ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Single-Molecule Imaging of Dynamic Motions of Biomolecules in DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy

View Author Information
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
§ CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
*E-mail: [email protected] (M.E.)
*E-mail: [email protected] (H.S.).
Cite this: Acc. Chem. Res. 2014, 47, 6, 1645–1653
Publication Date (Web):March 6, 2014
https://doi.org/10.1021/ar400299m
Copyright © 2014 American Chemical Society

    Article Views

    4242

    Altmetric

    -

    Citations

    122
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image
    Conspectus

    Direct imaging of molecular motions is one of the most fundamental issues for elucidating the physical properties of individual molecules and their reaction mechanisms. Atomic force microscopy (AFM) enables direct molecular imaging, especially for biomolecules in the physiological environment. Because AFM can visualize the molecules at nanometer-scale spatial resolution, a versatile observation scaffold is needed for the precise imaging of molecule interactions in the reactions.

    The emergence of DNA origami technology allows the precise placement of desired molecules in the designed nanostructures and enables molecules to be detected at the single-molecule level. In our study, the DNA origami system was applied to visualize the detailed motions of target molecules in reactions using high-speed AFM (HS-AFM), which enables the analysis of dynamic motions of biomolecules in a subsecond time resolution. In this system, biochemical properties such as the placement of various double-stranded DNAs (dsDNAs) containing unrestricted DNA sequences, modified nucleosides, and chemical functions can be incorporated. From a physical point of view, the tension and rotation of dsDNAs can be controlled by placement into the DNA nanostructures. From a topological point of view, the orientations of dsDNAs and various shapes of dsDNAs including Holliday junctions can be incorporated for studies on reaction mechanisms.

    In this Account, we describe the combination of the DNA origami system and HS-AFM for imaging various biochemical reactions including enzymatic reactions and DNA structural changes. To observe the behaviors and reactions of DNA methyltransferase and DNA repair enzymes, the substrate dsDNAs were incorporated into the cavity of the DNA frame, and the enzymes that bound to the target dsDNA were observed using HS-AFM. DNA recombination was also observed using the recombination substrates and Holliday junction intermediates placed in the DNA frame, and the direction of the reactions was controlled by introducing structural stress to the substrates. In addition, the movement of RNA polymerase and its reaction were visualized using a template dsDNA attached to the origami structure. To observe DNA structural changes, G-quadruplex formation and disruption, the switching behaviors of photoresponsive oligonucleotides, and B–Z transition were visualized using the DNA frame observation system. For the formation and disruption of G-quadruplex and double-helix DNA, the two dsDNA chains incorporated into the DNA frame could amplify the small structural change to the global structural change, which enabled the visualization of their association and dissociation by HS-AFM. The dynamic motion of the helical rotation induced by the B–Z transition was also directly imaged in the DNA frame. Furthermore, the stepwise motions of mobile DNA along the DNA track were visualized on the DNA origami surface. These target-orientated observation systems should contribute to the detailed analysis of biomolecule motions in real time and at molecular resolution.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 122 publications.

    1. Yuang Wang, Hong Wang, Yan Li, Changping Yang, Yue Tang, Xuehe Lu, Jing Fan, Wantao Tang, Yingxu Shang, Hao Yan, Jianbing Liu, Baoquan Ding. Chemically Conjugated Branched Staples for Super-DNA Origami. Journal of the American Chemical Society 2024, 146 (6) , 4178-4186. https://doi.org/10.1021/jacs.3c13331
    2. Xiaohui Wu, Changping Yang, Hong Wang, Xuehe Lu, Yingxu Shang, Qing Liu, Jing Fan, Jianbing Liu, Baoquan Ding. Genetically Encoded DNA Origami for Gene Therapy In Vivo. Journal of the American Chemical Society 2023, 145 (16) , 9343-9353. https://doi.org/10.1021/jacs.3c02756
    3. Yu Ouyang, Pu Zhang, Itamar Willner. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures. Bioconjugate Chemistry 2023, 34 (1) , 51-69. https://doi.org/10.1021/acs.bioconjchem.2c00233
    4. Michael Darcy, Kyle Crocker, Yuchen Wang, Jenny V. Le, Golbarg Mohammadiroozbahani, Mahmoud A. S. Abdelhamid, Timothy D. Craggs, Carlos E. Castro, Ralf Bundschuh, Michael G. Poirier. High-Force Application by a Nanoscale DNA Force Spectrometer. ACS Nano 2022, 16 (4) , 5682-5695. https://doi.org/10.1021/acsnano.1c10698
    5. Tiantian Wu, Yuanwei Cao, Qing Liu, Xiaohui Wu, Yingxu Shang, Jiafang Piao, Yujie Li, Yuanchen Dong, Dongsheng Liu, Haoyi Wang, Jianbing Liu, Baoquan Ding. Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. Journal of the American Chemical Society 2022, 144 (14) , 6575-6582. https://doi.org/10.1021/jacs.2c01760
    6. Yan Li, Jin Pei, Xuehe Lu, Yunfei Jiao, Fengsong Liu, Xiaohui Wu, Jianbing Liu, Baoquan Ding. Hierarchical Assembly of Super-DNA Origami Based on a Flexible and Covalent-Bound Branched DNA Structure. Journal of the American Chemical Society 2021, 143 (47) , 19893-19900. https://doi.org/10.1021/jacs.1c09472
    7. Liang Yue, Shan Wang, Zhixin Zhou, Itamar Willner. Nucleic Acid Based Constitutional Dynamic Networks: From Basic Principles to Applications. Journal of the American Chemical Society 2020, 142 (52) , 21577-21594. https://doi.org/10.1021/jacs.0c09891
    8. Mingshu Xiao, Wei Lai, Tiantian Man, Binbin Chang, Li Li, Arun Richard Chandrasekaran, Hao Pei. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews 2019, 119 (22) , 11631-11717. https://doi.org/10.1021/acs.chemrev.9b00121
    9. Mikael Madsen, Kurt V. Gothelf. Chemistries for DNA Nanotechnology. Chemical Reviews 2019, 119 (10) , 6384-6458. https://doi.org/10.1021/acs.chemrev.8b00570
    10. Jianbang Wang, Liang Yue, Shan Wang, Itamar Willner. Triggered Reversible Reconfiguration of G-Quadruplex-Bridged “Domino”-Type Origami Dimers: Application of the Systems for Programmed Catalysis. ACS Nano 2018, 12 (12) , 12324-12336. https://doi.org/10.1021/acsnano.8b06191
    11. Jianbang Wang, Zhixin Zhou, Liang Yue, Shan Wang, Itamar Willner. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis. Nano Letters 2018, 18 (4) , 2718-2724. https://doi.org/10.1021/acs.nanolett.8b00793
    12. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
    13. Evgeniy V. Dubrovin, Marc Schächtele, Dmitry V. Klinov, and Tilman E. Schäffer . Time-Lapse Single-Biomolecule Atomic Force Microscopy Investigation on Modified Graphite in Solution. Langmuir 2017, 33 (38) , 10027-10034. https://doi.org/10.1021/acs.langmuir.7b02220
    14. Masudur Rahman, B. Scott Day, David Neff, and Michael L. Norton . Origami Arrays as Substrates for the Determination of Reaction Kinetics Using High-Speed Atomic Force Microscopy. Langmuir 2017, 33 (30) , 7389-7392. https://doi.org/10.1021/acs.langmuir.7b01556
    15. Yuliia Vyborna, Mykhailo Vybornyi, and Robert Häner . Pathway Diversity in the Self-Assembly of DNA-Derived Bioconjugates. Bioconjugate Chemistry 2016, 27 (11) , 2755-2761. https://doi.org/10.1021/acs.bioconjchem.6b00517
    16. Michael H. Räz, Kumi Hidaka, Shana J. Sturla, Hiroshi Sugiyama, and Masayuki Endo . Torsional Constraints of DNA Substrates Impact Cas9 Cleavage. Journal of the American Chemical Society 2016, 138 (42) , 13842-13845. https://doi.org/10.1021/jacs.6b08915
    17. Na Wu and Itamar Willner . pH-Stimulated Reconfiguration and Structural Isomerization of Origami Dimer and Trimer Systems. Nano Letters 2016, 16 (10) , 6650-6655. https://doi.org/10.1021/acs.nanolett.6b03418
    18. Stefan Fischer, Caroline Hartl, Kilian Frank, Joachim O. Rädler, Tim Liedl, and Bert Nickel . Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. Nano Letters 2016, 16 (7) , 4282-4287. https://doi.org/10.1021/acs.nanolett.6b01335
    19. Na Wu and Itamar Willner . DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles. Nano Letters 2016, 16 (4) , 2867-2872. https://doi.org/10.1021/acs.nanolett.6b00789
    20. Janane F. Rahbani, Amani A. Hariri, Gonzalo Cosa, and Hanadi F. Sleiman . Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions. ACS Nano 2015, 9 (12) , 11898-11908. https://doi.org/10.1021/acsnano.5b04387
    21. Masayuki Endo, Xiwen Xing, Xiang Zhou, Tomoko Emura, Kumi Hidaka, Bodin Tuesuwan, and Hiroshi Sugiyama . Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure. ACS Nano 2015, 9 (10) , 9922-9929. https://doi.org/10.1021/acsnano.5b03413
    22. Yangyang Yang, Marisa A. Goetzfried, Kumi Hidaka, Mingxu You, Weihong Tan, Hiroshi Sugiyama, and Masayuki Endo . Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. Nano Letters 2015, 15 (10) , 6672-6676. https://doi.org/10.1021/acs.nanolett.5b02502
    23. Chen-Yu Li, Elisa A. Hemmig, Jinglin Kong, Jejoong Yoo, Silvia Hernández-Ainsa, Ulrich F. Keyser, and Aleksei Aksimentiev . Ionic Conductivity, Structural Deformation, and Programmable Anisotropy of DNA Origami in Electric Field. ACS Nano 2015, 9 (2) , 1420-1433. https://doi.org/10.1021/nn505825z
    24. Raja Muhammad Aqib, Arsalan Umer, Jialin Li, Jianbing Liu, Baoquan Ding. Light Responsive DNA Nanomaterials and Their Biomedical Applications. Chemistry – An Asian Journal 2024, https://doi.org/10.1002/asia.202400226
    25. Yu Ouyang, Michael P O'Hagan, Bilha Willner, Itamar Willner. Aptamer‐Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional “Nucleoapzymes”, “Aptananozymes”, and “Photoaptazymes”. Advanced Materials 2024, 36 (10) https://doi.org/10.1002/adma.202210885
    26. Raja Muhammad Aqib, Yuang Wang, Jianbing Liu, Baoquan Ding. Efficient one-pot assembly of higher-order DNA nanostructures by chemically conjugated branched DNA. Chemical Communications 2024, https://doi.org/10.1039/D4CC01097C
    27. Wantao Tang, Ting Tong, Hong Wang, Xuehe Lu, Changping Yang, Yushuai Wu, Yuang Wang, Jianbing Liu, Baoquan Ding. A DNA Origami‐Based Gene Editing System for Efficient Gene Therapy in Vivo. Angewandte Chemie 2023, 135 (51) https://doi.org/10.1002/ange.202315093
    28. Wantao Tang, Ting Tong, Hong Wang, Xuehe Lu, Changping Yang, Yushuai Wu, Yuang Wang, Jianbing Liu, Baoquan Ding. A DNA Origami‐Based Gene Editing System for Efficient Gene Therapy in Vivo. Angewandte Chemie International Edition 2023, 62 (51) https://doi.org/10.1002/anie.202315093
    29. Raghavendar R. Sanganna Gari, Grigory Tagiltsev, Ruth A. Pumroy, Yining Jiang, Martin Blackledge, Vera Y. Moiseenkova-Bell, Simon Scheuring. Intrinsically disordered regions in TRPV2 mediate protein-protein interactions. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-05343-7
    30. Evgeniy V. Dubrovin. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid–protein complexes. Biophysical Reviews 2023, 15 (5) , 1015-1033. https://doi.org/10.1007/s12551-023-01111-3
    31. Ruixin Li, Anirudh S. Madhvacharyula, Yancheng Du, Harshith K. Adepu, Jong Hyun Choi. Mechanics of dynamic and deformable DNA nanostructures. Chemical Science 2023, 14 (30) , 8018-8046. https://doi.org/10.1039/D3SC01793A
    32. Silvia Maria Cristina Rotondi, Giorgia Ailuno, Simone Luca Mattioli, Alessandra Pesce, Ornella Cavalleri, Paolo Canepa. Morphological Investigation of Protein Crystals by Atomic Force Microscopy. Crystals 2023, 13 (7) , 1149. https://doi.org/10.3390/cryst13071149
    33. Jianbang Wang, Zhenzhen Li, Itamar Willner. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202215332
    34. Zhenzhen Li, Jianbang Wang, Bilha Willner, Itamar Willner. Topologically Triggered Dynamic DNA Frameworks. Israel Journal of Chemistry 2023, 132 https://doi.org/10.1002/ijch.202300013
    35. Ashwin Karthick Natarajan, Joonas Ryssy, Anton Kuzyk. A DNA origami-based device for investigating DNA bending proteins by transmission electron microscopy. Nanoscale 2023, 15 (7) , 3212-3218. https://doi.org/10.1039/D2NR05366G
    36. Jianbang Wang, Zhenzhen Li, Itamar Willner. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie 2023, 14 https://doi.org/10.1002/ange.202215332
    37. Zhekun Chen, Kuiting Chen, Chun Xie, Kangchao Liao, Fei Xu, Linqiang Pan. Cyclic transitions of DNA origami dimers driven by thermal cycling. Nanotechnology 2023, 34 (6) , 065601. https://doi.org/10.1088/1361-6528/aca02f
    38. Mi Li. Imaging and force detection of single deoxyribonucleic acid molecules by atomic force microscopy. 2023, 43-73. https://doi.org/10.1016/B978-0-323-95360-3.00013-7
    39. An Yan, Lele Sun, Di Li. Single-Molecule Imaging of Enzymatic Reactions on DNA Origami. 2023, 131-145. https://doi.org/10.1007/978-1-0716-3028-0_8
    40. Zhenzhen Li, Jianbang Wang, Itamar Willner. Transient Out‐of‐Equilibrium Nucleic Acid‐Based Dissipative Networks and Their Applications. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202200799
    41. Mahmudur Rahman, Kazi Rafiqul Islam, Md. Rashedul Islam, Md. Jahirul Islam, Md. Rejvi Kaysir, Masuma Akter, Md. Arifur Rahman, S. M. Mahfuz Alam. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. Micromachines 2022, 13 (6) , 968. https://doi.org/10.3390/mi13060968
    42. Xiao Wang, Shanshan Li, Hyungmin Jun, Torsten John, Kaiming Zhang, Hannah Fowler, Jonathan P.K. Doye, Wah Chiu, Mark Bathe. Planar 2D wireframe DNA origami. Science Advances 2022, 8 (20) https://doi.org/10.1126/sciadv.abn0039
    43. Ziqi Xu, Yide Huang, Hao Yin, Xurong Zhu, Ye Tian, Qianhao Min. DNA Origami‐Based Protein Manipulation Systems: From Function Regulation to Biological Application. ChemBioChem 2022, 23 (9) https://doi.org/10.1002/cbic.202100597
    44. Deepak Karna, Jiahao Ji, Hanbin Mao. Mechanics of DNA Origami Nanoassemblies. 2022, 167-179. https://doi.org/10.1002/9781119682561.ch8
    45. Ibuki Kawamata. Advancement of Computer‐Aided Design Software and Simulation Tools for Nucleic Acid Nanostructures and DNA Origami. 2022, 75-99. https://doi.org/10.1002/9781119682561.ch4
    46. Yuki Suzuki. Capturing Structural Switching and Self‐Assembly Events Using High‐Speed Atomic Force Microscopy. 2022, 59-73. https://doi.org/10.1002/9781119682561.ch3
    47. Xiwen Xing, Masayuki Endo. DNA origami Nanotechnology for the Visualization, Analysis, and Control of Molecular Events with Nanoscale Precision. 2022, 305-332. https://doi.org/10.1002/9781119682561.ch15
    48. Yuang Wang, Xuehe Lu, Xiaohui Wu, Yan Li, Wantao Tang, Changping Yang, Jianbing Liu, Baoquan Ding. Chemically modified DNA nanostructures for drug delivery. The Innovation 2022, 3 (2) , 100217. https://doi.org/10.1016/j.xinn.2022.100217
    49. Raghu Pradeep Narayanan, Leeza Abraham. Structural DNA Nanotechnology: Immobile Holliday Junctions to Artifi. Current Topics in Medicinal Chemistry 2022, 22 (8) , 668-685. https://doi.org/10.2174/1568026622666220112143401
    50. Chen Wang, Michael P. O’Hagan, Ziyuan Li, Junji Zhang, Xiang Ma, He Tian, Itamar Willner. Photoresponsive DNA materials and their applications. Chemical Society Reviews 2022, 51 (2) , 720-760. https://doi.org/10.1039/D1CS00688F
    51. Patrick D. Halley, Christopher R. Lucas, Nikša Roki, Nicholas J. Vantangoli, Kurtis P. Chenoweth, Carlos E. Castro. DNA Origami Nanodevices for Therapeutic Delivery Applications. 2022, 161-194. https://doi.org/10.1007/978-3-030-93333-3_8
    52. Ronnie G. Willaert, Sandor Kasas. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames. 2022, 157-167. https://doi.org/10.1007/978-1-0716-2413-5_10
    53. Masayuki Endo. Molecular Nanotechnology for Molecular Robots. 2022, 117-194. https://doi.org/10.1007/978-981-19-3987-7_4
    54. Young‐Joo Kim, Jaekyung Lim, Do‐Nyun Kim. Accelerating AFM Characterization via Deep‐Learning‐Based Image Super‐Resolution. Small 2022, 18 (3) https://doi.org/10.1002/smll.202103779
    55. Swarup Dey, Chunhai Fan, Kurt V. Gothelf, Jiang Li, Chenxiang Lin, Longfei Liu, Na Liu, Minke A. D. Nijenhuis, Barbara Saccà, Friedrich C. Simmel, Hao Yan, Pengfei Zhan. DNA origami. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-020-00009-8
    56. Yang Xin, Amir Ardalan Zargariantabrizi, Guido Grundmeier, Adrian Keller. Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules 2021, 26 (16) , 4798. https://doi.org/10.3390/molecules26164798
    57. Shengnan Fu, Tengfang Zhang, Huanling Jiang, Yan Xu, Jing Chen, Linghao Zhang, Xin Su. DNA nanotechnology enhanced single-molecule biosensing and imaging. TrAC Trends in Analytical Chemistry 2021, 140 , 116267. https://doi.org/10.1016/j.trac.2021.116267
    58. Deepak Sharma, Manojkumar Ramteke. DNA Computing: Methodologies and Challenges. 2021, 15-29. https://doi.org/10.1002/9783527825424.ch2
    59. Johannes M. Parikka, Karolina Sokołowska, Nemanja Markešević, J. Jussi Toppari. Constructing Large 2D Lattices Out of DNA-Tiles. Molecules 2021, 26 (6) , 1502. https://doi.org/10.3390/molecules26061502
    60. Andrew J Lee, Masayuki Endo, Jamie K Hobbs, A Giles Davies, Christoph Wälti. Micro-homology intermediates: RecA’s transient sampling revealed at the single molecule level. Nucleic Acids Research 2021, 49 (3) , 1426-1435. https://doi.org/10.1093/nar/gkaa1258
    61. Margarita Vázquez-González, Itamar Willner. Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. International Journal of Molecular Sciences 2021, 22 (4) , 1803. https://doi.org/10.3390/ijms22041803
    62. Jianbang Wang, Zhixin Zhou, Zhenzhen Li, Itamar Willner. Programmed catalysis within stimuli-responsive mechanically unlocked nanocavities in DNA origami tiles. Chemical Science 2021, 12 (1) , 341-351. https://doi.org/10.1039/D0SC04108D
    63. Masayuki Endo. DNA Nanotechnology to Disclose Molecular Events at the Nanoscale and Mesoscale Levels. 2021, 65-122. https://doi.org/10.1007/978-3-030-55924-3_4
    64. Conor Lanphere, Daniel Offenbartl-Stiegert, Adam Dorey, Genevieve Pugh, Elena Georgiou, Yongzheng Xing, Jonathan R. Burns, Stefan Howorka. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nature Protocols 2021, 16 (1) , 86-130. https://doi.org/10.1038/s41596-020-0331-7
    65. Casey M. Platnich, Felix J. Rizzuto, Gonzalo Cosa, Hanadi F. Sleiman. Single-molecule methods in structural DNA nanotechnology. Chemical Society Reviews 2020, 49 (13) , 4220-4233. https://doi.org/10.1039/C9CS00776H
    66. Xiwen Xing, Shinsuke Sato, Nai-Kei Wong, Kumi Hidaka, Hiroshi Sugiyama, Masayuki Endo. Direct observation and analysis of TET-mediated oxidation processes in a DNA origami nanochip. Nucleic Acids Research 2020, 48 (8) , 4041-4051. https://doi.org/10.1093/nar/gkaa137
    67. Honglu Zhang, Yu Wang, Huan Zhang, Xiaoguo Liu, Antony Lee, Qiuling Huang, Fei Wang, Jie Chao, Huajie Liu, Jiang Li, Jiye Shi, Xiaolei Zuo, Lihua Wang, Lianhui Wang, Xiaoyu Cao, Carlos Bustamante, Zhongqun Tian, Chunhai Fan. Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09004-4
    68. Jianbang Wang, Liang Yue, Ziyuan Li, Junji Zhang, He Tian, Itamar Willner. Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12933-9
    69. Sandeepa Kulala Vittala, Sajena Kanangat Saraswathi, Anjali Bindu Ramesan, Joshy Joseph. Nanosheets and 2D-nanonetworks by mutually assisted self-assembly of fullerene clusters and DNA three-way junctions. Nanoscale Advances 2019, 1 (10) , 4158-4165. https://doi.org/10.1039/C9NA00485H
    70. Toshio Ando. High-speed atomic force microscopy. Current Opinion in Chemical Biology 2019, 51 , 105-112. https://doi.org/10.1016/j.cbpa.2019.05.010
    71. Guruprasad Raghavan, Kumi Hidaka, Hiroshi Sugiyama, Masayuki Endo. Direct Observation and Analysis of the Dynamics of the Photoresponsive Transcription Factor GAL4. Angewandte Chemie International Edition 2019, 58 (23) , 7626-7630. https://doi.org/10.1002/anie.201900610
    72. Guruprasad Raghavan, Kumi Hidaka, Hiroshi Sugiyama, Masayuki Endo. Direct Observation and Analysis of the Dynamics of the Photoresponsive Transcription Factor GAL4. Angewandte Chemie 2019, 131 (23) , 7708-7712. https://doi.org/10.1002/ange.201900610
    73. Yangyang Yang, Shiwei Zhang, Shengtao Yao, Rizhao Pan, Kumi Hidaka, Tomoko Emura, Chunhai Fan, Hiroshi Sugiyama, Yufang Xu, Masayuki Endo, Xuhong Qian. Programming Rotary Motions with a Hexagonal DNA Nanomachine. Chemistry – A European Journal 2019, 25 (20) , 5158-5162. https://doi.org/10.1002/chem.201900221
    74. Xiwen Xing, Yihong Feng, Zutao Yu, Kumi Hidaka, Fenyong Liu, Akira Ono, Hiroshi Sugiyama, Masayuki Endo. Direct Observation of the Double‐Stranded DNA Formation through Metal Ion‐Mediated Base Pairing in the Nanoscale Structure. Chemistry – A European Journal 2019, 25 (6) , 1446-1450. https://doi.org/10.1002/chem.201805394
    75. Masayuki Endo, Xiwen Xing, Hiroshi Sugiyama. Direct Observation of the Formation and Dissociation of Double-Stranded DNA Containing G-Quadruplex/i-Motif Sequences in the DNA Origami Frame Using High-Speed AFM. 2019, 299-308. https://doi.org/10.1007/978-1-4939-9666-7_17
    76. Sergio Kogikoski, Waldemir J. Paschoalino, Lauro T. Kubota. Supramolecular DNA origami nanostructures for use in bioanalytical applications. TrAC Trends in Analytical Chemistry 2018, 108 , 88-97. https://doi.org/10.1016/j.trac.2018.08.019
    77. Ying Liu, Sriram Kumar, Rebecca E. Taylor. Mix‐and‐match nanobiosensor design: Logical and spatial programming of biosensors using self‐assembled DNA nanostructures. WIREs Nanomedicine and Nanobiotechnology 2018, 10 (6) https://doi.org/10.1002/wnan.1518
    78. Mi Li, Dan Dang, Ning Xi, Yuechao Wang, Lianqing Liu. A Review of Nanoscale Characterizing Individual DNA Behaviors Using Atomic Force Microscopy. IEEE Transactions on Nanotechnology 2018, 17 (5) , 920-933. https://doi.org/10.1109/TNANO.2018.2821164
    79. Masayuki Endo, Hiroshi Sugiyama. DNA Origami Nanomachines. Molecules 2018, 23 (7) , 1766. https://doi.org/10.3390/molecules23071766
    80. Yonggang Ke, Carlos Castro, Jong Hyun Choi. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annual Review of Biomedical Engineering 2018, 20 (1) , 375-401. https://doi.org/10.1146/annurev-bioeng-062117-120904
    81. Takayuki Uchihashi, Simon Scheuring. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (2) , 229-240. https://doi.org/10.1016/j.bbagen.2017.07.010
    82. Xiao Feng, Yunchang Guo, Hongjie An, Hongshun Yang. The Hyphenated Technique of High Speed Atomic Force Microscopy and Super Resolution Optical Detection System. 2018, 105-130. https://doi.org/10.1007/978-981-13-1510-7_6
    83. S. Kasas, G. Dietler. DNA-protein interactions explored by atomic force microscopy. Seminars in Cell & Developmental Biology 2018, 73 , 231-239. https://doi.org/10.1016/j.semcdb.2017.07.015
    84. Shuo Yang, Wenyan Liu, Rachel Nixon, Risheng Wang. Metal-ion responsive reversible assembly of DNA origami dimers: G-quadruplex induced intermolecular interaction. Nanoscale 2018, 10 (8) , 3626-3630. https://doi.org/10.1039/C7NR09458B
    85. Disha Mohan Bangalore, Ingrid Tessmer, . Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS Biophysics 2018, 5 (3) , 194-216. https://doi.org/10.3934/biophy.2018.3.194
    86. Mi Li, Dan Dang, Lianqing Liu, Ning Xi, Yuechao Wang. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. Sensors 2017, 17 (12) , 200. https://doi.org/10.3390/s17010200
    87. Yuwei Hu, Alessandro Cecconello, Andrea Idili, Francesco Ricci, Itamar Willner. Triplex‐DNA‐Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angewandte Chemie 2017, 129 (48) , 15410-15434. https://doi.org/10.1002/ange.201701868
    88. Elena M. Willner, Yuu Kamada, Yuki Suzuki, Tomoko Emura, Kumi Hidaka, Hendrik Dietz, Hiroshi Sugiyama, Masayuki Endo. Single‐Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors. Angewandte Chemie 2017, 129 (48) , 15526-15530. https://doi.org/10.1002/ange.201708722
    89. Elena M. Willner, Yuu Kamada, Yuki Suzuki, Tomoko Emura, Kumi Hidaka, Hendrik Dietz, Hiroshi Sugiyama, Masayuki Endo. Single‐Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors. Angewandte Chemie International Edition 2017, 56 (48) , 15324-15328. https://doi.org/10.1002/anie.201708722
    90. Yuwei Hu, Alessandro Cecconello, Andrea Idili, Francesco Ricci, Itamar Willner. Triplex DNA Nanostructures: From Basic Properties to Applications. Angewandte Chemie International Edition 2017, 56 (48) , 15210-15233. https://doi.org/10.1002/anie.201701868
    91. Shenshan Zhan, Xiaoding Lou, Fan Xia. Recent advances in optical-based and force-based single nucleic acid imaging. Science China Chemistry 2017, 60 (10) , 1267-1276. https://doi.org/10.1007/s11426-017-9097-4
    92. Yusuke Kobayashi, Osami Misumi, Masaki Odahara, Kota Ishibashi, Masafumi Hirono, Kumi Hidaka, Masayuki Endo, Hiroshi Sugiyama, Hiroshi Iwasaki, Tsuneyoshi Kuroiwa, Toshiharu Shikanai, Yoshiki Nishimura. Holliday junction resolvases mediate chloroplast nucleoid segregation. Science 2017, 356 (6338) , 631-634. https://doi.org/10.1126/science.aan0038
    93. Yangyang Yang, Ryu Tashiro, Yuki Suzuki, Tomoko Emura, Kumi Hidaka, Hiroshi Sugiyama, Masayuki Endo. A Photoregulated DNA‐Based Rotary System and Direct Observation of Its Rotational Movement. Chemistry – A European Journal 2017, 23 (16) , 3979-3985. https://doi.org/10.1002/chem.201605616
    94. Pengfei Wang, Travis A. Meyer, Victor Pan, Palash K. Dutta, Yonggang Ke. The Beauty and Utility of DNA Origami. Chem 2017, 2 (3) , 359-382. https://doi.org/10.1016/j.chempr.2017.02.009
    95. Kiyoto Kamagata, Agato Murata, Yuji Itoh, Satoshi Takahashi. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2017, 30 , 36-50. https://doi.org/10.1016/j.jphotochemrev.2017.01.004
    96. Kensuke Kawara, Genichiro Tsuji, Yosuke Taniguchi, Shigeki Sasaki. Synchronized Chiral Induction between [5]Helicene–Spermine Ligand and B – Z DNA Transition. Chemistry – A European Journal 2017, 23 (8) , 1763-1769. https://doi.org/10.1002/chem.201605276
    97. Chihiro Igarashi, Agato Murata, Yuji Itoh, Dwiky Rendra Graha Subekti, Satoshi Takahashi, Kiyoto Kamagata. DNA Garden: A Simple Method for Producing Arrays of Stretchable DNA for Single-Molecule Fluorescence Imaging of DNA-Binding Proteins. Bulletin of the Chemical Society of Japan 2017, 90 (1) , 34-43. https://doi.org/10.1246/bcsj.20160298
    98. Sharonda LeBlanc, Hunter Wilkins, Zimeng Li, Parminder Kaur, Hong Wang, Dorothy A. Erie. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein–DNA Complexes That Carry Out DNA Repair. 2017, 187-212. https://doi.org/10.1016/bs.mie.2017.04.004
    99. Katsuhiko Ariga, Taizo Mori, Waka Nakanishi, Jonathan P. Hill. Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Physical Chemistry Chemical Physics 2017, 19 (35) , 23658-23676. https://doi.org/10.1039/C7CP02280H
    100. Mi Li, Dan Dang, Ning Xi, Yuechao Wang, Lianqing Liu. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells. Nanoscale 2017, 9 (45) , 17643-17666. https://doi.org/10.1039/C7NR07023C
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect