ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Polyethyleneimine Functionalized Single-Walled Carbon Nanotubes as a Substrate for Neuronal Growth

View Author Information
Center for Nanoscale Science and Engineering, Departments of Chemistry, Chemical and Environmental Engineering, and of Cell Biology and Neuroscience, University of California, Riverside, California 92521
Cite this: J. Phys. Chem. B 2005, 109, 10, 4285–4289
Publication Date (Web):February 22, 2005
https://doi.org/10.1021/jp0441137
Copyright © 2005 American Chemical Society

    Article Views

    3331

    Altmetric

    -

    Citations

    223
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    We report the synthesis of a single-walled carbon nanotube (SWNT) graft copolymer. This polymer was prepared by the functionalization of SWNTs with polyethyleneimine (PEI). We used this graft copolymer, SWNT−PEI, as a substrate for cultured neurons and found that it promotes neurite outgrowth and branching.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Departments of Chemisty and Chemical and Environmental Engineering.

     Department of Cell Biology and Neuroscience.

    *

     Corresponding authors. E-mail:  [email protected] and [email protected].

    Cited By

    This article is cited by 223 publications.

    1. Myriam Barrejón, Rossana Rauti, Laura Ballerini, Maurizio Prato. Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling. ACS Nano 2019, 13 (8) , 8879-8889. https://doi.org/10.1021/acsnano.9b02429
    2. Zheng Zhou, Santosh K. Balijepalli, Anh H. T. Nguyen-Sorenson, Clifton M. Anderson, Justin L. Park, Kara J. Stowers. Steam-Stable Covalently Bonded Polyethylenimine Modified Multiwall Carbon Nanotubes for Carbon Dioxide Capture. Energy & Fuels 2018, 32 (11) , 11701-11709. https://doi.org/10.1021/acs.energyfuels.8b02864
    3. Yadan Ding, Xia Hong, Peng Zou, Kai Liu, Tie Cong, Hong Zhang, Yichun Liu. Magnetic Upconversion Luminescent Nanocomposites with Small Size and Strong Super-Paramagnetism: Polyelectrolyte-Mediated Multimagnetic-Beads Embedding. ACS Applied Nano Materials 2018, 1 (1) , 145-151. https://doi.org/10.1021/acsanm.7b00059
    4. Manoj K. Gottipati, Elena Bekyarova, Michael Brenner, Robert C. Haddon, and Vladimir Parpura . Changes in the Morphology and Proliferation of Astrocytes Induced by Two Modalities of Chemically Functionalized Single-Walled Carbon Nanotubes are Differentially Mediated by Glial Fibrillary Acidic Protein. Nano Letters 2014, 14 (7) , 3720-3727. https://doi.org/10.1021/nl4048114
    5. Valentina Martinelli, Giada Cellot, Francesca Maria Toma, Carlin S. Long, John H. Caldwell, Lorena Zentilin, Mauro Giacca, Antonio Turco, Maurizio Prato, Laura Ballerini, and Luisa Mestroni . Carbon Nanotubes Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac Myocytes. ACS Nano 2013, 7 (7) , 5746-5756. https://doi.org/10.1021/nn4002193
    6. Amélie Béduer, Florent Seichepine, Emmanuel Flahaut, Isabelle Loubinoux, Laurence Vaysse, and Christophe Vieu . Elucidation of the Role of Carbon Nanotube Patterns on the Development of Cultured Neuronal Cells. Langmuir 2012, 28 (50) , 17363-17371. https://doi.org/10.1021/la304278n
    7. Manoj K. Gottipati, Irina Kalinina, Elena Bekyarova, Robert C. Haddon, and Vladimir Parpura . Chemically Functionalized Water-Soluble Single-Walled Carbon Nanotubes Modulate Morpho-Functional Characteristics of Astrocytes. Nano Letters 2012, 12 (9) , 4742-4747. https://doi.org/10.1021/nl302178s
    8. Valentina Martinelli, Giada Cellot, Francesca Maria Toma, Carlin S. Long, John H. Caldwell, Lorena Zentilin, Mauro Giacca, Antonio Turco, Maurizio Prato, Laura Ballerini, and Luisa Mestroni . Carbon Nanotubes Promote Growth and Spontaneous Electrical Activity in Cultured Cardiac Myocytes. Nano Letters 2012, 12 (4) , 1831-1838. https://doi.org/10.1021/nl204064s
    9. Tu O. Tran, Emily G. Lammert, Jie Chen, Stephen A. Merchant, Daniel B. Brunski, Joel C. Keay, Matthew B. Johnson, Daniel T. Glatzhofer, and David W. Schmidtke . Incorporation of Single-Walled Carbon Nanotubes into Ferrocene-Modified Linear Polyethylenimine Redox Polymer Films. Langmuir 2011, 27 (10) , 6201-6210. https://doi.org/10.1021/la104999f
    10. Irina Kalinina, Kimberly Worsley, Christopher Lugo, Swadhin Mandal, Elena Bekyarova, and Robert C. Haddon . Synthesis, Dispersion, and Viscosity of Poly(ethylene glycol)-Functionalized Water-Soluble Single-Walled Carbon Nanotubes. Chemistry of Materials 2011, 23 (5) , 1246-1253. https://doi.org/10.1021/cm103030s
    11. Hui-Fang Cui, Sandeep Kumar Vashist, Khalid Al-Rubeaan, John H. T. Luong and Fwu-Shan Sheu . Interfacing Carbon Nanotubes with Living Mammalian Cells and Cytotoxicity Issues. Chemical Research in Toxicology 2010, 23 (7) , 1131-1147. https://doi.org/10.1021/tx100050h
    12. Edward Jan, Jeffrey L. Hendricks, Vincent Husaini, Sarah M. Richardson-Burns, Andrew Sereno, David C. Martin and Nicholas A. Kotov . Layered Carbon Nanotube-Polyelectrolyte Electrodes Outperform Traditional Neural Interface Materials. Nano Letters 2009, 9 (12) , 4012-4018. https://doi.org/10.1021/nl902187z
    13. Mingwu Shen, Su He Wang, Xiangyang Shi, Xisui Chen, Qingguo Huang, Elijah J. Petersen, Roger A. Pinto, James R. Baker, Jr. and Walter J. Weber, Jr. . Polyethyleneimine-Mediated Functionalization of Multiwalled Carbon Nanotubes: Synthesis, Characterization, and In Vitro Toxicity Assay. The Journal of Physical Chemistry C 2009, 113 (8) , 3150-3156. https://doi.org/10.1021/jp809323e
    14. Erik B. Malarkey, Kirk A. Fisher, Elena Bekyarova, Wei Liu, Robert C. Haddon and Vladimir Parpura. Conductive Single-Walled Carbon Nanotube Substrates Modulate Neuronal Growth. Nano Letters 2009, 9 (1) , 264-268. https://doi.org/10.1021/nl802855c
    15. Nadine Wong Shi Kam, Edward Jan and Nicholas A. Kotov. Electrical Stimulation of Neural Stem Cells Mediated by Humanized Carbon Nanotube Composite Made with Extracellular Matrix Protein. Nano Letters 2009, 9 (1) , 273-278. https://doi.org/10.1021/nl802859a
    16. Erik B. Malarkey, Reno C. Reyes, Bin Zhao, Robert C. Haddon and Vladimir Parpura . Water Soluble Single-Walled Carbon Nanotubes Inhibit Stimulated Endocytosis in Neurons. Nano Letters 2008, 8 (10) , 3538-3542. https://doi.org/10.1021/nl8017912
    17. María C. Gutiérrez, María L. Ferrer and Francisco del Monte. Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly. Chemistry of Materials 2008, 20 (3) , 634-648. https://doi.org/10.1021/cm702028z
    18. Eoghan P. Dillon, Christopher A. Crouse and Andrew R. Barron. Synthesis, Characterization, and Carbon Dioxide Adsorption of Covalently Attached Polyethyleneimine-Functionalized Single-Wall Carbon Nanotubes. ACS Nano 2008, 2 (1) , 156-164. https://doi.org/10.1021/nn7002713
    19. Dimitrios Tasis,, Nikos Tagmatarchis,, Alberto Bianco, and, Maurizio Prato. Chemistry of Carbon Nanotubes. Chemical Reviews 2006, 106 (3) , 1105-1136. https://doi.org/10.1021/cr050569o
    20. Laura P. Zanello,, Bin Zhao,, Hui Hu, and, Robert C. Haddon. Bone Cell Proliferation on Carbon Nanotubes. Nano Letters 2006, 6 (3) , 562-567. https://doi.org/10.1021/nl051861e
    21. Xinyu Li, Fuhu Han, Shencheng Fan, Yu Liu, Jieyu Zhang, Jing Li. Recycling of discarded face masks for modification and use in SBS-modified bitumen. Environmental Science and Pollution Research 2023, 30 (54) , 115152-115163. https://doi.org/10.1007/s11356-023-30570-0
    22. Jinning Li, Yuhang Cheng, Minling Gu, Zhen Yang, Lisi Zhan, Zhanhong Du. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. International Journal of Molecular Sciences 2023, 24 (6) , 5182. https://doi.org/10.3390/ijms24065182
    23. Gunjan Kaushik, Chandra Khatua, Souvik Ghosh, Debrupa Lahiri. Electrical Stimulation-Mediated Differentiation of Neural Cells on Conductive Carbon Nanofiller-Based Scaffold. Biomedical Materials & Devices 2023, 1 (1) , 301-318. https://doi.org/10.1007/s44174-022-00011-6
    24. Lopamudra Giri, Smruti Rekha Rout, Kenguva Gowtham, Mohammad A.S. Abourehab, Prashant Kesharwani, Rambabu Dandela. Biomimetic carbon nanotubes for neurological disease therapeutic. 2023, 229-253. https://doi.org/10.1016/B978-0-323-85199-2.00001-7
    25. Vraj Shah, Chirantan Shah, Shishir Raut, Manan Shah. Functionalized carbon nanomaterials for diagnosis, drug delivery, and stem cell therapy. 2023, 243-261. https://doi.org/10.1016/B978-0-12-824366-4.00002-9
    26. Fayu Wan, Saarthak Kharbanda, Preeti Thakur, Atul Thakur. Bioinspired Nanomaterials. 2023, 329-347. https://doi.org/10.1007/978-981-99-6105-4_16
    27. Andrzej Zieliński, Beata Majkowska-Marzec. Whether Carbon Nanotubes Are Capable, Promising, and Safe for Their Application in Nervous System Regeneration. Some Critical Remarks and Research Strategies. Coatings 2022, 12 (11) , 1643. https://doi.org/10.3390/coatings12111643
    28. Linlin Liang, Chao Liu, Pingqiang Cai, Shuwei Han, Ruitong Zhang, Na Ren, Jingang Wang, Jing Yu, Shuo Shang, Weijia Zhou, Jichuan Qiu, Chuanbin Mao, Xiaodong Chen, Chunhui Sun, Hong Liu. Highly specific differentiation of MSCs into neurons directed by local electrical stimuli triggered wirelessly by electromagnetic induction nanogenerator. Nano Energy 2022, 100 , 107483. https://doi.org/10.1016/j.nanoen.2022.107483
    29. Guoxu Zhao, Hongwei Zhou, Guorui Jin, Birui Jin, Songmei Geng, Zhengtang Luo, Zigang Ge, Feng Xu. Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Progress in Polymer Science 2022, 131 , 101573. https://doi.org/10.1016/j.progpolymsci.2022.101573
    30. Margarita R. Chetyrkina, Fedor S. Fedorov, Albert G. Nasibulin. In vitro toxicity of carbon nanotubes: a systematic review. RSC Advances 2022, 12 (25) , 16235-16256. https://doi.org/10.1039/D2RA02519A
    31. Khaled Tawfik Alali, Jingyuan Liu, Deema Moharram, Jing Yu, Qi Liu, Jiahui Zhu, Rumin Li, Jun Wang. HFIP-functionalized 3D carbon nanostructure as chemiresistive nerve agents sensors under visible light. Sensors and Actuators B: Chemical 2022, 358 , 131475. https://doi.org/10.1016/j.snb.2022.131475
    32. Sahithi Nimushakavi, Shagufta Haque, Rajesh Kotcherlakota, Chitta Ranjan Patra. Biomedical Applications of Carbon Nanotubes: Recent Development and Future Challenges. 2022, 353-388. https://doi.org/10.1002/9783527832095.ch29
    33. Jamileh Saremi, Narges Mahmoodi, Mehdi Rasouli, Faezeh Esmaeili Ranjbar, Elham Lak Mazaheri, Marziyeh Akbari, Elham Hasanzadeh, Mahmoud Azami. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomedicine & Pharmacotherapy 2022, 146 , 112529. https://doi.org/10.1016/j.biopha.2021.112529
    34. Dhara Jajal, Sejal Shah. Application of nanobiomaterials in soft tissue engineering. 2022, 79-108. https://doi.org/10.1016/B978-0-12-819469-0.00006-X
    35. Katarzyna Krukiewicz, James Britton, Daria Więcławska, Małgorzata Skorupa, Jorge Fernandez, Jose-Ramon Sarasua, Manus J. P. Biggs. Electrical percolation in extrinsically conducting, poly(ε-decalactone) composite neural interface materials. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-020-80361-7
    36. Stefano A. Mezzasalma, Lucia Grassi, Mario Grassi. Physical and chemical properties of carbon nanotubes in view of mechanistic neuroscience investigations. Some outlook from condensed matter, materials science and physical chemistry. Materials Science and Engineering: C 2021, 131 , 112480. https://doi.org/10.1016/j.msec.2021.112480
    37. . Properties and Applications of Carbon Nanotubes. 2021, 164-239. https://doi.org/10.1039/9781788019637-00164
    38. Elham Aram, Shahram Mehdipour-Ataei. Carbon-based nanostructured composites for tissue engineering and drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials 2021, 70 (16) , 1167-1188. https://doi.org/10.1080/00914037.2020.1785456
    39. Mahsa Delyanee, Somaye Akbari, Atefeh Solouk. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents’ modification: A review. European Journal of Medicinal Chemistry 2021, 221 , 113572. https://doi.org/10.1016/j.ejmech.2021.113572
    40. Mohaddeseh Vafaiee, Raheleh Mohammadpour, Manouchehr Vossoughi, Elham Asadian, Mahyar Janahmadi, Pezhman Sasanpour. Carbon Nanotube Modified Microelectrode Array for Neural Interface. Frontiers in Bioengineering and Biotechnology 2021, 8 https://doi.org/10.3389/fbioe.2020.582713
    41. Prabhakarn Arunachalam, Ponmurugan Karuppiah, Naif Abdullah Al-Dhabi. Biocompatibility and safety of nanobiomaterials. 2021, 103-115. https://doi.org/10.1016/B978-0-12-821013-0.00014-3
    42. Bashida V. Basheer, Jinu Jacob George, Suchart Siengchin, Jyotishkumar Parameswaranpillai. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Structures & Nano-Objects 2020, 22 , 100429. https://doi.org/10.1016/j.nanoso.2020.100429
    43. Aneta Fraczek-Szczypta, Danuta Jantas, Filip Ciepiela, Justyna Grzonka. Graphene oxide-conductive polymer nanocomposite coatings obtained by the EPD method as substrates for neurite outgrowth. Diamond and Related Materials 2020, 102 , 107663. https://doi.org/10.1016/j.diamond.2019.107663
    44. Faruk Oytun, Umut Ugur Ozkose. Preparation and characterization of electrically conductive multiwalled carbon nanotube/polyoxazoline nanocomposite films using spray coating. Journal of Coatings Technology and Research 2019, 16 (6) , 1757-1764. https://doi.org/10.1007/s11998-019-00239-w
    45. N. Mariappan. Current trends in Nanotechnology applications in surgical specialties and orthopedic surgery. Biomedical & Pharmacology Journal 2019, 12 (3) , 1095-1127. https://doi.org/10.13005/bpj/1739
    46. Young Hye Song, Nikunj K. Agrawal, Jonathan M. Griffin, Christine E. Schmidt. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Advanced Drug Delivery Reviews 2019, 148 , 38-59. https://doi.org/10.1016/j.addr.2018.12.011
    47. Haleh Bakht Khosh Hagh, Fahimeh Farshi Azhar. Reinforcing materials for polymeric tissue engineering scaffolds: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2019, 107 (5) , 1560-1575. https://doi.org/10.1002/jbm.b.34248
    48. Jinxing Li, Qizhi Ren, Liyue Liu, Kaifang Sun, Xiang Gu. Non-covalent conjugation of sulfonated porphyrins to polyethylenimine-grafted multiwalled carbon nanotubes as efficient recyclable heterogeneous catalysts for dihydroxynaphthalenes photooxidation. Molecular Catalysis 2019, 470 , 97-103. https://doi.org/10.1016/j.mcat.2019.03.022
    49. Maryam Mehdizadeh Omrani, Mojtaba Ansari, Soheila Salahshour Kordestani, Nasim Kiaie, Amir Salati. Enhanced bone marrow stem cell attachment and differentiation on PCL/CNT substrate. Inorganic and Nano-Metal Chemistry 2019, 49 (5) , 136-142. https://doi.org/10.1080/24701556.2019.1586723
    50. Ping Han, Lichun Ma, Guojun Song, Longlong Shi, Zheng Gu, Xiaoru Li, Chao Yang, Gang Wang. Strengthening and Modulating Interphases in Carbon Fiber/Epoxy Composites by Grafting Dendritic Polyetheramine With Different Molecular Weights Onto Carbon Fiber. Polymer Composites 2019, 40 (S2) https://doi.org/10.1002/pc.25068
    51. Filipe V. Ferreira, Wesley Franceschi, Beatriz R.C. Menezes, Audrey F. Biagioni, Aparecido R. Coutinho, Luciana S. Cividanes. Synthesis, Characterization, and Applications of Carbon Nanotubes. 2019, 1-45. https://doi.org/10.1016/B978-0-12-813248-7.00001-8
    52. Joseph Christakiran Moses, Ankit Gangrade, Biman B. Mandal. Carbon Nanotubes and Their Polymer Nanocomposites. 2019, 145-175. https://doi.org/10.1016/B978-0-12-814615-6.00005-9
    53. Mrinal Bhattacharya, Wook-Jin Seong. Carbon nanotube-based materials—Preparation, biocompatibility, and applications in dentistry. 2019, 41-76. https://doi.org/10.1016/B978-0-12-815886-9.00003-6
    54. Adrián Magaz, Alessandro Faroni, Julie E. Gough, Adam J. Reid, Xu Li, Jonny J. Blaker. Bioactive Silk‐Based Nerve Guidance Conduits for Augmenting Peripheral Nerve Repair. Advanced Healthcare Materials 2018, 7 (23) https://doi.org/10.1002/adhm.201800308
    55. Sahil Kumar Rastogi, Anna Kalmykov, Nicholas Johnson, Tzahi Cohen-Karni. Bioelectronics with nanocarbons. Journal of Materials Chemistry B 2018, 6 (44) , 7159-7178. https://doi.org/10.1039/C8TB01600C
    56. Tianhao Li, Daomei Tang, Zehua Cui, Bo Cai, Dalin Li, Qianyuan Chen, ChangMing Li. Functionalized Carbon Nanotubes for Highly Active and Metal-Free Electrocatalysts in Hydrogen Evolution Reaction. Electrocatalysis 2018, 9 (5) , 573-581. https://doi.org/10.1007/s12678-017-0452-0
    57. Mohammad Al-Harahsheh, Mohannad AlJarrah, Mohannad Mayyas, Muna Alrebaki. High-stability polyamine/amide-functionalized magnetic nanoparticles for enhanced extraction of uranium from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers 2018, 86 , 148-157. https://doi.org/10.1016/j.jtice.2018.03.005
    58. Han‐Lim Kang, Jingu Kang, Jong Kook Won, Su‐Min Jung, Jaehyun Kim, Chan Hyuk Park, Byung‐Kwon Ju, Myung‐Gil Kim, Sung Kyu Park. Spatial Light Patterning of Full Color Quantum Dot Displays Enabled by Locally Controlled Surface Tailoring. Advanced Optical Materials 2018, 6 (9) https://doi.org/10.1002/adom.201701335
    59. Samad Ahadian, Farhad Batmanghelich, Raquel Obregón, Deepti Rana, Javier Ramón‐Azcón, Ramin Banan Sadeghian, Murugan Ramalingam. Carbon‐Based Nanobiomaterials. 2018, 85-104. https://doi.org/10.1002/9783527698646.ch4
    60. Qing Cai, Xiaoping Yang. Multiwalled Carbon nanotubes/hydroxyapatite nanoparticles incorporated GTR membranes. 2018, 181-209. https://doi.org/10.1016/B978-0-12-812291-4.00010-8
    61. Olena M. Perepelytsina, Andriy P. Ugnivenko, Mychailo V. Sydorenko. Prospects of carbon nanotubes as matrices for cell technologies. 2018, 67-104. https://doi.org/10.1016/B978-0-12-813691-1.00003-8
    62. Corey E Cruttenden, Jennifer M Taylor, Shan Hu, Yi Zhang, Xiao-Hong Zhu, Wei Chen, Rajesh Rajamani. Carbon nano-structured neural probes show promise for magnetic resonance imaging applications. Biomedical Physics & Engineering Express 2018, 4 (1) , 015001. https://doi.org/10.1088/2057-1976/aa948d
    63. Eduardo Fernández, Pablo Botella. Biotolerability of Intracortical Microelectrodes. Advanced Biosystems 2018, 2 (1) https://doi.org/10.1002/adbi.201700115
    64. Ya-Ke Guo, Wen Chen, Qing Xiong, Quan-Xia Ren, Li Sun, Bo Han, Xiao-Juan Li. Chemically modified multiwalled carbon nanotubes improve the cytocompatibility. Materials Research Express 2017, 4 (12) , 125801. https://doi.org/10.1088/2053-1591/aa9d21
    65. Shuangquan Wu, Bo Duan, Ang Lu, Yanfeng Wang, Qifa Ye, Lina Zhang. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydrate Polymers 2017, 174 , 830-840. https://doi.org/10.1016/j.carbpol.2017.06.101
    66. Annamaria Cimini, Matteo Ardini, Roberta Gentile, Francesco Giansanti, Elisabetta Benedetti, Loredana Cristiano, Alessia Fidoamore, Stefano Scotti, Gloria Panella, Francesco Angelucci, Rodolfo Ippoliti. A peroxiredoxin-based proteinaceous scaffold for the growth and differentiation of neuronal cells and tumour stem cells in the absence of prodifferentiation agents. Journal of Tissue Engineering and Regenerative Medicine 2017, 11 (9) , 2462-2470. https://doi.org/10.1002/term.2144
    67. Wei Wang, Lei Mei, Fan Wang, Baoqing Pei, Xiaoming Li. The Potential Matrix and Reinforcement Materials for the Preparation of the Scaffolds Reinforced by Fibers or Tubes for Tissue Repair. 2017, 25-77. https://doi.org/10.1007/978-981-10-3554-8_2
    68. Baoqing Pei, Wei Wang, Xiaoming Li. Scaffolds Reinforced by Fibers or Tubes for Soft Tissue Repair. 2017, 261-304. https://doi.org/10.1007/978-981-10-3554-8_8
    69. Feng Su, Guanlin Li, Yanli Fan, Yunjun Yan. Enhanced performance of lipase via microcapsulation and its application in biodiesel preparation. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29670
    70. Dan Lei, Wen Yang, Yunqian Gong, Jing Jing, Hailiang Nie, Bin Yu, Xiaoling Zhang. Non-covalent decoration of carbon dots with folic acid via a polymer-assisted strategy for fast and targeted cancer cell fluorescence imaging. Sensors and Actuators B: Chemical 2016, 230 , 714-720. https://doi.org/10.1016/j.snb.2016.02.123
    71. Karen M. Oprych, Raymond L. D. Whitby, Sergey V. Mikhalovsky, Paul Tomlins, Jimi Adu. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?. Advanced Healthcare Materials 2016, 5 (11) , 1253-1271. https://doi.org/10.1002/adhm.201500864
    72. Gil-Pyo Kim, Minzae Lee, Yoon Jae Lee, Seongjun Bae, Hyeon Dong Song, In Kyu Song, Jongheop Yi. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity. Electrochimica Acta 2016, 193 , 137-144. https://doi.org/10.1016/j.electacta.2016.02.064
    73. Susanna Bosi, Alessandra Fabbro, Cristina Cantarutti, Marko Mihajlovic, Laura Ballerini, Maurizio Prato. Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks. Carbon 2016, 97 , 87-91. https://doi.org/10.1016/j.carbon.2015.07.074
    74. Wei Zhu, Nathan Castro, Brent Harris, Lijie Grace Zhang. Cell Sources and Nanotechnology for Neural Tissue Engineering. 2016, 207-226. https://doi.org/10.1007/978-3-319-31433-4_7
    75. Francisco Morales-Lara, María Domingo-García, Rafael López-Garzón, María Luz Godino-Salido, Antonio Peñas-Sanjuán, F. Javier López-Garzón, Manuel Pérez-Mendoza, Manuel Melguizo. Grafting the surface of carbon nanotubes and carbon black with the chemical properties of hyperbranched polyamines. Science and Technology of Advanced Materials 2016, 17 (1) , 541-553. https://doi.org/10.1080/14686996.2016.1221728
    76. Lichun Ma, Linghui Meng, Guangshun Wu, Yuwei Wang, Min Zhao, Chunhua Zhang, Yudong Huang. Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol. Composites Science and Technology 2015, 114 , 64-71. https://doi.org/10.1016/j.compscitech.2015.04.011
    77. Dong‐Wan Kang, Fangfang Sun, Yoon Ji Choi, Fengming Zou, Won‐Ho Cho, Byung‐Kwan Choi, Kwangnak Koh, Jaebeom Lee, In Ho Han. Enhancement of primary neuronal cell proliferation using printing‐transferred carbon nanotube sheets. Journal of Biomedical Materials Research Part A 2015, 103 (5) , 1746-1754. https://doi.org/10.1002/jbm.a.35294
    78. Gil-Pyo Kim, Seongjun Bae, Minzae Lee, Hyeon Don Song, Jongheop Yi. Decoration of a bio-inspired carbon nanosphere with Pt nanoparticles via a polymer-assisted strategy for enhanced electrocatalytic activity. Nano Energy 2015, 12 , 675-685. https://doi.org/10.1016/j.nanoen.2015.01.042
    79. Xiaolong Yu, Xiaoyan Yuan, Yunhui Zhao, Lixia Ren. Synthesis of paramagnetic polymers based on polyethyleneimine (PEI). RSC Advances 2015, 5 (112) , 92207-92211. https://doi.org/10.1039/C5RA18175E
    80. Feng Luo, Lanlan Pan, Xibo Pei, Rui He, Jian Wang, Qianbing Wan. PCL–CNT Nanocomposites. 2015, 173-193. https://doi.org/10.1007/978-3-642-45229-1_41
    81. Svetlana A. Chechetka, Benoit Pichon, Minfang Zhang, Masako Yudasaka, Sylvie Bégin‐Colin, Alberto Bianco, Eijiro Miyako. Multifunctional Carbon Nanohorn Complexes for Cancer Treatment. Chemistry – An Asian Journal 2015, 10 (1) , 160-165. https://doi.org/10.1002/asia.201403059
    82. Chia-Hui Lee, Ya-Wen Cheng, G Steven Huang. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays. Nanoscale Research Letters 2014, 9 (1) https://doi.org/10.1186/1556-276X-9-250
    83. Silvana Fiorito, Emmanuel Flahaut, Stefania Rapino, Francesco Paolucci, Federica Andreola, Noemi Moroni, Eugenia Pittaluga, Manuela Zonfrillo, Giovanni Valenti, Arianna Mastrofrancesco, Flavia Groppi, Enrico Sabbioni, Evangelos Bakalis, Francesco Zerbetto, Annalucia Serafino. Redox active Double Wall Carbon Nanotubes show intrinsic anti-proliferative effects and modulate autophagy in cancer cells. Carbon 2014, 78 , 589-600. https://doi.org/10.1016/j.carbon.2014.07.046
    84. Manoj K. Gottipati, Alexei Verkhratsky, Vladimir Parpura. Probing astroglia with carbon nanotubes: modulation of form and function. Philosophical Transactions of the Royal Society B: Biological Sciences 2014, 369 (1654) , 20130598. https://doi.org/10.1098/rstb.2013.0598
    85. Hanieh Moradian, Hamidreza Fasehee, Hamid Keshvari, Shahab Faghihi. Poly(ethyleneimine) functionalized carbon nanotubes as efficient nano-vector for transfecting mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces 2014, 122 , 115-125. https://doi.org/10.1016/j.colsurfb.2014.06.056
    86. Huixia Wu, Haili Shi, Hao Zhang, Xue Wang, Yan Yang, Chao Yu, Caiqin Hao, Jing Du, He Hu, Shiping Yang. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 2014, 35 (20) , 5369-5380. https://doi.org/10.1016/j.biomaterials.2014.03.038
    87. María C. Serrano, María C. Gutiérrez, Francisco del Monte. Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Progress in Polymer Science 2014, 39 (7) , 1448-1471. https://doi.org/10.1016/j.progpolymsci.2014.02.004
    88. G. Mayeli Estrada‐Villegas, Emilio Bucio. The Role of the Shape in the Design of New Nanoparticles. 2014, 61-86. https://doi.org/10.1002/9781118774038.ch3
    89. Priyanka Bhattacharya, Dan Du, Yuehe Lin. Bioinspired nanoscale materials for biomedical and energy applications. Journal of The Royal Society Interface 2014, 11 (95) , 20131067. https://doi.org/10.1098/rsif.2013.1067
    90. Wei Zhu, Christopher O'Brien, Joseph R O'Brien, Lijie Grace Zhang. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 2014, 9 (6) , 859-875. https://doi.org/10.2217/nnm.14.36
    91. Bill G.X. Zhang, Anita F. Quigley, Damian E. Myers, Gordon G. Wallace, Robert M.I. Kapsa, Peter F.M. Choong. Recent Advances in Nerve Tissue Engineering. The International Journal of Artificial Organs 2014, 37 (4) , 277-291. https://doi.org/10.5301/ijao.5000317
    92. Vinoth Kumar Ponnusamy, Veerappan Mani, Shen-Ming Chen, Wan-Tran Huang, Jen-Fon Jen. Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 2014, 120 , 148-157. https://doi.org/10.1016/j.talanta.2013.12.003
    93. Siyang Liu, Zhe Wang, Guoming Lu, Yue Wang, Yue Zhang, Xiaodan He, Lixia Zhao, Zewen Li, Lichun Xuan, Dongyu Zhao. Interfacial modification of single‐walled carbon nanotubes for high‐loading‐reinforced polypropylene composites. Journal of Applied Polymer Science 2014, 131 (3) https://doi.org/10.1002/app.39817
    94. Nadine Collaert, Carolina Mora Lopez, Daire J. Cott, Jordi Cools, Dries Braeken, Michael De Volder. In vitro recording of neural activity using carbon nanosheet microelectrodes. Carbon 2014, 67 , 178-184. https://doi.org/10.1016/j.carbon.2013.09.079
    95. Arie Bruinink, Malak Bitar, Miriam Pleskova, Peter Wick, Harald F. Krug, Katharina Maniura-Weber. Addition of nanoscaledbioinspiredsurface features: A revolution for bone related implants and scaffolds?. Journal of Biomedical Materials Research Part A 2014, 102 (1) , 275-294. https://doi.org/10.1002/jbm.a.34691
    96. Aneta Fraczek-Szczypta. Carbon nanomaterials for nerve tissue stimulation and regeneration. Materials Science and Engineering: C 2014, 34 , 35-49. https://doi.org/10.1016/j.msec.2013.09.038
    97. Mi-Hee Kim, Matthew Park, Kyungtae Kang, Insung S. Choi. Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomater. Sci. 2014, 2 (2) , 148-155. https://doi.org/10.1039/C3BM60255A
    98. D. Depan, R. D. K. Misra. The development, characterization, and cellular response of a novel electroactive nanostructured composite for electrical stimulation of neural cells. Biomater. Sci. 2014, 2 (12) , 1727-1739. https://doi.org/10.1039/C4BM00168K
    99. Abhinoy Kishore, Kaushiki Biswas, Vijaykameswara Rao N, Raja Shunmugam, Jayasri Das Sarma. Functionalized single walled carbon nanotubes facilitate efficient differentiation of neuroblastoma cells in vitro. RSC Adv. 2014, 4 (96) , 53777-53787. https://doi.org/10.1039/C4RA09540E
    100. Takashi D. Y. Kozai, Nicolas A. Alba, Huanan Zhang, Nicolas A. Kotov, Robert A. Gaunt, Xinyan Tracy Cui. Nanostructured Coatings for Improved Charge Delivery to Neurons. 2014, 71-134. https://doi.org/10.1007/978-1-4899-8038-0_4
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect