ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Cytotoxicity of Carbon Nanomaterials:  Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene

View Author Information
Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing 100083, China, Laboratory for Bio-Environmental Health Sciences of Nanoscale Materials, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Cite this: Environ. Sci. Technol. 2005, 39, 5, 1378–1383
Publication Date (Web):January 7, 2005
https://doi.org/10.1021/es048729l
Copyright © 2005 American Chemical Society

    Article Views

    8256

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    A cytotoxicity test protocol for single-wall nanotubes (SWNTs), multi-wall nanotubes (with diameters ranging from 10 to 20 nm, MWNT10), and fullerene (C60) was tested. Profound cytotoxicity of SWNTs was observed in alveolar macrophage (AM) after a 6-h exposure in vitro. The cytotoxicity increases by as high as ∼35% when the dosage of SWNTs was increased by 11.30 μg/cm2. No significant toxicity was observed for C60 up to a dose of 226.00 μg/cm2. The cytotoxicity apparently follows a sequence order on a mass basis:  SWNTs > MWNT10 > quartz > C60. SWNTs significantly impaired phagocytosis of AM at the low dose of 0.38 μg/cm2, whereas MWNT10 and C60 induced injury only at the high dose of 3.06 μg/cm2. The macrophages exposed to SWNTs or MWNT10 of 3.06 μg/cm2 showed characteristic features of necrosis and degeneration. A sign of apoptotic cell death likely existed. Carbon nanomaterials with different geometric structures exhibit quite different cytotoxicity and bioactivity in vitro, although they may not be accurately reflected in the comparative toxicity in vivo.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     School of Public Health, Peking University.

     Chinese Academy of Sciences.

    §

     College of Chemistry and Molecular Engineering, Peking University.

    *

     Authors to whom correspondence should be addressed. Fax:  +86-10-88233191 (Y.Z.); +86-10-62015583 (G.X.). E-mail:  [email protected] (Y.Z.); [email protected] (G.X.).

    Cited By

    This article is cited by 1150 publications.

    1. Lorenzo Sanjuan-Navarro, Aaron Boughbina-Portolés, Yolanda Moliner-Martínez, Frank von der Kammer, Pilar Campíns-Falcó. Isolation of Carbon Black from Soils by Dispersion for Analysis: Quantitation and Characterization by Field Flow Fractionation Techniques. ACS Omega 2023, 8 (38) , 34795-34804. https://doi.org/10.1021/acsomega.3c03857
    2. Misba Majood, Piyush Garg, Radhika Chaurasia, Aakanksha Agarwal, Sujata Mohanty, Monalisa Mukherjee. Carbon Quantum Dots for Stem Cell Imaging and Deciding the Fate of Stem Cell Differentiation. ACS Omega 2022, 7 (33) , 28685-28693. https://doi.org/10.1021/acsomega.2c03285
    3. Flavio F. Contreras-Torres, Daniel Salas-Treviño, Adolfo Soto-Domínguez, Gerardo De Jesús García-Rivas. Carbon Nanotubes in Tumor-Targeted Chemotherapeutic Formulations: A Review of Opportunities and Challenges. ACS Applied Nano Materials 2022, 5 (7) , 8649-8679. https://doi.org/10.1021/acsanm.2c01118
    4. Kyoung Won Cho, Sung-Hyuk Sunwoo, Yongseok Joseph Hong, Ja Hoon Koo, Jeong Hyun Kim, Seungmin Baik, Taeghwan Hyeon, Dae-Hyeong Kim. Soft Bioelectronics Based on Nanomaterials. Chemical Reviews 2022, 122 (5) , 5068-5143. https://doi.org/10.1021/acs.chemrev.1c00531
    5. Da Gao, Baoyu Li, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Mingwen Zhao, Yang Liu, Xiangdong Liu, Weifeng Li. Defect-Induced Double-Stranded DNA Unwinding on Graphene. The Journal of Physical Chemistry B 2021, 125 (11) , 2833-2840. https://doi.org/10.1021/acs.jpcb.0c09406
    6. Mansab Ali Saleemi, Mohammad Hosseini Fouladi, Phelim Voon Chen Yong, Karuthan Chinna, Navindra Kumari Palanisamy, Eng Hwa Wong. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chemical Research in Toxicology 2021, 34 (1) , 24-46. https://doi.org/10.1021/acs.chemrestox.0c00172
    7. Alyssa R. Deline, Benjamin P. Frank, Casey L. Smith, Leslie R. Sigmon, Alexa N. Wallace, Miranda J. Gallagher, David G. Goodwin, Jr., David P. Durkin, D. Howard Fairbrother. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chemical Reviews 2020, 120 (20) , 11651-11697. https://doi.org/10.1021/acs.chemrev.0c00351
    8. Nidhi Sorout, Amalendu Chandra. Effects of Boron Nitride Nanotube on the Secondary Structure of Aβ(1–42) Trimer: Possible Inhibitory Effect on Amyloid Formation. The Journal of Physical Chemistry B 2020, 124 (10) , 1928-1940. https://doi.org/10.1021/acs.jpcb.9b11986
    9. Chi Zhang, Xiaoyi Li, Zichen Wang, Xuqi Huang, Zhenpeng Ge, Benfeng Hu. Influence of Structured Water Layers on Protein Adsorption Process: A Case Study of Cytochrome c and Carbon Nanotube Interactions and Its Implications. The Journal of Physical Chemistry B 2020, 124 (4) , 684-694. https://doi.org/10.1021/acs.jpcb.9b10192
    10. Ana C. Barrios, Yan Wang, Leanne M. Gilbertson, François Perreault. Structure–Property–Toxicity Relationships of Graphene Oxide: Role of Surface Chemistry on the Mechanisms of Interaction with Bacteria. Environmental Science & Technology 2019, 53 (24) , 14679-14687. https://doi.org/10.1021/acs.est.9b05057
    11. Nishtha Panwar, Alana Mauluidy Soehartono, Kok Ken Chan, Shuwen Zeng, Gaixia Xu, Junle Qu, Philippe Coquet, Ken-Tye Yong, Xiaoyuan Chen. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews 2019, 119 (16) , 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099
    12. Michael González-Durruthy, José M. Monserrat, Patricia Viera de Oliveira, Solange Binotto Fagan, Adriano V. Werhli, Karina Machado, André Melo, Humberto González-Díaz, Riccardo Concu, M. Natália D. S. Cordeiro. Computational MitoTarget Scanning Based on Topological Vacancies of Single-Walled Carbon Nanotubes with the Human Mitochondrial Voltage-Dependent Anion Channel (hVDAC1). Chemical Research in Toxicology 2019, 32 (4) , 566-577. https://doi.org/10.1021/acs.chemrestox.8b00266
    13. Hagar I. Labouta, Nasimeh Asgarian, Kristina Rinker, David T. Cramb. Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature. ACS Nano 2019, 13 (2) , 1583-1594. https://doi.org/10.1021/acsnano.8b07562
    14. Bun Chan, Yukio Kawashima, William Dawson, Michio Katouda, Takahito Nakajima, Kimihiko Hirao. A Simple Model for Relative Energies of All Fullerenes Reveals the Interplay between Intrinsic Resonance and Structural Deformation Effects in Medium-Sized Fullerenes. Journal of Chemical Theory and Computation 2019, 15 (2) , 1255-1264. https://doi.org/10.1021/acs.jctc.8b00981
    15. Mohammadreza Taale, Fabian Schütt, Tian Carey, Janik Marx, Yogendra Kumar Mishra, Norbert Stock, Bodo Fiedler, Felice Torrisi, Rainer Adelung, Christine Selhuber-Unkel. Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS Applied Materials & Interfaces 2019, 11 (5) , 5325-5335. https://doi.org/10.1021/acsami.8b17627
    16. Chenglong Wang, Xue-Ling Chang, Qiuyue Shi, Xian Zhang. Uptake and Transfer of 13C-Fullerenols from Scenedesmus obliquus to Daphnia magna in an Aquatic Environment. Environmental Science & Technology 2018, 52 (21) , 12133-12141. https://doi.org/10.1021/acs.est.8b03121
    17. Rahim Rahimi, Manuel Ochoa, Babak Ziaie. Comparison of Direct and Indirect Laser Ablation of Metallized Paper for Inexpensive Paper-Based Sensors. ACS Applied Materials & Interfaces 2018, 10 (42) , 36332-36341. https://doi.org/10.1021/acsami.8b09598
    18. Mengling Zhang, Huibo Wang, Yuxiang Song, Hui Huang, Mingwang Shao, Yang Liu, Hao Li, Zhenhui Kang. Pristine Carbon Dots Boost the Growth of Chlorella vulgaris by Enhancing Photosynthesis. ACS Applied Bio Materials 2018, 1 (3) , 894-902. https://doi.org/10.1021/acsabm.8b00319
    19. Chris J. Barnett, Cathren E. Gowenlock, Kathryn Welsby, Alvin Orbaek White, and Andrew R. Barron . Spatial and Contamination-Dependent Electrical Properties of Carbon Nanotubes. Nano Letters 2018, 18 (2) , 695-700. https://doi.org/10.1021/acs.nanolett.7b03390
    20. Ramapuram Naseeruddin, Vupprucherla Sumathi, Tollamadugu N. V. K. V. Prasad, Palagiri Sudhakar, Velaga Chandrika, and Balam Ravindra Reddy . Unprecedented Synergistic Effects of Nanoscale Nutrients on Growth, Productivity of Sweet Sorghum [Sorghum bicolor (L.) Moench], and Nutrient Biofortification. Journal of Agricultural and Food Chemistry 2018, 66 (5) , 1075-1084. https://doi.org/10.1021/acs.jafc.7b04467
    21. Liming Wang, Liang Yan, Jing Liu, Chunying Chen, and Yuliang Zhao . Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry 2018, 90 (1) , 589-614. https://doi.org/10.1021/acs.analchem.7b04765
    22. Biswajit Das, Nirmalya S. Das, Samrat Sarkar, Biplab K. Chatterjee, and Kalyan K. Chattopadhyay . Topological Insulator Bi2Se3/Si-Nanowire-Based p–n Junction Diode for High-Performance Near-Infrared Photodetector. ACS Applied Materials & Interfaces 2017, 9 (27) , 22788-22798. https://doi.org/10.1021/acsami.7b00759
    23. Lok Wai Cola Ho, Wing-Yin Yung, Kwun Hei Samuel Sy, Ho Yin Li, Chun Kit K. Choi, Ken Cham-Fai Leung, Thomas W. Y. Lee, and Chung Hang Jonathan Choi . Effect of Alkylation on the Cellular Uptake of Polyethylene Glycol-Coated Gold Nanoparticles. ACS Nano 2017, 11 (6) , 6085-6101. https://doi.org/10.1021/acsnano.7b02044
    24. Yaqi You, Kamol K. Das, Huiyuan Guo, Che-Wei Chang, Maria Navas-Moreno, James W. Chan, Paul Verburg, Simon R. Poulson, Xilong Wang, Baoshan Xing, and Yu Yang . Microbial Transformation of Multiwalled Carbon Nanotubes by Mycobacterium vanbaalenii PYR-1. Environmental Science & Technology 2017, 51 (4) , 2068-2076. https://doi.org/10.1021/acs.est.6b04523
    25. Sławomir Boncel, Artur P. Herman, Sebastian Budniok, Rafał G. Jędrysiak, Agata Jakóbik-Kolon, Jeremy N. Skepper, and Karin H. Müller . In Vitro Targeting and Selective Killing of T47D Breast Cancer Cells by Purpurin and 5-Fluorouracil Anchored to Magnetic CNTs: Nitrene-Based Functionalization versus Uptake, Cytotoxicity, and Intracellular Fate. ACS Biomaterials Science & Engineering 2016, 2 (8) , 1273-1285. https://doi.org/10.1021/acsbiomaterials.6b00197
    26. Xiang Wang, Nikhita D. Mansukhani, Linda M. Guiney, Jae-Hyeok Lee, Ruibin Li, Bingbing Sun, Yu-Pei Liao, Chong Hyun Chang, Zhaoxia Ji, Tian Xia, Mark C. Hersam, and André E. Nel . Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli. ACS Nano 2016, 10 (6) , 6008-6019. https://doi.org/10.1021/acsnano.6b01560
    27. Candace S.J. Tsai, Arthur D. Dysart, Jay H. Beltz, and Vilas G. Pol . Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing. Environmental Science & Technology 2016, 50 (5) , 2627-2634. https://doi.org/10.1021/acs.est.5b03610
    28. Guosong Hong, Shuo Diao, Alexander L. Antaris, and Hongjie Dai . Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews 2015, 115 (19) , 10816-10906. https://doi.org/10.1021/acs.chemrev.5b00008
    29. Varsha Srivastava, Deepak Gusain, and Yogesh Chandra Sharma . Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Industrial & Engineering Chemistry Research 2015, 54 (24) , 6209-6233. https://doi.org/10.1021/acs.iecr.5b01610
    30. Guangshu Zhai, Sarah M. Gutowski, Katherine S. Walters, Bing Yan, and Jerald L. Schnoor . Charge, Size, and Cellular Selectivity for Multiwall Carbon Nanotubes by Maize and Soybean. Environmental Science & Technology 2015, 49 (12) , 7380-7390. https://doi.org/10.1021/acs.est.5b01145
    31. Matteo Calvaresi, Simone Furini, Carmen Domene, Andrea Bottoni, and Francesco Zerbetto . Blocking the Passage: C60 Geometrically Clogs K+ Channels. ACS Nano 2015, 9 (5) , 4827-4834. https://doi.org/10.1021/nn506164s
    32. Md. Azahar Ali, Pratima R. Solanki, Saurabh Srivastava, Samer Singh, Ved V. Agrawal, Renu John, and Bansi D. Malhotra . Protein Functionalized Carbon Nanotubes-based Smart Lab-on-a-Chip. ACS Applied Materials & Interfaces 2015, 7 (10) , 5837-5846. https://doi.org/10.1021/am509002h
    33. Justin G. Clar, Sarah A. Gustitus, Sejin Youn, Carlos A. Silvera Batista, Kirk. J. Ziegler, and Jean Claude J. Bonzongo . Unique Toxicological Behavior from Single-Wall Carbon Nanotubes Separated via Selective Adsorption on Hydrogels. Environmental Science & Technology 2015, 49 (6) , 3913-3921. https://doi.org/10.1021/es505925m
    34. Sang-Kyu Jung, Xiaolei Qu, Boanerges Aleman-Meza, Tianxiao Wang, Celeste Riepe, Zheng Liu, Qilin Li, and Weiwei Zhong . Multi-endpoint, High-Throughput Study of Nanomaterial Toxicity in Caenorhabditis elegans. Environmental Science & Technology 2015, 49 (4) , 2477-2485. https://doi.org/10.1021/es5056462
    35. Guimei Lin, Hong Zhang, and Leaf Huang . Smart Polymeric Nanoparticles for Cancer Gene Delivery. Molecular Pharmaceutics 2015, 12 (2) , 314-321. https://doi.org/10.1021/mp500656v
    36. Sudarshan Kurwadkar Xiaoqi (Jackie) Zhang Forrest Mitchell David Ramirez . Introduction. 2015, 1-16. https://doi.org/10.1021/bk-2015-1198.ch001
    37. Harshrajsinh Thakor Alex Parise Xiaoqi (Jackie) Zhang . Toxicity of Long Single-Walled Carbon Nanotubes to the Activated Sludge Process: Examination of the Effects of Extracellular Polymeric Substances. 2015, 167-173. https://doi.org/10.1021/bk-2015-1198.ch009
    38. Peng Du, Jian Zhao, Hamid Mashayekhi, and Baoshan Xing . Adsorption of Bovine Serum Albumin and Lysozyme on Functionalized Carbon Nanotubes. The Journal of Physical Chemistry C 2014, 118 (38) , 22249-22257. https://doi.org/10.1021/jp5044943
    39. Chengdong Zhang, Wei Chen, and Pedro J. J. Alvarez . Manganese Peroxidase Degrades Pristine but Not Surface-Oxidized (Carboxylated) Single-Walled Carbon Nanotubes. Environmental Science & Technology 2014, 48 (14) , 7918-7923. https://doi.org/10.1021/es5011175
    40. Naoto Saito, Hisao Haniu, Yuki Usui, Kaoru Aoki, Kazuo Hara, Seiji Takanashi, Masayuki Shimizu, Nobuyo Narita, Masanori Okamoto, Shinsuke Kobayashi, Hiroki Nomura, Hiroyuki Kato, Naoyuki Nishimura, Seiichi Taruta, and Morinobu Endo . Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews 2014, 114 (11) , 6040-6079. https://doi.org/10.1021/cr400341h
    41. Brahatheeswaran Dhandayuthapani, Ramakrishna Mallampati, Deepa Sriramulu, Roshan Fredrick Dsouza, and Suresh Valiyaveettil . PVA/Gluten Hybrid Nanofibers for Removal of Nanoparticles from Water. ACS Sustainable Chemistry & Engineering 2014, 2 (4) , 1014-1021. https://doi.org/10.1021/sc500003k
    42. Baotong Zhu, Xinghui Xia, Na Xia, Shangwei Zhang, and Xuejun Guo . Modification of Fatty Acids in Membranes of Bacteria: Implication for an Adaptive Mechanism to the Toxicity of Carbon Nanotubes. Environmental Science & Technology 2014, 48 (7) , 4086-4095. https://doi.org/10.1021/es404359v
    43. Timothy T. Ruckh and Heather A. Clark . Implantable Nanosensors: Toward Continuous Physiologic Monitoring. Analytical Chemistry 2014, 86 (3) , 1314-1323. https://doi.org/10.1021/ac402688k
    44. Haiyan Yang, Meiping Tong, and Hyunjung Kim . Effect of Carbon Nanotubes on the Transport and Retention of Bacteria in Saturated Porous Media. Environmental Science & Technology 2013, 47 (20) , 11537-11544. https://doi.org/10.1021/es4022415
    45. Mohammad H. Ghafariyan, Mohammad J. Malakouti, Mohammad R. Dadpour, Pieter Stroeve, and Morteza Mahmoudi . Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environmental Science & Technology 2013, 47 (18) , 10645-10652. https://doi.org/10.1021/es402249b
    46. Junyi Li, Rebecca Strong, Júlio Trevisan, Simon W. Fogarty, Nigel J. Fullwood, Kevin C. Jones, and Francis L. Martin . Dose-Related Alterations of Carbon Nanoparticles in Mammalian Cells Detected Using Biospectroscopy: Potential for Real-World Effects. Environmental Science & Technology 2013, 47 (17) , 10005-10011. https://doi.org/10.1021/es4017848
    47. Manasmita Das, Raman Preet Singh, Satyajit R. Datir, and Sanyog Jain . Intranuclear Drug Delivery and Effective in Vivo Cancer Therapy via Estradiol–PEG-Appended Multiwalled Carbon Nanotubes. Molecular Pharmaceutics 2013, 10 (9) , 3404-3416. https://doi.org/10.1021/mp4002409
    48. Devrah A. Arndt, Maika Moua, Jian Chen, and Rebecca D. Klaper . Core Structure and Surface Functionalization of Carbon Nanomaterials Alter Impacts to Daphnid Mortality, Reproduction, and Growth: Acute Assays Do Not Predict Chronic Exposure Impacts. Environmental Science & Technology 2013, 47 (16) , 9444-9452. https://doi.org/10.1021/es4030595
    49. Jie Chen, Tu O. Tran, Michael T. Ray, Daniel B. Brunski, Joel C. Keay, David Hickey, Matthew B. Johnson, Daniel T. Glatzhofer, and David W. Schmidtke . Effect of Surfactant Type and Redox Polymer Type on Single-Walled Carbon Nanotube Modified Electrodes. Langmuir 2013, 29 (33) , 10586-10595. https://doi.org/10.1021/la401158y
    50. Leanne M. Pasquini, Ryan C. Sekol, André D. Taylor, Lisa D. Pfefferle, and Julie B. Zimmerman . Realizing Comparable Oxidative and Cytotoxic Potential of Single- and Multiwalled Carbon Nanotubes through Annealing. Environmental Science & Technology 2013, 47 (15) , 8775-8783. https://doi.org/10.1021/es401786s
    51. Caroline Burkhard Golin, Thomas L. Bougher, Anne Mallow, Baratunde A. Cola. Toward a comprehensive framework for nanomaterials: An interdisciplinary assessment of the current Environmental Health and Safety Regulation regarding the handling of carbon nanotubes. Journal of Chemical Health & Safety 2013, 20 (4) , 9-24. https://doi.org/10.1016/j.jchas.2013.02.014
    52. Manasmita Das, Satyajit R. Datir, Raman Preet Singh, and Sanyog Jain . Augmented Anticancer Activity of a Targeted, Intracellularly Activatable, Theranostic Nanomedicine Based on Fluorescent and Radiolabeled, Methotrexate-Folic Acid-Multiwalled Carbon Nanotube Conjugate. Molecular Pharmaceutics 2013, 10 (7) , 2543-2557. https://doi.org/10.1021/mp300701e
    53. Biyun Shi, Guanghong Zuo, Peng Xiu, and Ruhong Zhou . Binding Preference of Carbon Nanotube Over Proline-Rich Motif Ligand on SH3-Domain: A Comparison with Different Force Fields. The Journal of Physical Chemistry B 2013, 117 (13) , 3541-3547. https://doi.org/10.1021/jp312423y
    54. Anne Kahru and Angela Ivask . Mapping the Dawn of Nanoecotoxicological Research. Accounts of Chemical Research 2013, 46 (3) , 823-833. https://doi.org/10.1021/ar3000212
    55. Ying Liu, Yuliang Zhao, Baoyun Sun, and Chunying Chen . Understanding the Toxicity of Carbon Nanotubes. Accounts of Chemical Research 2013, 46 (3) , 702-713. https://doi.org/10.1021/ar300028m
    56. Chi-Yu Shao, Sing-Zuo Chen, Bo-Han Su, Yufeng J. Tseng, Emilio Xavier Esposito, and Anton J. Hopfinger . Dependence of QSAR Models on the Selection of Trial Descriptor Sets: A Demonstration Using Nanotoxicity Endpoints of Decorated Nanotubes. Journal of Chemical Information and Modeling 2013, 53 (1) , 142-158. https://doi.org/10.1021/ci3005308
    57. Fei-fei Liu, Shu-guang Wang, Jin-lin Fan, and Guang-hui Ma . Adsorption of Natural Organic Matter Surrogates from Aqueous Solution by Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry C 2012, 116 (49) , 25783-25789. https://doi.org/10.1021/jp307065e
    58. R. Parthasarathi, N. R. Tummala, and A. Striolo . Embedded Single-Walled Carbon Nanotubes Locally Perturb DOPC Phospholipid Bilayers. The Journal of Physical Chemistry B 2012, 116 (42) , 12769-12782. https://doi.org/10.1021/jp306299x
    59. Saijin Zhang, Yuelu Jiang, Chi-Shuo Chen, Jessica Spurgin, Kathleen A. Schwehr, Antonietta Quigg, Wei-Chun Chin, and Peter H. Santschi . Aggregation, Dissolution, and Stability of Quantum Dots in Marine Environments: Importance of Extracellular Polymeric Substances. Environmental Science & Technology 2012, 46 (16) , 8764-8772. https://doi.org/10.1021/es301000m
    60. Jonathan D. Judy, Jason M. Unrine, William Rao, Sue Wirick, and Paul M. Bertsch . Bioavailability of Gold Nanomaterials to Plants: Importance of Particle Size and Surface Coating. Environmental Science & Technology 2012, 46 (15) , 8467-8474. https://doi.org/10.1021/es3019397
    61. Ran Shen, Kai Song, Huarong Liu, Yuesheng Li, and Hewen Liu . Fluorescence Enhancement and Radiolysis of Carbon Dots through Aqueous γ Radiation Chemistry. The Journal of Physical Chemistry C 2012, 116 (29) , 15826-15832. https://doi.org/10.1021/jp304541q
    62. Alan C. L. Tang, Ming-Yao Chang, Zack C. W. Tang, Hui-Jing Li, Gan-Lin Hwang, and Patrick C. H. Hsieh . Treatment of Acute Thromboembolism in Mice Using Heparin-Conjugated Carbon Nanocapsules. ACS Nano 2012, 6 (7) , 6099-6107. https://doi.org/10.1021/nn301198r
    63. Yi Zhang and Bing Yan . Cell Cycle Regulation by Carboxylated Multiwalled Carbon Nanotubes through p53-Independent Induction of p21 under the Control of the BMP Signaling Pathway. Chemical Research in Toxicology 2012, 25 (6) , 1212-1221. https://doi.org/10.1021/tx300059m
    64. Xiang Wang, Tian Xia, Matthew C. Duch, Zhaoxia Ji, Haiyuan Zhang, Ruibin Li, Bingbing Sun, Sijie Lin, Huan Meng, Yu-Pei Liao, Meiying Wang, Tze-Bin Song, Yang Yang, Mark C. Hersam, and André E. Nel . Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters 2012, 12 (6) , 3050-3061. https://doi.org/10.1021/nl300895y
    65. Leanne M. Pasquini, Sara M. Hashmi, Toby J. Sommer, Menachem Elimelech, and Julie B. Zimmerman . Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. Environmental Science & Technology 2012, 46 (11) , 6297-6305. https://doi.org/10.1021/es300514s
    66. Wenhao Wu, Wei Chen, Daohui Lin, and Kun Yang . Influence of Surface Oxidation of Multiwalled Carbon Nanotubes on the Adsorption Affinity and Capacity of Polar and Nonpolar Organic Compounds in Aqueous Phase. Environmental Science & Technology 2012, 46 (10) , 5446-5454. https://doi.org/10.1021/es3004848
    67. Xiaoyi Li, Yanchao Shi, Bing Miao, and Yuliang Zhao . Effects of Embedded Carbon Nanotube on Properties of Biomembrane. The Journal of Physical Chemistry B 2012, 116 (18) , 5391-5397. https://doi.org/10.1021/jp301864z
    68. Maoyong Song, Shaopeng Yuan, Junfa Yin, Xiaoli Wang, Zihui Meng, Hailin Wang, and Guibin Jiang . Size-Dependent Toxicity of Nano-C60 Aggregates: More Sensitive Indication by Apoptosis-Related Bax Translocation in Cultured Human Cells. Environmental Science & Technology 2012, 46 (6) , 3457-3464. https://doi.org/10.1021/es2039008
    69. Masanori Horie, Haruhisa Kato, Katsuhide Fujita, Shigehisa Endoh, and Hitoshi Iwahashi . In Vitro Evaluation of Cellular Response Induced by Manufactured Nanoparticles. Chemical Research in Toxicology 2012, 25 (3) , 605-619. https://doi.org/10.1021/tx200470e
    70. Xiang Wang, Tian Xia, Susana Addo Ntim, Zhaoxia Ji, Sijie Lin, Huan Meng, Choong-Heui Chung, Saji George, Haiyuan Zhang, Meiying Wang, Ning Li, Yang Yang, Vincent Castranova, Somenath Mitra, James C. Bonner, and André E. Nel . Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano 2011, 5 (12) , 9772-9787. https://doi.org/10.1021/nn2033055
    71. Dania Movia, Adriele Prina-Mello, Despina Bazou, Yuri Volkov, and Silvia Giordani . Screening the Cytotoxicity of Single-Walled Carbon Nanotubes Using Novel 3D Tissue-Mimetic Models. ACS Nano 2011, 5 (11) , 9278-9290. https://doi.org/10.1021/nn203659m
    72. Oscar N. Ruiz, K. A. Shiral Fernando, Baojiang Wang, Nicholas A. Brown, Pengju George Luo, Nicholas D. McNamara, Marlin Vangsness, Ya-Ping Sun, and Christopher E. Bunker . Graphene Oxide: A Nonspecific Enhancer of Cellular Growth. ACS Nano 2011, 5 (10) , 8100-8107. https://doi.org/10.1021/nn202699t
    73. Yong Zhao, Brett L. Allen, and Alexander Star . Enzymatic Degradation of Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry A 2011, 115 (34) , 9536-9544. https://doi.org/10.1021/jp112324d
    74. Hyo-Kyung Han, Young-Chul Lee, Moo-Yeol Lee, Avinash J. Patil, and Hyun-Jae Shin . Magnesium and Calcium Organophyllosilicates: Synthesis and In vitro Cytotoxicity Study. ACS Applied Materials & Interfaces 2011, 3 (7) , 2564-2572. https://doi.org/10.1021/am200406k
    75. Sunil K. Singh, Manoj K. Singh, Manasa K. Nayak, Sharda Kumari, Siddhartha Shrivastava, José J. A. Grácio, and Debabrata Dash . Thrombus Inducing Property of Atomically Thin Graphene Oxide Sheets. ACS Nano 2011, 5 (6) , 4987-4996. https://doi.org/10.1021/nn201092p
    76. Morteza Mahmoudi, Mohammad A. Sahraian, Mohammad A. Shokrgozar, and Sophie Laurent . Superparamagnetic Iron Oxide Nanoparticles: Promises for Diagnosis and Treatment of Multiple Sclerosis. ACS Chemical Neuroscience 2011, 2 (3) , 118-140. https://doi.org/10.1021/cn100100e
    77. Xiang Wang, Tian Xia, Susana Addo Ntim, Zhaoxia Ji, Saji George, Huan Meng, Haiyuan Zhang, Vincent Castranova, Somenath Mitra, and André E. Nel . Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano 2010, 4 (12) , 7241-7252. https://doi.org/10.1021/nn102112b
    78. Anna S. Brady-Estévez, Mary H. Schnoor, Seoktae Kang, and Menachem Elimelech . SWNT−MWNT Hybrid Filter Attains High Viral Removal and Bacterial Inactivation. Langmuir 2010, 26 (24) , 19153-19158. https://doi.org/10.1021/la103776y
    79. Omid Akhavan and Elham Ghaderi . Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4 (10) , 5731-5736. https://doi.org/10.1021/nn101390x
    80. Qiaoling Liu, Yuanyuan Zhao, Yinglang Wan, Junpeng Zheng, Xuejie Zhang, Chunru Wang, Xiaohong Fang, and Jinxing Lin . Study of the Inhibitory Effect of Water-Soluble Fullerenes on Plant Growth at the Cellular Level. ACS Nano 2010, 4 (10) , 5743-5748. https://doi.org/10.1021/nn101430g
    81. Yuling Yang, Xiaoyi Li, Jinliang Jiang, Huailiang Du, Lina Zhao, and Yuliang Zhao . Control Performance and Biomembrane Disturbance of Carbon Nanotube Artificial Water Channels by Nitrogen-Doping. ACS Nano 2010, 4 (10) , 5755-5762. https://doi.org/10.1021/nn1014825
    82. Fei Wang, Jun Yao, Ke Sun, and Baoshan Xing . Adsorption of Dialkyl Phthalate Esters on Carbon Nanotubes. Environmental Science & Technology 2010, 44 (18) , 6985-6991. https://doi.org/10.1021/es101326j
    83. Lei Ren and Wenwan Zhong . Oxidation Reactions Mediated by Single-Walled Carbon Nanotubes in Aqueous Solution. Environmental Science & Technology 2010, 44 (18) , 6954-6958. https://doi.org/10.1021/es101821m
    84. Jaesang Lee, Shaily Mahendra and Pedro J. J. Alvarez . Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations. ACS Nano 2010, 4 (7) , 3580-3590. https://doi.org/10.1021/nn100866w
    85. Hui-Fang Cui, Sandeep Kumar Vashist, Khalid Al-Rubeaan, John H. T. Luong and Fwu-Shan Sheu . Interfacing Carbon Nanotubes with Living Mammalian Cells and Cytotoxicity Issues. Chemical Research in Toxicology 2010, 23 (7) , 1131-1147. https://doi.org/10.1021/tx100050h
    86. Pei-Ru Li, Jiun-Chiou Wei, Ying-Fang Chiu, Hong-Lin Su, Fu-Chuo Peng and Jiang-Jen Lin. Evaluation on Cytotoxicity and Genotoxicity of the Exfoliated Silicate Nanoclay. ACS Applied Materials & Interfaces 2010, 2 (6) , 1608-1613. https://doi.org/10.1021/am1001162
    87. Ning Cai, Chee C. Wong, Ying X. Gong, Samuel C. W. Tan, Vincent Chan and Kin Liao . Modulating Cell Adhesion Dynamics on Carbon Nanotube Monolayer Engineered with Extracellular Matrix Proteins. ACS Applied Materials & Interfaces 2010, 2 (4) , 1038-1047. https://doi.org/10.1021/am9008117
    88. Dandan Liu, Changqing Yi, Dawei Zhang, Jinchao Zhang and Mengsu Yang . Inhibition of Proliferation and Differentiation of Mesenchymal Stem Cells by Carboxylated Carbon Nanotubes. ACS Nano 2010, 4 (4) , 2185-2195. https://doi.org/10.1021/nn901479w
    89. Mahdie Rahban, Adeleh Divsalar, Ali A. Saboury and A. Golestani . Nanotoxicity and Spectroscopy Studies of Silver Nanoparticle: Calf Thymus DNA and K562 as Targets. The Journal of Physical Chemistry C 2010, 114 (13) , 5798-5803. https://doi.org/10.1021/jp910656g
    90. Lisa M. Manus, Daniel J. Mastarone, Emily A. Waters, Xue-Qing Zhang, Elise A. Schultz-Sikma, Keith W. MacRenaris, Dean Ho and Thomas J. Meade . Gd(III)-Nanodiamond Conjugates for MRI Contrast Enhancement. Nano Letters 2010, 10 (2) , 484-489. https://doi.org/10.1021/nl903264h
    91. Shujuan Zhang, Ting Shao, S. Sule Kaplan Bekaroglu and Tanju Karanfil. The Impacts of Aggregation and Surface Chemistry of Carbon Nanotubes on the Adsorption of Synthetic Organic Compounds. Environmental Science & Technology 2009, 43 (15) , 5719-5725. https://doi.org/10.1021/es900453e
    92. Sheng-Tao Yang, Haifang Wang, Mohammed J. Meziani, Yuanfang Liu, Xin Wang and Ya-Ping Sun . Biodefunctionalization of Functionalized Single-Walled Carbon Nanotubes in Mice. Biomacromolecules 2009, 10 (7) , 2009-2012. https://doi.org/10.1021/bm900263z
    93. Masanori Horie, Keiko Nishio, Katsuhide Fujita, Shigehisa Endoh, Arisa Miyauchi, Yoshiro Saito, Hitoshi Iwahashi, Kazuhiro Yamamoto, Hideki Murayama, Hajime Nakano, Naoki Nanashima, Etsuo Niki and Yasukazu Yoshida. Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward Cultured Cells. Chemical Research in Toxicology 2009, 22 (3) , 543-553. https://doi.org/10.1021/tx800289z
    94. Richard J. Kelly. Occupational medicine implications of engineered nanoscale particulate matter. Journal of Chemical Health & Safety 2009, 16 (1) , 24-39. https://doi.org/10.1016/j.jchas.2008.03.012
    95. Bo Zhang, Min Cho, John D. Fortner, Jaesang Lee, Ching-Hua Huang, Joseph B. Hughes and Jae-Hong Kim . Delineating Oxidative Processes of Aqueous C60 Preparations: Role of THF Peroxide. Environmental Science & Technology 2009, 43 (1) , 108-113. https://doi.org/10.1021/es8019066
    96. Na Wang, Deqian Huang, Jing Zhang, Jiongjia Cheng, Ting Yu, Haiqiong Zhang and Shuping Bi. Electrochemical Studies on the Effects of Nanometer-Sized Tridecameric Aluminum Polycation on Lactate Dehydrogenase Activity at the Molecular Level. The Journal of Physical Chemistry C 2008, 112 (46) , 18034-18038. https://doi.org/10.1021/jp805834k
    97. Brett L. Allen, Padmakar D. Kichambare, Pingping Gou, Irina I. Vlasova, Alexander A. Kapralov, Nagarjun Konduru, Valerian E. Kagan and Alexander Star . Biodegradation of Single-Walled Carbon Nanotubes through Enzymatic Catalysis. Nano Letters 2008, 8 (11) , 3899-3903. https://doi.org/10.1021/nl802315h
    98. Seoktae Kang, Meagan S. Mauter and Menachem Elimelech. Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity. Environmental Science & Technology 2008, 42 (19) , 7528-7534. https://doi.org/10.1021/es8010173
    99. Ivana Fenoglio, Giovanna Greco, Maura Tomatis, Julie Muller, Encarnacion Raymundo-Piñero, François Béguin, Antonio Fonseca, Janos B. Nagy, Dominique Lison and Bice Fubini . Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Physicochemical Aspects. Chemical Research in Toxicology 2008, 21 (9) , 1690-1697. https://doi.org/10.1021/tx800100s
    100. Meagan S. Mauter and Menachem Elimelech. Environmental Applications of Carbon-Based Nanomaterials. Environmental Science & Technology 2008, 42 (16) , 5843-5859. https://doi.org/10.1021/es8006904
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect