polydopamine and Prussian Blue-coated Microelectrode. Analytical Chemistry 2016, 88 (15) , 7769-7776. https://doi.org/10.1021/acs.analchem.6b01765
    24. Christopher J. Serpell, Kostas Kostarelos, and Benjamin G. Davis . Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Central Science 2016, 2 (4) , 190-200. https://doi.org/10.1021/acscentsci.6b00005
    25. Juan J. Vilatela and Rebeca Marcilla . Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devices. Chemistry of Materials 2015, 27 (20) , 6901-6917. https://doi.org/10.1021/acs.chemmater.5b02783
    26. Haisheng Xia, Yuchong Zhang, Nona Rajabi, Farzaneh Taleb, Qunting Yang, Danica Kragic, Zhijun Li. Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46249-0
    27. Woojin Jeon, Jae Myeong Lee, Yeji Kim, Yunheum Lee, Joonhee Won, Somin Lee, Wonkyeong Son, Yong Hoe Koo, Ji‐Won Hong, Hocheol Gwac, Jinmyoung Joo, Seon Jeong Kim, Changsoon Choi, Seongjun Park. Structurally Aligned Multifunctional Neural Probe (SAMP) Using Forest‐Drawn CNT Sheet onto Thermally Drawn Polymer Fiber for Long‐Term In Vivo Operation. Advanced Materials 2024, 20 https://doi.org/10.1002/adma.202313625
    28. Yun Ho Jeong, Mina Kwon, Sangsoo Shin, Jaegeun Lee, Ki Su Kim. Biomedical Applications of CNT-Based Fibers. Biosensors 2024, 14 (3) , 137. https://doi.org/10.3390/bios14030137
    29. Yannan Zhou, Georgina H. Burgoyne Morris, Malavika Nair. Current and emerging strategies for biocompatible materials for implantable electronics. Cell Reports Physical Science 2024, 67 , 101852. https://doi.org/10.1016/j.xcrp.2024.101852
    30. Shuangjie Liu, Yang Wang, Yue Zhao, Ling Liu, Si Sun, Shaofang Zhang, Haile Liu, Shuhu Liu, Yonghui Li, Fan Yang, Menglu Jiao, Xinyu Sun, Yuqin Zhang, Renpeng Liu, Xiaoyu Mu, Hao Wang, Shu Zhang, Jiang Yang, Xi Xie, Xiaojie Duan, Jianning Zhang, Guosong Hong, Xiao‐Dong Zhang, Dong Ming. A Nanozyme‐Based Electrode for High‐Performance Neural Recording. Advanced Materials 2024, 36 (6) https://doi.org/10.1002/adma.202304297
    31. Ze-Qing Liu, Xiang-Yang Yu, Jing Huang, Xin-Yi Wu, Zi-Yu Wang, Ben-Peng Zhu. A review: flexible devices for nerve stimulation. Soft Science 2024, 4 (1) https://doi.org/10.20517/ss.2023.36
    32. Chunlian Qin, Qunchen Yuan, Mengxue Liu, Liujing Zhuang, Lizhou Xu, Ping Wang. Biohybrid tongue based on hypothalamic neuronal network-on-a-chip for real-time blood glucose sensing and assessment. Biosensors and Bioelectronics 2024, 244 , 115784. https://doi.org/10.1016/j.bios.2023.115784
    33. Sung-Hyuk Sunwoo, Sang Ihn Han, Chan Soon Park, Jeong Hyun Kim, Joanna S. Georgiou, Seung-Pyo Lee, Dae-Hyeong Kim, Taeghwan Hyeon. Soft bioelectronics for the management of cardiovascular diseases. Nature Reviews Bioengineering 2024, 2 (1) , 8-24. https://doi.org/10.1038/s44222-023-00102-z
    34. Mijin Kim, Dana Goerzen, Prakrit V. Jena, Emma Zeng, Matteo Pasquali, Rachel A. Meidl, Daniel A. Heller. Human and environmental safety of carbon nanotubes across their life cycle. Nature Reviews Materials 2024, 9 (1) , 63-81. https://doi.org/10.1038/s41578-023-00611-8
    35. Seungwon Yoo, Minjeong Kim, Changsoon Choi, Dae‐Hyeong Kim, Gi Doo Cha. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Advanced Healthcare Materials 2023, 14 https://doi.org/10.1002/adhm.202303563
    36. Wenlu Duan, Ulises Aregueta Robles, Laura Poole‐Warren, Dorna Esrafilzadeh. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. Advanced Science 2023, 39 https://doi.org/10.1002/advs.202306275
    37. Leili Shabani, Milad Abbasi, Zeynab Azarnew, Ali Mohammad Amani, Ahmad Vaez. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. BioMedical Engineering OnLine 2023, 22 (1) https://doi.org/10.1186/s12938-022-01062-y
    38. Hongbian Li, Jinfen Wang, Ying Fang. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsystems & Nanoengineering 2023, 9 (1) https://doi.org/10.1038/s41378-022-00444-5
    39. Chuang Wang, Yiqi Liao, Hou-Yong Yu, Yanjuan Dong, Juming Yao. Homogeneous wet-spinning construction of skin-core structured PANI/cellulose conductive fibers for gas sensing and e-textile applications. Carbohydrate Polymers 2023, 319 , 121175. https://doi.org/10.1016/j.carbpol.2023.121175
    40. Sangjun Sim, Hyogeun Shin, Kyubin Bae, Hyunjun Han, Yunsung Kang, Jiwan Woo, Yakdol Cho, Il-Joo Cho, Jongbaeg Kim. Neural probe integrated with low-impedance electrodes implemented using vertically aligned carbon nanotubes for three-dimensional mapping of neural signals. Sensors and Actuators B: Chemical 2023, 393 , 134124. https://doi.org/10.1016/j.snb.2023.134124
    41. Qi Zeng, Zhaoling Huang. Challenges and Opportunities of Implantable Neural Interfaces: From Material, Electrochemical and Biological Perspectives. Advanced Functional Materials 2023, 33 (32) https://doi.org/10.1002/adfm.202301223
    42. Qinyi Zhao, Ming Zhu, Gongwei Tian, Cuiyuan Liang, Zhiyuan Liu, Jianping Huang, Qianheng Yuan Yu, Shuanglong Tang, Jianhui Chen, Xizheng Zhao, Qi Zeng, Chongshen Guo, Dianpeng Qi. Highly Sensitive and Omnidirectionally Stretchable Bioelectrode Arrays for In Vivo Neural Interfacing. Advanced Healthcare Materials 2023, 12 (18) https://doi.org/10.1002/adhm.202203344
    43. Lan Luan, Rongkang Yin, Hanlin Zhu, Chong Xie. Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity. Annual Review of Biomedical Engineering 2023, 25 (1) , 185-205. https://doi.org/10.1146/annurev-bioeng-090622-050507
    44. Guoyin Chen, Siming Xu, Qiangqiang Zhou, Yuejiao Zhang, Yuhan Song, Jing Mi, Yuehua Liu, Kai Hou, Jie Pan. Temperature-Gated Light-Guiding Hydrogel Fiber for Thermoregulation During Optogenetic Neuromodulation. Advanced Fiber Materials 2023, 5 (3) , 968-978. https://doi.org/10.1007/s42765-023-00257-9
    45. Chethani Ruhunage, Vaishnavi Dhawan, Chaminda P. Nawarathne, Abdul Hoque, Xinyan Tracy Cui, Noe T. Alvarez. Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications. Bioengineering 2023, 10 (6) , 647. https://doi.org/10.3390/bioengineering10060647
    46. Jiabin Wang, Jiawang Ding, Wei Qin. An all-solid-state potentiometric microsensor for real-time monitoring of the calcification process by Bacillus subtilis biofilms. Sensors & Diagnostics 2023, 2 (3) , 640-646. https://doi.org/10.1039/D3SD00017F
    47. Andrea R. Pack, Jiaxi S. Yan, Mateo Pasquali, Samuel J. Sober, Coen P. H. Elemans. A flexible carbon nanotube electrode array for acute in vivo EMG recordings. Journal of Neurophysiology 2023, 129 (3) , 651-661. https://doi.org/10.1152/jn.00262.2022
    48. Christina M. Tringides, Marjolaine Boulingre, Andrew Khalil, Tenzin Lungjangwa, Rudolf Jaenisch, David J. Mooney. Tunable Conductive Hydrogel Scaffolds for Neural Cell Differentiation. Advanced Healthcare Materials 2023, 12 (7) https://doi.org/10.1002/adhm.202202221
    49. Yiqun Liu, Qi Yu, Li Yang, Yue Cui. Materials and Biomedical Applications of Implantable Electronic Devices. Advanced Materials Technologies 2023, 8 (4) https://doi.org/10.1002/admt.202200853
    50. Artur Filipe Rodrigues, Ana P. M. Tavares, Susana Simões, Rui P. F. F. Silva, Tomás Sobrino, Bruno R. Figueiredo, Goreti Sales, Lino Ferreira. Engineering graphene-based electrodes for optical neural stimulation. Nanoscale 2023, 15 (2) , 687-706. https://doi.org/10.1039/D2NR05256C
    51. Mohammad Karbalaei Akbari, Nasrin Siraj Lopa, Marina Shahriari, Aliasghar Najafzadehkhoee, Dušan Galusek, Serge Zhuiykov. Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing. Journal of Functional Biomaterials 2023, 14 (1) , 35. https://doi.org/10.3390/jfb14010035
    52. Yi Dai, Minghui Du, Lu Huang, Jiajun Zheng, Lei Wei, Jianrong Qiu, Chaoran Ren, Shifeng Zhou. Multimaterial Glass Fiber Probe for Deep Neural Stimulation and Detection. Advanced Optical Materials 2023, 11 (2) https://doi.org/10.1002/adom.202202184
    53. Victor Ya. Prinz, Konstantin B. Fritzler. 3D Printed Biohybrid Microsystems. Advanced Materials Technologies 2023, 8 (2) https://doi.org/10.1002/admt.202101633
    54. Anastasiia Mikhalchan, Afshin Pendashteh, Juan J. Vilatela. Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking. 2023, 193-251. https://doi.org/10.1016/bs.ache.2023.07.001
    55. Elisa Castagnola, X. Sally Zheng, X. Tracy Cui. Flexible and Soft Materials and Devices for Neural Interface. 2023, 79-139. https://doi.org/10.1007/978-981-16-5540-1_5
    56. Nuan Chen, Seeram Ramakrishna, Nitish V. Thakor. Nanostructured Platforms Interfacing with Nervous System. 2023, 507-530. https://doi.org/10.1007/978-981-16-5540-1_17
    57. Daiki Ando, Tetsuhiko F. Teshima, Francisco Zurita, Hu Peng, Kota Ogura, Kenji Kondo, Lennart Weiß, Ayumi Hirano-Iwata, Markus Becherer, Joe Alexander, Bernhard Wolfrum. Filtration-processed biomass nanofiber electrodes for flexible bioelectronics. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01684-3
    58. Bo Fang, Jianmin Yan, Dan Chang, Jinli Piao, Kit Ming Ma, Qiao Gu, Ping Gao, Yang Chai, Xiaoming Tao. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29773-9
    59. Zhejun Guo, Fang Wang, Longchun Wang, Kejun Tu, Chunpeng Jiang, Ye Xi, Wen Hong, Qingda Xu, Xiaolin Wang, Bin Yang, Bomin Sun, Zude Lin, Jingquan Liu. A flexible neural implant with ultrathin substrate for low-invasive brain–computer interface applications. Microsystems & Nanoengineering 2022, 8 (1) https://doi.org/10.1038/s41378-022-00464-1
    60. Dongyang Yi, Yao Yao, Yi Wang, Lei Chen. Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-Of-the-Art Review. Journal of Micro- and Nano-Manufacturing 2022, 10 (4) https://doi.org/10.1115/1.4063179
    61. Gyeong‐Tak Go, Yeongjun Lee, Dae‐Gyo Seo, Tae‐Woo Lee. Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics. Advanced Materials 2022, 34 (45) https://doi.org/10.1002/adma.202201864
    62. Miao Xiao, Xiaoyun Li, Simone Pifferi, Beatrice Pastore, Yun Liu, Marco Lazzarino, Vincent Torre, Xiaowei Yang, Anna Menini, Mingliang Tang. 2D MXene interfaces preserve the basal electrophysiology of targeted neural circuits. Nanoscale 2022, 14 (30) , 10992-11002. https://doi.org/10.1039/D2NR01542K
    63. Gary Kwok Ki Chik, Na Xiao, Xudong Ji, Anderson Chun On Tsang, Gilberto Ka Kit Leung, Shiming Zhang, Chung Tin, Paddy Kwok Leung Chan. Flexible Multichannel Neural Probe Developed by Electropolymerization for Localized Stimulation and Sensing. Advanced Materials Technologies 2022, 7 (8) https://doi.org/10.1002/admt.202200143
    64. Jian Xiong, Bin Zhang, Andrew Balilonda, Shengyuan Yang, Kerui Li, Qinghong Zhang, Yaogang Li, Hongzhi Wang, Chengyi Hou. Graphene-based implantable neural electrodes for insect flight control. Journal of Materials Chemistry B 2022, 10 (24) , 4632-4639. https://doi.org/10.1039/D2TB00906D
    65. Christopher Frewin, Mohamad Beygi, Evans Bernardin, Chen Yin Feng, Francesco La Via, William Dominguez-Viqueria, Stephen E. Saddow. The Development of Monolithic Silicon Carbide Intracortical Neural Interfaces for Long-Term Human Implantation. Materials Science Forum 2022, 1062 , 195-203. https://doi.org/10.4028/p-a08hju
    66. Shu Zhang, Jinbo Pang, Yufen Li, Feng Yang, Thomas Gemming, Kai Wang, Xiao Wang, Songang Peng, Xiaoyan Liu, Bin Chang, Hong Liu, Weijia Zhou, Gianaurelio Cuniberti, Mark H. Rümmeli. Emerging Internet of Things driven carbon nanotubes-based devices. Nano Research 2022, 15 (5) , 4613-4637. https://doi.org/10.1007/s12274-021-3986-7
    67. Christina M. Tringides, David J. Mooney. Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Advanced Materials 2022, 34 (20) https://doi.org/10.1002/adma.202107207
    68. Qi Zeng, Xiaojian Li, Shiyun Zhang, Chunshan Deng, Tianzhun Wu. Think big, see small—A review of nanomaterials for neural interfaces. Nano Select 2022, 3 (5) , 903-918. https://doi.org/10.1002/nano.202100256
    69. Zhiyuan Xiong, Wenhui Huang, Qinghua Liang, Yang Cao, Shuyi Liu, Zicong He, Ranran Zhang, Bin Zhang, Rylie Green, Shuixing Zhang, Dan Li. Harnessing the 2D Structure‐Enabled Viscoelasticity of Graphene‐Based Hydrogel Membranes for Chronic Neural Interfacing. Small Methods 2022, 6 (5) https://doi.org/10.1002/smtd.202200022
    70. Yue Guo, Chuanrui Chen, Jianyou Feng, Liyuan Wang, Jiajia Wang, Chengqiang Tang, Xuemei Sun, Huisheng Peng. An Anti‐Biofouling Flexible Fiber Biofuel Cell Working in the Brain. Small Methods 2022, 6 (5) https://doi.org/10.1002/smtd.202200142
    71. O. I. Bolshakova, A. D. Slobodina, S. V. Sarantseva. Carbon Nanoparticles as Promising Neuroprotectors: Pro et Contra. II. Application of Carbon Nanoparticles in Neurobiology and Neurology. Nanobiotechnology Reports 2022, 17 (2) , 141-154. https://doi.org/10.1134/S2635167622020069
    72. Cuiyuan Liang, Yan Liu, Weihong Lu, Gongwei Tian, Qinyi Zhao, Dan Yang, Jing Sun, Dianpeng Qi. Strategies for interface issues and challenges of neural electrodes. Nanoscale 2022, 14 (9) , 3346-3366. https://doi.org/10.1039/D1NR07226A
    73. Huiqing Zhao, Ruping Liu, Huiling Zhang, Peng Cao, Zilong Liu, Ye Li. Research Progress on the Flexibility of an Implantable Neural Microelectrode. Micromachines 2022, 13 (3) , 386. https://doi.org/10.3390/mi13030386
    74. Stephen Saddow. Silicon Carbide Technology for Advanced Human Healthcare Applications. Micromachines 2022, 13 (3) , 346. https://doi.org/10.3390/mi13030346
    75. Xiao Yu, Runhuan Li, Jiangyuan Su, Jiaojiao Wang, Xiaohua Zhang, Yao Chen, Yani Kang, Xinyu Chai, Xiaohong Sui. Objective neuromodulation basis for intrafascicular artificial somatosensation through carbon nanotube yarn electrodes. Journal of Neuroscience Methods 2022, 369 , 109481. https://doi.org/10.1016/j.jneumeth.2022.109481
    76. Qian Gong, Yingying Yu, Lixing Kang, Mingchao Zhang, Yingying Zhang, Shanshan Wang, Yutao Niu, Yongyi Zhang, Jiangtao Di, Qingwen Li, Jin Zhang. Modulus‐Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Advanced Functional Materials 2022, 32 (11) https://doi.org/10.1002/adfm.202107360
    77. Minghao Wang, Ye Fan, Lili Li, Fei Wen, Bangbang Guo, Minyi Jin, Jiahui Xu, Yuhao Zhou, Xiaoyang Kang, Bowen Ji, Yuhua Cheng, Gaofeng Wang. Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating. Micromachines 2022, 13 (2) , 199. https://doi.org/10.3390/mi13020199
    78. Bernadette A. Miao, Lingyuan Meng, Bozhi Tian. Biology-guided engineering of bioelectrical interfaces. Nanoscale Horizons 2022, 7 (2) , 94-111. https://doi.org/10.1039/D1NH00538C
    79. Artur Filipe Rodrigues, Catarina Rebelo, Tiago Reis, João André Sousa, Sónia L. C. Pinho, João Sargento-Freitas, João Peça, Lino Ferreira. Therapeutic Approaches for Stroke: A Biomaterials Perspective. 2022, 185-218. https://doi.org/10.1007/978-3-030-81400-7_8
    80. Ashwin Kumar N, Gowri Annasamy, Pavani Rekulapally, Suresh S N, Saravanan Krishnan. Nanotechnology interventions in neuroscience: current perspectives and strategies. 2022, 255-289. https://doi.org/10.1016/B978-0-12-824408-1.00015-6
    81. Sadaf Usmani, Laura Ballerini. Nanostructures to Potentiate Axon Navigation and Regrowth in the Damaged Central Nervous Tissue. 2022, 79-97. https://doi.org/10.1007/978-3-030-81400-7_4
    82. Xuefeng Fu, Gen Li, Yutao Niu, Jingcao Xu, Puxin Wang, Zhaoxiao Zhou, Ziming Ye, Xiaojun Liu, Zheng Xu, Ziqian Yang, Yongyi Zhang, Ting Lei, Baogui Zhang, Qingwen Li, Anyuan Cao, Tianzai Jiang, Xiaojie Duan. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes. Frontiers in Neuroscience 2021, 15 https://doi.org/10.3389/fnins.2021.771980
    83. Yu Huan, Jeffrey P Gill, Johanna B Fritzinger, Paras R Patel, Julianna M Richie, Elena Della Valle, James D Weiland, Cynthia A Chestek, Hillel J Chiel. Carbon fiber electrodes for intracellular recording and stimulation. Journal of Neural Engineering 2021, 18 (6) , 066033. https://doi.org/10.1088/1741-2552/ac3dd7
    84. Elke K. Buschbeck, Anh Duc Le, Carly Kelley, Md Abdul Hoque, Noe T. Alvarez. Functionalized carbon nanotube microfibers for chronic neural implants. Journal of Neuroscience Methods 2021, 364 , 109370. https://doi.org/10.1016/j.jneumeth.2021.109370
    85. Sisi He, Yang Hong, Meng Liao, Yingchun Li, Longbin Qiu, Huisheng Peng. Flexible sensors based on assembled carbon nanotubes. Aggregate 2021, 2 (6) https://doi.org/10.1002/agt2.143
    86. Venkata Suresh Vajrala, Valentin Saunier, Lionel G. Nowak, Emmanuel Flahaut, Christian Bergaud, Ali Maziz. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.780197
    87. RaviPrakash Magisetty, Naga Srilatha Cheekuramelli, , and Radhamanohar Aepuru. Functionalized Carbon Nano Lab‐on‐a‐Chip Devices for Environment. 2021, 265-282. https://doi.org/10.1002/9783527830978.ch11
    88. Jejung Kim, Yongjun Lee, Minpyo Kang, Luhing Hu, Songfang Zhao, Jong‐Hyun Ahn. 2D Materials for Skin‐Mountable Electronic Devices. Advanced Materials 2021, 33 (47) https://doi.org/10.1002/adma.202005858
    89. Yo Han Cho, Young‐Geun Park, Sumin Kim, Jang‐Ung Park. 3D Electrodes for Bioelectronics. Advanced Materials 2021, 33 (47) https://doi.org/10.1002/adma.202005805
    90. Peng Wang, Benjamin Barnes, Zhongjie Huang, Ziyi Wang, Ming Zheng, YuHuang Wang. Beyond Color: The New Carbon Ink. Advanced Materials 2021, 33 (46) https://doi.org/10.1002/adma.202005890
    91. Surabhi Nimbalkar, Soshi Samejima, Viet Dang, Trevor Hunt, Omar Nunez, Chet Moritz, Sam Kassegne. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation. Journal of Neural Engineering 2021, 18 (5) , 056035. https://doi.org/10.1088/1741-2552/ac245a
    92. Nicolette Driscoll, Brian Erickson, Brendan B. Murphy, Andrew G. Richardson, Gregory Robbins, Nicholas V. Apollo, Georgios Mentzelopoulos, Tyler Mathis, Kanit Hantanasirisakul, Puneet Bagga, Sarah E. Gullbrand, Matthew Sergison, Ravinder Reddy, John A. Wolf, H. Isaac Chen, Timothy H. Lucas, Timothy R. Dillingham, Kathryn A. Davis, Yury Gogotsi, John D. Medaglia, Flavia Vitale. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Science Translational Medicine 2021, 13 (612) https://doi.org/10.1126/scitranslmed.abf8629
    93. Mengjia Zhu, Huimin Wang, Shuo Li, Xiaoping Liang, Mingchao Zhang, Xiaochuan Dai, Yingying Zhang. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Advanced Healthcare Materials 2021, 10 (17) https://doi.org/10.1002/adhm.202100646
    94. W. Tong, U. Aregueta Robles, A. Gelmi. Bioelectronics and Neural Interfaces. 2021, 180-230. https://doi.org/10.1039/9781788019828-00180
    95. Songfang Wu, Hong Li, Dongqi Wang, Luming Zhao, Xin Qiao, Xiao Zhang, Wei Liu, Changyong Wang, Jin Zhou. Genetically magnetic control of neural system via TRPV4 activation with magnetic nanoparticles. Nano Today 2021, 39 , 101187. https://doi.org/10.1016/j.nantod.2021.101187
    96. Mamta Devi, Maria Vomero, Erwin Fuhrer, Elisa Castagnola, Calogero Gueli, Surabhi Nimbalkar, Mieko Hirabayashi, Sam Kassegne, Thomas Stieglitz, Swati Sharma. Carbon-based neural electrodes: promises and challenges. Journal of Neural Engineering 2021, 18 (4) , 041007. https://doi.org/10.1088/1741-2552/ac1e45
    97. Chenyin Feng, Christopher L. Frewin, Md Rubayat-E Tanjil, Richard Everly, Jay Bieber, Ashok Kumar, Michael Cai Wang, Stephen E. Saddow. A Flexible a-SiC-Based Neural Interface Utilizing Pyrolyzed-Photoresist Film (C) Active Sites. Micromachines 2021, 12 (7) , 821. https://doi.org/10.3390/mi12070821
    98. Alessandro Bruschi, Davide Maria Donati, Peter Choong, Enrico Lucarelli, Gordon Wallace. Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. Advanced Healthcare Materials 2021, 10 (13) https://doi.org/10.1002/adhm.202100041
    99. Ieva Vėbraitė, Yael Hanein. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. Frontiers in Medical Technology 2021, 3 https://doi.org/10.3389/fmedt.2021.675744
    100. Yuanying Liang, Andreas Offenhäusser, Sven Ingebrandt, Dirk Mayer. PEDOT:PSS‐Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Advanced Healthcare Materials 2021, 10 (11) , 2100061. https://doi.org/10.1002/adhm.202100061
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect