ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Graphene Can Wreak Havoc with Cell Membranes

View Author Information
Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum—Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
Departamento de Informática, Centro de Ciências e Tecnologias da Computação, Universidade do Minho, 4710-057 Braga, Portugal
*(M.C.) E-mail: [email protected]
*(F.Z.) E-mail: [email protected]
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 7, 4406–4414
Publication Date (Web):February 4, 2015
https://doi.org/10.1021/am508938u
Copyright © 2015 American Chemical Society

    Article Views

    2136

    Altmetric

    -

    Citations

    139
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Molecular dynamics—coarse grained to the level of hydrophobic and hydrophilic interactions—shows that small hydrophobic graphene sheets pierce through the phospholipid membrane and navigate the double layer, intermediate size sheets pierce the membrane only if a suitable geometric orientation is met, and larger sheets lie mainly flat on the top of the bilayer where they wreak havoc with the membrane and create a patch of upturned phospholipids. The effect arises in order to maximize the interaction between hydrophobic moieties and is quantitatively explained in terms of flip-flops by the analysis of the simulations. Possible severe biological consequences are discussed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 139 publications.

    1. Maxim Fatkullin, Vitaly Menzelintsev, Anna Lipovka, Elizaveta Dogadina, Evgenii Plotnikov, Konstantin Brazovskiy, Shuang Li, Lang Ma, Chong Cheng, Ekaterina Porokhova, Igor Khlusov, Li Qiu, Raul D. Rodriguez, Evgeniya Sheremet. Smart Graphene Textiles for Biopotential Monitoring: Laser-Tailored Electrochemical Property Enhancement. ACS Sensors 2024, Article ASAP.
    2. Priya Mandal, Sajal K. Ghosh. Graphene-Based Nanomaterials and Their Interactions with Lipid Membranes. Langmuir 2023, 39 (51) , 18713-18729. https://doi.org/10.1021/acs.langmuir.3c02805
    3. Renqing Zeng, Longxue Cai, Jose Manuel Perez-Aguilar, Zonglin Gu, Xianfa Liu. Robust Mechanical Destruction to the Cell Membrane of Carbon Nitride Polyaniline (C3N): A Molecular Dynamics Simulation Study. Journal of Chemical Information and Modeling 2023, 63 (13) , 4170-4179. https://doi.org/10.1021/acs.jcim.3c00570
    4. Youwen Zhang, Gaeun Kim, Yini Zhu, Ceming Wang, Runyao Zhu, Xin Lu, Hsueh-Chia Chang, Yichun Wang. Chiral Graphene Quantum Dots Enhanced Drug Loading into Small Extracellular Vesicles. ACS Nano 2023, 17 (11) , 10191-10205. https://doi.org/10.1021/acsnano.3c00305
    5. Francesca Mocci, Leon de Villiers Engelbrecht, Chiara Olla, Antonio Cappai, Maria Francesca Casula, Claudio Melis, Luigi Stagi, Aatto Laaksonen, Carlo Maria Carbonaro. Carbon Nanodots from an In Silico Perspective. Chemical Reviews 2022, 122 (16) , 13709-13799. https://doi.org/10.1021/acs.chemrev.1c00864
    6. Chaonan Mu, Dong Xing, Dongmei Zhang, Chu Gong, Jie Wang, Lingling Zhao, Danyang Li, Xinxing Zhang. Mass Spectrometry and Cryogenic Electron Microscopy Illuminate Molecular-Level Mechanisms of the Oxidative and Structural Damage to Lipid Membranes by Radical-Bearing Graphene Oxide. The Journal of Physical Chemistry Letters 2022, 13 (11) , 2638-2643. https://doi.org/10.1021/acs.jpclett.2c00211
    7. Guihong Sun, Shanshan Jia, Xiaoyan Zhang, Zewen Kang, Malin Cui, Bingqing Wang, Bo Wang, Da-Peng Yang. Anchoring Core–Shell Cu@Cu2O Nanoparticles to Two-Dimensional Carbon Nanosheets for Bacterial Disinfection. ACS Applied Nano Materials 2021, 4 (9) , 9831-9841. https://doi.org/10.1021/acsanm.1c02233
    8. Xiaohong Zhu, Na Li, Changxiong Huang, Zhen Li, Jun Fan. Membrane Perturbation and Lipid Flip-Flop Mediated by Graphene Nanosheet. The Journal of Physical Chemistry B 2020, 124 (47) , 10632-10640. https://doi.org/10.1021/acs.jpcb.0c06089
    9. Ravi P. Pandey, P. Abdul Rasheed, Tricia Gomez, Kashif Rasool, Janarthanan Ponraj, Kaitlyn Prenger, Michael Naguib, Khaled A. Mahmoud. Effect of Sheet Size and Atomic Structure on the Antibacterial Activity of Nb-MXene Nanosheets. ACS Applied Nano Materials 2020, 3 (11) , 11372-11382. https://doi.org/10.1021/acsanm.0c02463
    10. Mounika Gosika, Vasumathi Velachi, M. Natália D. S. Cordeiro, Prabal K. Maiti. Covalent Functionalization of Graphene with PAMAM Dendrimer and Its Implications on Graphene’s Dispersion and Cytotoxicity. ACS Applied Polymer Materials 2020, 2 (8) , 3587-3600. https://doi.org/10.1021/acsapm.0c00596
    11. Wenhao Xu, Ziheng Jin, Xin Pang, Yibo Zeng, Xia Jiang, Yinghua Lu, Liang Shen. Interaction between Biocompatible Graphene Oxide and Live Shewanella in the Self-Assembled Hydrogel: The Role of Physicochemical Properties. ACS Applied Bio Materials 2020, 3 (7) , 4263-4272. https://doi.org/10.1021/acsabm.0c00327
    12. Kok H. Tan, Shabnam Sattari, Siamak Beyranvand, Abbas Faghani, Kai Ludwig, Karin Schwibbert, Christoph Böttcher, Rainer Haag, Mohsen Adeli. Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions. Langmuir 2019, 35 (13) , 4736-4746. https://doi.org/10.1021/acs.langmuir.8b03660
    13. Kang Lv, Yinfeng Li. Indentation of Graphene-Covered Atomic Force Microscopy Probe Across a Lipid Bilayer Membrane: Effect of Tip Shape, Size, and Surface Hydrophobicity. Langmuir 2018, 34 (26) , 7681-7689. https://doi.org/10.1021/acs.langmuir.8b01262
    14. Marco Dallavalle, Andrea Bottoni, Matteo Calvaresi, Francesco Zerbetto. Functionalization Pattern of Graphene Oxide Sheets Controls Entry or Produces Lipid Turmoil in Phospholipid Membranes. ACS Applied Materials & Interfaces 2018, 10 (18) , 15487-15493. https://doi.org/10.1021/acsami.8b03224
    15. Zhen Li, Yonghui Zhang, Chun Chan, Chunyi Zhi, Xiaolin Cheng, Jun Fan. Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. ACS Nano 2018, 12 (3) , 2764-2772. https://doi.org/10.1021/acsnano.7b09095
    16. Vikram Reddy Ardham and Frédéric Leroy . Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil–Water Interface. The Journal of Physical Chemistry B 2018, 122 (8) , 2396-2407. https://doi.org/10.1021/acs.jpcb.7b11173
    17. Marco Macis, Francesca Lugli, and Francesco Zerbetto . Modeling Living Cells Response to Surface Tension and Chemical Patterns. ACS Applied Materials & Interfaces 2017, 9 (23) , 19552-19561. https://doi.org/10.1021/acsami.7b01935
    18. Jiajun Qiu, Hao Geng, Donghui Wang, Shi Qian, Hongqin Zhu, Yuqin Qiao, Wenhao Qian, and Xuanyong Liu . Layer-Number Dependent Antibacterial and Osteogenic Behaviors of Graphene Oxide Electrophoretic Deposited on Titanium. ACS Applied Materials & Interfaces 2017, 9 (14) , 12253-12263. https://doi.org/10.1021/acsami.7b00314
    19. Silvio Osella and Stefan Knippenberg . Triggering On/Off States of Photoswitchable Probes in Biological Environments. Journal of the American Chemical Society 2017, 139 (12) , 4418-4428. https://doi.org/10.1021/jacs.6b13024
    20. Chong Cheng, Shuang Li, Arne Thomas, Nicholas A. Kotov, and Rainer Haag . Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews 2017, 117 (3) , 1826-1914. https://doi.org/10.1021/acs.chemrev.6b00520
    21. Mattia Bramini, Silvio Sacchetti, Andrea Armirotti, Anna Rocchi, Ester Vázquez, Verónica León Castellanos, Tiziano Bandiera, Fabrizia Cesca, and Fabio Benfenati . Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca2+ Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano 2016, 10 (7) , 7154-7171. https://doi.org/10.1021/acsnano.6b03438
    22. Xuefeng Zou, Li Zhang, Zhaojun Wang, and Yang Luo . Mechanisms of the Antimicrobial Activities of Graphene Materials. Journal of the American Chemical Society 2016, 138 (7) , 2064-2077. https://doi.org/10.1021/jacs.5b11411
    23. Vy T. H. Pham, Vi Khanh Truong, Matthew D. J. Quinn, Shannon M. Notley, Yachong Guo, Vladimir A. Baulin, Mohammad Al Kobaisi, Russell J. Crawford, and Elena P. Ivanova . Graphene Induces Formation of Pores That Kill Spherical and Rod-Shaped Bacteria. ACS Nano 2015, 9 (8) , 8458-8467. https://doi.org/10.1021/acsnano.5b03368
    24. Shaohu Ouyang, Xiangang Hu, and Qixing Zhou . Envelopment–Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. ACS Applied Materials & Interfaces 2015, 7 (32) , 18104-18112. https://doi.org/10.1021/acsami.5b05328
    25. Matteo Calvaresi, Simone Furini, Carmen Domene, Andrea Bottoni, and Francesco Zerbetto . Blocking the Passage: C60 Geometrically Clogs K+ Channels. ACS Nano 2015, 9 (5) , 4827-4834. https://doi.org/10.1021/nn506164s
    26. Xiaoyu Zhang, Xinyu Wu, Jian Zhang, Huiyan Xu, Xin Yu. Recent progress in graphitic carbon nitride-based materials for antibacterial applications: synthesis, mechanistic insights, and utilization. Microstructures 2024, 4 (2) https://doi.org/10.20517/microstructures.2023.77
    27. Nicolae-Viorel Buchete, Iwona Cicha, Sutapa Dutta, Panagiotis Neofytou. Multiscale physics-based in silico modelling of nanocarrier-assisted intravascular drug delivery. Frontiers in Drug Delivery 2024, 4 https://doi.org/10.3389/fddev.2024.1362660
    28. Yanhao Hou, Weiguang Wang, Paulo Bartolo. The effect of graphene and graphene oxide induced reactive oxygen species on polycaprolactone scaffolds for bone cancer applications. Materials Today Bio 2024, 24 , 100886. https://doi.org/10.1016/j.mtbio.2023.100886
    29. Carlo Maria Carbonaro, Leon Engelbrecht, Chiara Olla, Antonio Cappai, Maria, Francesca Casula, Claudio Melis, Luigi Stagi, Aatto Laaksonen, Francesca Mocci. Graphene quantum dots and carbon nanodots: modeling of zero-dimensional carbon nanomaterials. 2024, 411-482. https://doi.org/10.1016/B978-0-323-99535-1.00014-7
    30. Dipro Mukherjee, Moumita Sil, Arunava Goswami, Dibyajit Lahiri, Moupriya Nag. Antibiofilm Activities of Carbon-Based Nanoparticles and Nanocomposites: A Comparative Review. Journal of Inorganic and Organometallic Polymers and Materials 2023, 33 (12) , 3961-3983. https://doi.org/10.1007/s10904-023-02732-7
    31. Zhenyu Xing, Jiusi Guo, Zihe Wu, Chao He, Liyun Wang, Mingru Bai, Xikui Liu, Bihui Zhu, Qiuyue Guan, Chong Cheng. Nanomaterials‐Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic‐Free Disinfections. Small 2023, 19 (50) https://doi.org/10.1002/smll.202303594
    32. Li‐Xing Yang, Yi‐Hsin Lai, Chun In Cheung, Zhi Ye, Tzu‐Chi Huang, Yu‐Chin Wang, Yu‐Cheng Chin, Zi‐Chun Chia, Ya‐Jyun Chen, Meng‐Jia Li, Hsiu‐Ying Tseng, Yi‐Tseng Tsai, Zhi‐Bin Zhang, Kuan‐Hsu Chen, Bo‐Yang Tsai, Dar‐Bin Shieh, Nan‐Yao Lee, Pei‐Jane Tsai, Chih‐Chia Huang. Novel metal peroxide nanoboxes restrain Clostridioides difficile infection beyond the bactericidal and sporicidal activity. Bioengineering & Translational Medicine 2023, 8 (6) https://doi.org/10.1002/btm2.10593
    33. Wanfeng Wu, Mengjiao Duan, Shuxuan Shao, Fanxing Meng, Yanan Qin, Minwei Zhang. Recent advances in nanomaterial-mediated bacterial molecular action and their applications in wound therapy. Biomaterials Science 2023, 11 (20) , 6748-6769. https://doi.org/10.1039/D3BM00663H
    34. Zhengfeng Gao, Siyao Qin, Cécilia Ménard-Moyon, Alberto Bianco. Applications of graphene-based nanomaterials in drug design: The good, the bad and the ugly. Expert Opinion on Drug Discovery 2023, , 1-12. https://doi.org/10.1080/17460441.2023.2251879
    35. Kumar Sagar Jaiswal, Nila Nandha Kadamannil, Raz Jelinek. Carbon nanomaterials in microbial sensing and bactericidal applications. Current Opinion in Colloid & Interface Science 2023, 66 , 101719. https://doi.org/10.1016/j.cocis.2023.101719
    36. Soupam Das, Sayani Giri, Gaurav Wadhwa, Mrudula Pulimi, Shalini Anand, Natarajan Chandrasekaran, Seyed Ali Johari, Pramod Kumar Rai, Amitava Mukherjee. Comparative ecotoxicity of graphene, functionalized multi-walled CNTs, and their mixture in freshwater microalgae, Scenedesmus obliquus: analyzing the role of oxidative stress. Environmental Science and Pollution Research 2023, 30 (27) , 70246-70259. https://doi.org/10.1007/s11356-023-27367-6
    37. Xiaohong Zhu, Changxiong Huang, Na Li, Xinyao Ma, Zhen Li, Jun Fan. Distinct roles of graphene and graphene oxide nanosheets in regulating phospholipid flip-flop. Journal of Colloid and Interface Science 2023, 637 , 112-122. https://doi.org/10.1016/j.jcis.2023.01.080
    38. Shadi Rahimi, Teo Lovmar, Alexandra Aulova, Santosh Pandit, Martin Lovmar, Sven Forsberg, Magnus Svensson, Roland Kádár, Ivan Mijakovic. Automated Prediction of Bacterial Exclusion Areas on SEM Images of Graphene–Polymer Composites. Nanomaterials 2023, 13 (10) , 1605. https://doi.org/10.3390/nano13101605
    39. Zhanpeng Cui, Yang Jiao, Linyu Pu, Jianlin Chen, Ming Liu, James Zhenggui Tang, Gang Wang. The Interaction Mechanism of Intramuscular Gene Delivery Materials with Cell Membranes. Journal of Functional Biomaterials 2023, 14 (4) , 219. https://doi.org/10.3390/jfb14040219
    40. Ka Young Kim, Jee Young Kim, Jaewon Park, Yoon-E Choi. The cytotoxicity of nano- and micro-sized graphene oxides on microalgae depends on the characteristics of cell wall and flagella. Science of The Total Environment 2023, 870 , 161783. https://doi.org/10.1016/j.scitotenv.2023.161783
    41. Diego Belmonte, Claudio Mella, Gabriela Sánchez-Sanhueza, Andrés Opazo-Capurro, Héctor Aguilar-Bolados, Bruno Boury, Bruno F. Urbano. Impact of graphene oxide lateral dimensions on the properties of methacrylated gelatin nanocomposite hydrogels. Journal of Materials Chemistry B 2023, 11 (9) , 1987-1997. https://doi.org/10.1039/D2TB02300H
    42. Zihan Tang, Xuejin Li, Dechang Li. Dissipative particle dynamics simulations for biological systems: From protein structures to cell mechanics. Chinese Science Bulletin 2023, 68 (7) , 741-761. https://doi.org/10.1360/TB-2022-0913
    43. Masoumeh Shiri, Seyed Abdollatif Hashemifard, Gholamreza Abdi. The potential of microalgae Dunaliella salina to treat shrimp pond wastewater in a PAN/GO membrane bioreactor. Chemosphere 2023, 318 , 138001. https://doi.org/10.1016/j.chemosphere.2023.138001
    44. Lina M. Alnaddaf, Jameel M. Al-Khayri, S. Mohan Jain. Introduction: Impact of Nanotechnology on Plant Cell Biology. 2023, 1-15. https://doi.org/10.1007/978-3-031-20878-2_1
    45. Sanaz Feizi. Role of Nanomaterials in Plant Cell and Tissue Culture. 2023, 359-397. https://doi.org/10.1007/978-3-031-20878-2_14
    46. Supriya S. Behere, Rakesh Kumar Ameta, Shantilal S. Mehetre, Abhishek Chandra, Atish R. Mehetre. Graphene-based nanomaterials for antibiotics-independent antibacterial applications. 2023, 227-253. https://doi.org/10.1016/B978-0-323-91156-6.00004-X
    47. Xiaomeng Ding, Yuepu Pu, Meng Tang, Ting Zhang. Pulmonary hazard identifications of Graphene family nanomaterials: Adverse outcome pathways framework based on toxicity mechanisms. Science of The Total Environment 2023, 857 , 159329. https://doi.org/10.1016/j.scitotenv.2022.159329
    48. Selvamuthu Preethi, Arunachalam Arulraj, Ramalinga Viswanathan Mangalaraja, Velayutham Ravichandran, Natesan Subramanian. Biomass‐derived Carbon‐based Materials for Microbicidal Applications. 2022, 63-92. https://doi.org/10.1002/9783527832903.ch3
    49. Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal. Antimicrobial mechanisms of biomaterials: from macro to nano. Biomaterials Science 2022, 10 (16) , 4392-4423. https://doi.org/10.1039/D2BM00472K
    50. Zhen Li, Xiaohong Zhu, Jiawei Li, Jie Zhong, Jun Zhang, Jun Fan. Molecular insights into the resistance of phospholipid heads to the membrane penetration of graphene nanosheets. Nanoscale 2022, 14 (14) , 5384-5391. https://doi.org/10.1039/D1NR07684A
    51. Bingqing Jia, Xuancheng Du, Weijie Wang, Yuanyuan Qu, Xiangdong Liu, Mingwen Zhao, Weifeng Li, Yong‐Qiang Li. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. Advanced Science 2022, 9 (10) https://doi.org/10.1002/advs.202105252
    52. Vasiliki I. Syngouna, Kleanthi I. Kourtaki, Maria P. Georgopoulou, Constantinos V. Chrysikopoulos. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. Environmental Science and Pollution Research 2022, 29 (13) , 19199-19211. https://doi.org/10.1007/s11356-021-17086-1
    53. E Filipov, L Angelova, D Aceti, V Marinova, D Karashanova, A Trifonov, I Buchvarov, A Daskalova. Altering the surface morphology and wettability of chitosan/graphene coatings by femtosecond and nanosecond laser processing. Journal of Physics: Conference Series 2022, 2240 (1) , 012041. https://doi.org/10.1088/1742-6596/2240/1/012041
    54. Zonglin Gu, Guanhua Xie, Jose Manuel Perez-Aguilar. Fluorinated graphene nanomaterial causes potential mechanical perturbations to a biomembrane. Journal of Molecular Modeling 2022, 28 (2) https://doi.org/10.1007/s00894-022-05040-y
    55. Parijat Ray, Tushar Lodha, Arunangshu Biswas, Tapan K. Sau, Ch. Venkata Ramana. Particle specific physical and chemical effects on antibacterial activities: A comparative study involving gold nanostars, nanorods and nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 634 , 127915. https://doi.org/10.1016/j.colsurfa.2021.127915
    56. Yun Hao Feng, Bo Zhi Chen, Wen Min Fei, Yong Cui, Can Yang Zhang, Xin Dong Guo. Mechanism studies on the cellular internalization of nanoparticles using computer simulations: A review. AIChE Journal 2022, 68 (2) https://doi.org/10.1002/aic.17507
    57. Z. L. Shaw, Sruthi Kuriakose, Samuel Cheeseman, Michael D. Dickey, Jan Genzer, Andrew J. Christofferson, Russell J. Crawford, Chris F. McConville, James Chapman, Vi Khanh Truong, Aaron Elbourne, Sumeet Walia. Antipathogenic properties and applications of low-dimensional materials. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23278-7
    58. Yanyan Chen, Santosh Pandit, Shadi Rahimi, Ivan Mijakovic. Interactions Between Graphene‐Based Materials and Biological Surfaces: A Review of Underlying Molecular Mechanisms. Advanced Materials Interfaces 2021, 8 (24) https://doi.org/10.1002/admi.202101132
    59. Soumalya Chakraborty, Jaydeep H. Chormale, Arvind K. Bansal. Deep eutectic systems: An overview of fundamental aspects, current understanding and drug delivery applications. International Journal of Pharmaceutics 2021, 610 , 121203. https://doi.org/10.1016/j.ijpharm.2021.121203
    60. Fika Fauzi, Muhammad Miqdam Musawwa, Habibi Hidayat, Ahmad Kusumaatmaja, Wipsar Sunu Brams Dwandaru. Nanocomposites based on biocompatible polymers and graphene oxide for antibacterial coatings. Polymers and Polymer Composites 2021, 29 (9_suppl) , S1609-S1620. https://doi.org/10.1177/09673911211020601
    61. Ana M. Díez-Pascual. State of the Art in the Antibacterial and Antiviral Applications of Carbon-Based Polymeric Nanocomposites. International Journal of Molecular Sciences 2021, 22 (19) , 10511. https://doi.org/10.3390/ijms221910511
    62. Srinivasarao Yaragalla, Karanath Balendran Bhavitha, Athanassia Athanassiou. A Review on Graphene Based Materials and Their Antimicrobial Properties. Coatings 2021, 11 (10) , 1197. https://doi.org/10.3390/coatings11101197
    63. Nabira Fatima, Umair Yaqub Qazi, Asim Mansha, Ijaz Ahmad Bhatti, Rahat Javaid, Qamar Abbas, Nimra Nadeem, Zulfiqar Ahmad Rehan, Saima Noreen, Muhammad Zahid. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. Journal of Industrial and Engineering Chemistry 2021, 100 , 40-58. https://doi.org/10.1016/j.jiec.2021.04.050
    64. Ana M. Díez-Pascual, José A. Luceño-Sánchez. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers 2021, 13 (13) , 2105. https://doi.org/10.3390/polym13132105
    65. Honghai Li, Xin Chen, Weipeng Lu, Jie Wang, Yisheng Xu, Yanchuan Guo. Application of Electrospinning in Antibacterial Field. Nanomaterials 2021, 11 (7) , 1822. https://doi.org/10.3390/nano11071822
    66. Xinyue Kong, Xiangmei Liu, Yufeng Zheng, Paul K. Chu, Yu Zhang, Shuilin Wu. Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering: R: Reports 2021, 145 , 100610. https://doi.org/10.1016/j.mser.2021.100610
    67. Çağıl Kaderoğlu, Amir Nasser Shamkhali, Fatemeh Safdari, Marjan Abedi, Şinasi Ellialtıoğlu. Mechanism of transition metal interaction with graphene sheet reflected in its plasmonic excitations: Effect of gas adsorption phenomena studied by a combination of solid state and molecular orbital approaches. Applied Surface Science 2021, 554 , 149585. https://doi.org/10.1016/j.apsusc.2021.149585
    68. Najmul Haque Barbhuiya, Swatantra P. Singh, Arik Makovitzki, Pradnya Narkhede, Ziv Oren, Yaakov Adar, Edith Lupu, Lilach Cherry, Arik Monash, Christopher J. Arnusch. Virus Inactivation in Water Using Laser-Induced Graphene Filters. Materials 2021, 14 (12) , 3179. https://doi.org/10.3390/ma14123179
    69. Th.Babita Devi, M. Ahmaruzzaman. Facile synthesis of rGO/Ag@AgCl core-shells nanocomposite and their multifunctional efficacy as a photocatalyst and antimicrobial agent for decontamination of water. Journal of Alloys and Compounds 2021, 860 , 157988. https://doi.org/10.1016/j.jallcom.2020.157988
    70. Anthony J. Slate, Nathalie Karaky, Grace S. Crowther, Jonathan A. Butler, Craig E. Banks, Andrew J. McBain, Kathryn A. Whitehead. Graphene Matrices as Carriers for Metal Ions against Antibiotic Susceptible and Resistant Bacterial Pathogens. Coatings 2021, 11 (3) , 352. https://doi.org/10.3390/coatings11030352
    71. Asanah Radhi, Dasmawati Mohamad, Fatimah Suhaily Abdul Rahman, Abdul Manaf Abdullah, Habsah Hasan. Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. Journal of Materials Research and Technology 2021, 11 , 1290-1307. https://doi.org/10.1016/j.jmrt.2021.01.093
    72. Lijun Liang, Xiangming Peng, Fangfang Sun, Zhe Kong, Jia-Wei Shen. A review on the cytotoxicity of graphene quantum dots: from experiment to simulation. Nanoscale Advances 2021, 3 (4) , 904-917. https://doi.org/10.1039/D0NA00904K
    73. Xinyao Ma, Xiaohong Zhu, Changxiong Huang, Zhen Li, Jun Fan. Molecular mechanisms underlying the role of the puckered surface in the biocompatibility of black phosphorus. Nanoscale 2021, 13 (6) , 3790-3799. https://doi.org/10.1039/D0NR08480H
    74. Pietro Bellet, Matteo Gasparotto, Samuel Pressi, Anna Fortunato, Giorgia Scapin, Miriam Mba, Enzo Menna, Francesco Filippini. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials 2021, 11 (2) , 404. https://doi.org/10.3390/nano11020404
    75. Mitali Mishra, Shashank Patole, Harapriya Mohapatra. Nanoparticles: Powerful Tool to Mitigate Antibiotic Resistance. 2021, 171-204. https://doi.org/10.1007/978-3-030-58259-3_6
    76. Xiaohong Zhu, Changxiong Huang, Na Li, Xinyao Ma, Zhen Li, Jun Fan. Distinct Roles of Graphene and Graphene Oxide Nanosheets in Regulating Phospholipid Flip-Flopcover Letter. SSRN Electronic Journal 2021, 42 https://doi.org/10.2139/ssrn.3951685
    77. Changjian Xie, Peng Zhang, Zhiling Guo, Xiaowei Li, Qiuxiang Pang, Kang Zheng, Xiao He, Yuhui Ma, Zhiyong Zhang, Iseult Lynch. Elucidating the origin of the surface functionalization - dependent bacterial toxicity of graphene nanomaterials: Oxidative damage, physical disruption, and cell autolysis. Science of The Total Environment 2020, 747 , 141546. https://doi.org/10.1016/j.scitotenv.2020.141546
    78. Tian Zhang, Pier-Luc Tremblay. Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation?. iScience 2020, 23 (12) , 101787. https://doi.org/10.1016/j.isci.2020.101787
    79. Yang Liu, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Mingwen Zhao, Weifeng Li. Mild lipid extraction and anisotropic cell membrane penetration of α-phase phosphorene carbide nanoribbons by molecular dynamics simulation studies. Physical Chemistry Chemical Physics 2020, 22 (40) , 23268-23275. https://doi.org/10.1039/D0CP04145A
    80. Mahdieh Chegeni, Zahra Shokri Rozbahani, Motaleb Ghasemian, Mozhgan Mehri. Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery. International Journal of Biological Macromolecules 2020, 156 , 504-513. https://doi.org/10.1016/j.ijbiomac.2020.04.068
    81. Thi Truong, Selvaraj Kumar, Yu-Tzu Huang, Dave Chen, Yu-Kuo Liu, Shingjiang Lue. Size-Dependent Antibacterial Activity of Silver Nanoparticle-Loaded Graphene Oxide Nanosheets. Nanomaterials 2020, 10 (6) , 1207. https://doi.org/10.3390/nano10061207
    82. Kun Yang, Jinghuan Tian, Wei Qu, Bo Luan, Ke Liu, Jun Liu, Likui Wang, Junhui Ji, Wei Zhang. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet. Frontiers of Materials Science 2020, 14 (2) , 221-231. https://doi.org/10.1007/s11706-020-0498-4
    83. Hiba Mohammed, Ajay Kumar, Elena Bekyarova, Yas Al-Hadeethi, Xixiang Zhang, Mingguang Chen, Mohammad Shahnawaze Ansari, Andrea Cochis, Lia Rimondini. Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00465
    84. Ana María Díez-Pascual. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A Mini-Review. International Journal of Molecular Sciences 2020, 21 (10) , 3563. https://doi.org/10.3390/ijms21103563
    85. Mohamed Amine Gacem, Hiba Gacem, Aminata Ould-El-Hadj-Khelil. Nanocarbons: Antibacterial, antifungal, and antiviral activity and the underlying mechanism. 2020, 505-533. https://doi.org/10.1016/B978-0-12-819786-8.00022-0
    86. Shirong Qiang, Mingyuan Wang, Jianjun Liang, Xiaolan Zhao, Qiaohui Fan, Rongyue Geng, Dongxia Luo, Zhengbin Li, Li Zhang. Effects of morphology regulated by Pb2+ on graphene oxide cytotoxicity: Spectroscopic and in vitro investigations. Materials Chemistry and Physics 2020, 239 , 122016. https://doi.org/10.1016/j.matchemphys.2019.122016
    87. Daniela Plachá, Josef Jampilek. Graphenic Materials for Biomedical Applications. Nanomaterials 2019, 9 (12) , 1758. https://doi.org/10.3390/nano9121758
    88. Qi Xin, Hameed Shah, Asmat Nawaz, Wenjing Xie, Muhammad Zain Akram, Aisha Batool, Liangqiu Tian, Saad Ullah Jan, Rajender Boddula, Beidou Guo, Qian Liu, Jian Ru Gong. Antibacterial Carbon‐Based Nanomaterials. Advanced Materials 2019, 31 (45) https://doi.org/10.1002/adma.201804838
    89. M Hatami, , H Naghdi Badi, , M Ghorbanpour, . Nano-Elicitation of Secondary Pharmaceutical Metabolites in Plant Cells: A Review. Journal of Medicinal Plants 2019, 3 (71) , 6-36. https://doi.org/10.29252/jmp.3.71.6
    90. Meng-Ying Xia, Yu Xie, Chen-Hao Yu, Ge-Yun Chen, Yuan-Hong Li, Ting Zhang, Qiang Peng. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release 2019, 307 , 16-31. https://doi.org/10.1016/j.jconrel.2019.06.011
    91. Zhaojian Qin, Tianyu Du, Youkun Zheng, Peng Luo, Jialei Zhang, Mengyang Xie, Ying Zhang, Ying Du, Lihong Yin, Daxiang Cui, Qiangbing Lu, Minghui Lu, Xuemei Wang, Hui Jiang. Glutathione Induced Transformation of Partially Hollow Gold–Silver Nanocages for Cancer Diagnosis and Photothermal Therapy. Small 2019, 15 (35) https://doi.org/10.1002/smll.201902755
    92. QianChun Wang, XiaoBo Zhai, Michael Crowe, Lu Gou, YinFeng Li, DeChang Li, Lei Zhang, JiaJie Diao, BaoHua Ji. Heterogeneous oxidization of graphene nanosheets damages membrane. Science China Physics, Mechanics & Astronomy 2019, 62 (6) https://doi.org/10.1007/s11433-018-9317-7
    93. Vishal Dutta, Pardeep Singh, Pooja Shandilya, Sheetal Sharma, Pankaj Raizada, Adesh K. Saini, Vinod Kumar Gupta, Ahmad Hosseini-Bandegharaei, Shipli Agarwal, Abolfazl Rahmani-Sani. Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering 2019, 7 (3) , 103132. https://doi.org/10.1016/j.jece.2019.103132
    94. Anu N. Mohan, B. Manoj. Surface modified graphene/SnO2 nanocomposite from carbon black as an efficient disinfectant against Pseudomonas aeruginosa. Materials Chemistry and Physics 2019, 232 , 137-144. https://doi.org/10.1016/j.matchemphys.2019.04.074
    95. Liang Wang, Ziwen Yuan, H. Enis Karahan, Yilei Wang, Xiao Sui, Fei Liu, Yuan Chen. Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale 2019, 11 (20) , 9819-9839. https://doi.org/10.1039/C9NR02007A
    96. Bhushan Dharmadhikari, Qi Wu, Debika Debnath, Prabir Patra. Interaction of Graphene And Polycaprolactone at Atomic Level. 2019, 1-6. https://doi.org/10.1109/LISAT.2019.8816824
    97. Xuemei Lu, Jiaojiao Liu, Lu Gou, Jingliang Li, Bing Yuan, Kai Yang, Yuqiang Ma. Designing Melittin‐Graphene Hybrid Complexes for Enhanced Antibacterial Activity. Advanced Healthcare Materials 2019, 8 (9) https://doi.org/10.1002/adhm.201801521
    98. Na Lu, Liqian Wang, Min Lv, Zisheng Tang, Chunhai Fan. Graphene-based nanomaterials in biosystems. Nano Research 2019, 12 (2) , 247-264. https://doi.org/10.1007/s12274-018-2209-3
    99. Mohamad Hamdi Zainal-Abidin, Maan Hayyan, Gek Cheng Ngoh, Won Fen Wong. From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chemical Engineering Science 2019, 195 , 95-106. https://doi.org/10.1016/j.ces.2018.11.013
    100. Bo Liu, Kun Zhou. Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Progress in Materials Science 2019, 100 , 99-169. https://doi.org/10.1016/j.pmatsci.2018.09.004
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect