ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Magnetically Actuated Colloidal Microswimmers

View Author Information
Departament de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain, Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom, Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain, and Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, Spain
* Corresponding author. E-mail: [email protected]. Telephone: +34934020138.
†Departament de Química Física, Universitat de Barcelona.
‡Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona.
§University of Sheffield.
∥Departament de Física Fonamental, Universitat de Barcelona.
Cite this: J. Phys. Chem. B 2008, 112, 51, 16525–16528
Publication Date (Web):November 24, 2008
https://doi.org/10.1021/jp808354n
Copyright © 2008 American Chemical Society

    Article Views

    2520

    Altmetric

    -

    Citations

    115
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (6)»

    Abstract

    To achieve permanent propulsion of micro-objects in confined fluids is an elusive but challenging goal that will foster future development of microfluidics and biotechnology. Recent attempts based on a wide variety of strategies are still far from being able to design simple, versatile, and fully controllable swimming engines on the microscale. Here we show that DNA-linked anisotropic colloidal rotors, composed of paramagnetic colloidal particles with different or similar size, achieve controlled propulsion when subjected to a magnetic field precessing around an axis parallel to the plane of motion. During cycling motion, stronger viscous friction at the bounding plate, as compared to fluid resistance in the bulk, creates an asymmetry in dissipation that rectifies rotation into a net translation of the suspended objects. The potentiality of the method, applicable to any externally rotated micro/nano-object, is finally demonstrated in a microfluidic platform by guiding the colloidal rotors through microscopic-size channels connected in a simple geometry.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Six videos of the motion of the composite particles in Figure 2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 115 publications.

    1. Angus Unruh, Ethan J. Savage, Ayusman Sen. Remote Magnetically Controlled Chemically Fueled Micromotor Disks. Chemistry of Materials 2023, 35 (23) , 10099-10105. https://doi.org/10.1021/acs.chemmater.3c02156
    2. Rahul Chand, Chaudhary Eksha Rani, Diptabrata Paul, G. V. Pavan Kumar. Emergence of Directional Rotation in an Optothermally Activated Colloidal System. ACS Photonics 2023, 10 (11) , 4006-4013. https://doi.org/10.1021/acsphotonics.3c00890
    3. Marola W. Issa, Diego Calderon, Olivia Kamlet, Sogol Asaei, Julie N. Renner, Christopher L. Wirth. Engineered Polypeptides as a Tool for Controlling Catalytic Active Janus Particles. ACS Applied Engineering Materials 2023, 1 (8) , 1983-1996. https://doi.org/10.1021/acsaenm.3c00263
    4. Xianglong Lyu, Jingyuan Chen, Ruitong Zhu, Jiayu Liu, Lingshan Fu, Jeffrey Lawrence Moran, Wei Wang. Active Synthetic Microrotors: Design Strategies and Applications. ACS Nano 2023, 17 (13) , 11969-11993. https://doi.org/10.1021/acsnano.2c11680
    5. Meike Reginka, Hai Hoang, Özge Efendi, Maximilian Merkel, Rico Huhnstock, Dennis Holzinger, Kristina Dingel, Bernhard Sick, Daniela Bertinetti, Friedrich W. Herberg, Arno Ehresmann. Transport Efficiency of Biofunctionalized Magnetic Particles Tailored by Surfactant Concentration. Langmuir 2021, 37 (28) , 8498-8507. https://doi.org/10.1021/acs.langmuir.1c00900
    6. Ran Niu, Denis Botin, Julian Weber, Alexander Reinmüller, and Thomas Palberg . Assembly and Speed in Ion-Exchange-Based Modular Phoretic Microswimmers. Langmuir 2017, 33 (14) , 3450-3457. https://doi.org/10.1021/acs.langmuir.7b00288
    7. Hong Wang and Martin Pumera . Fabrication of Micro/Nanoscale Motors. Chemical Reviews 2015, 115 (16) , 8704-8735. https://doi.org/10.1021/acs.chemrev.5b00047
    8. Pranay Mandal, Vaishali Chopra, and Ambarish Ghosh . Independent Positioning of Magnetic Nanomotors. ACS Nano 2015, 9 (5) , 4717-4725. https://doi.org/10.1021/acsnano.5b01518
    9. Maria Guix, Carmen C. Mayorga-Martinez, and Arben Merkoçi . Nano/Micromotors in (Bio)chemical Science Applications. Chemical Reviews 2014, 114 (12) , 6285-6322. https://doi.org/10.1021/cr400273r
    10. Yutaka Nagaoka, Hisao Morimoto, and Toru Maekawa . Ordered Complex Structures Formed by Paramagnetic Particles via Self-Assembly Under an ac/dc Combined Magnetic Field. Langmuir 2011, 27 (15) , 9160-9164. https://doi.org/10.1021/la201156q
    11. Gaspard Junot, Andrés Javier Manzano González, Pietro Tierno. Bidirectional zigzag growth from clusters of active colloidal shakers. Physical Review Research 2024, 6 (1) https://doi.org/10.1103/PhysRevResearch.6.013287
    12. Lorenzo Piro. Introduction. 2024, 1-25. https://doi.org/10.1007/978-3-031-52577-3_1
    13. Wei Zong, Yunhe Chai, Xiaoran Wang, Xunan Zhang. Artificial Micro/nanomotors: Turning Sci-Fi into reality. European Polymer Journal 2023, 201 , 112557. https://doi.org/10.1016/j.eurpolymj.2023.112557
    14. Emma Benjaminson, Taryn Imamura, Aria Lorenz, Sarah Bergbreiter, Matthew Travers, Rebecca E. Taylor. Buoyant magnetic milliswimmers reveal design rules for optimizing microswimmer performance. Nanoscale 2023, 15 (34) , 14175-14188. https://doi.org/10.1039/D3NR02846A
    15. Matthew T. Bryan. Assessing the Challenges of Nanotechnology-Driven Targeted Therapies: Development of Magnetically Directed Vectors for Targeted Cancer Therapies and Beyond. 2023, 105-123. https://doi.org/10.1007/978-1-0716-2716-7_6
    16. Ugur Bozuyuk, Amirreza Aghakhani, Yunus Alapan, Muhammad Yunusa, Paul Wrede, Metin Sitti. Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34023-z
    17. Lorenzo Piro, Benoît Mahault, Ramin Golestanian. Optimal navigation of microswimmers in complex and noisy environments. New Journal of Physics 2022, 24 (9) , 093037. https://doi.org/10.1088/1367-2630/ac9079
    18. Haichao Li, Yue Li, Jun Liu, Qiang He, Yingjie Wu. Asymmetric colloidal motors: from dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. Nanoscale 2022, 14 (20) , 7444-7459. https://doi.org/10.1039/D2NR00610C
    19. Aldo Spatafora-Salazar, Lucas H P Cunha, Sibani Lisa Biswal. Periodic deformation of semiflexible colloidal chains in eccentric time-varying magnetic fields. Journal of Physics: Condensed Matter 2022, 34 (18) , 184005. https://doi.org/10.1088/1361-648X/ac533a
    20. Kedar Joshi, Sibani Lisa Biswal. Extension of Kelvin’s equation to dipolar colloids. Proceedings of the National Academy of Sciences 2022, 119 (12) https://doi.org/10.1073/pnas.2117971119
    21. Lucas Amoudruz, Petros Koumoutsakos. Independent Control and Path Planning of Microswimmers with a Uniform Magnetic Field. Advanced Intelligent Systems 2022, 4 (3) https://doi.org/10.1002/aisy.202100183
    22. Pietro Tierno, Alexey Snezhko. Transport and Assembly of Magnetic Surface Rotors**. ChemNanoMat 2021, 7 (8) , 881-893. https://doi.org/10.1002/cnma.202100139
    23. M. Hubert, O. Trosman, Y. Collard, A. Sukhov, J. Harting, N. Vandewalle, A.-S. Smith. Scallop Theorem and Swimming at the Mesoscale. Physical Review Letters 2021, 126 (22) https://doi.org/10.1103/PhysRevLett.126.224501
    24. Lorenzo Piro, Evelyn Tang, Ramin Golestanian. Optimal navigation strategies for microswimmers on curved manifolds. Physical Review Research 2021, 3 (2) https://doi.org/10.1103/PhysRevResearch.3.023125
    25. Karen Larson, Sarah D. Olson, Anastasios Matzavinos. A Bayesian Framework to Estimate Fluid and Material Parameters in Micro-swimmer Models. Bulletin of Mathematical Biology 2021, 83 (3) https://doi.org/10.1007/s11538-020-00852-6
    26. Fanlong Meng, Daiki Matsunaga, Benoît Mahault, Ramin Golestanian. Magnetic Microswimmers Exhibit Bose-Einstein-like Condensation. Physical Review Letters 2021, 126 (7) https://doi.org/10.1103/PhysRevLett.126.078001
    27. Carles Calero, José García-Torres, Antonio Ortiz-Ambriz, Francesc Sagués, Ignacio Pagonabarraga, Pietro Tierno. Propulsion and energetics of a minimal magnetic microswimmer. Soft Matter 2020, 16 (28) , 6673-6682. https://doi.org/10.1039/D0SM00564A
    28. Mohammad Reza Shabanniya, Ali Naji. Active dipolar spheroids in shear flow and transverse field: Population splitting, cross-stream migration, and orientational pinning. The Journal of Chemical Physics 2020, 152 (20) https://doi.org/10.1063/5.0002757
    29. Helena Massana-Cid, Eloy Navarro-Argemí, Demian Levis, Ignacio Pagonabarraga, Pietro Tierno. Leap-frog transport of magnetically driven anisotropic colloidal rotors. The Journal of Chemical Physics 2019, 150 (16) https://doi.org/10.1063/1.5086280
    30. Chao Wang, Yong-kun Guo, Wen-de Tian, Kang Chen. Shape transformation and manipulation of a vesicle by active particles. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5078694
    31. Stefan Klumpp, Christopher T. Lefèvre, Mathieu Bennet, Damien Faivre. Swimming with magnets: From biological organisms to synthetic devices. Physics Reports 2019, 789 , 1-54. https://doi.org/10.1016/j.physrep.2018.10.007
    32. M. Rajabi, A. Hajiahmadi. Self-propulsive swimmers: Two linked acoustic radiating spheres. Physical Review E 2018, 98 (6) https://doi.org/10.1103/PhysRevE.98.063003
    33. Takeru Morita, Toshihiro Omori, Takuji Ishikawa. Biaxial fluid oscillations can propel a microcapsule swimmer in an arbitrary direction. Physical Review E 2018, 98 (6) https://doi.org/10.1103/PhysRevE.98.063102
    34. G. Grosjean, M. Hubert, Y. Collard, S. Pillitteri, N. Vandewalle. Surface swimmers, harnessing the interface to self-propel. The European Physical Journal E 2018, 41 (11) https://doi.org/10.1140/epje/i2018-11747-y
    35. Joshua K. Hamilton, Andrew D. Gilbert, Peter G. Petrov, Feodor Y. Ogrin. Torque driven ferromagnetic swimmers. Physics of Fluids 2018, 30 (9) https://doi.org/10.1063/1.5046360
    36. Charles Wyatt Shields, Koohee Han, Fuduo Ma, Touvia Miloh, Gilad Yossifon, Orlin D. Velev. Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation. Advanced Functional Materials 2018, 28 (35) https://doi.org/10.1002/adfm.201803465
    37. Takeru Morita, Toshihiro Omori, Takuji Ishikawa. Passive swimming of a microcapsule in vertical fluid oscillation. Physical Review E 2018, 98 (2) https://doi.org/10.1103/PhysRevE.98.023108
    38. Arthur V Straube, Josep M Pagès, Antonio Ortiz-Ambriz, Pietro Tierno, Jordi Ignés-Mullol, Francesc Sagués. Assembly and transport of nematic colloidal swarms above photo-patterned defects and surfaces. New Journal of Physics 2018, 20 (7) , 075006. https://doi.org/10.1088/1367-2630/aac3c6
    39. Koohee Han, C. Wyatt Shields, Orlin D. Velev. Engineering of Self‐Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields. Advanced Functional Materials 2018, 28 (25) https://doi.org/10.1002/adfm.201705953
    40. F. Martínez-Pedrero, P. Tierno. Advances in colloidal manipulation and transport via hydrodynamic interactions. Journal of Colloid and Interface Science 2018, 519 , 296-311. https://doi.org/10.1016/j.jcis.2018.02.062
    41. Alireza Mojahed, Majid Rajabi. Self-motile swimmers: Ultrasound driven spherical model. Ultrasonics 2018, 86 , 1-5. https://doi.org/10.1016/j.ultras.2018.01.006
    42. Xiang‐Zhong Chen, Bumjin Jang, Daniel Ahmed, Chengzhi Hu, Carmela De Marco, Marcus Hoop, Fajer Mushtaq, Bradley J. Nelson, Salvador Pané. Small‐Scale Machines Driven by External Power Sources. Advanced Materials 2018, 30 (15) https://doi.org/10.1002/adma.201705061
    43. Benoit Vincenti, Carine Douarche, Eric Clement. Actuated rheology of magnetic micro-swimmers suspensions: Emergence of motor and brake states. Physical Review Fluids 2018, 3 (3) https://doi.org/10.1103/PhysRevFluids.3.033302
    44. Ran Niu, Thomas Palberg. Modular approach to microswimming. Soft Matter 2018, 14 (37) , 7554-7568. https://doi.org/10.1039/C8SM00995C
    45. Jiajun Tong, Michael J. Shelley. Directed Migration of Microscale Swimmers by an Array of Shaped Obstacles: Modeling and Shape Optimization. SIAM Journal on Applied Mathematics 2018, 78 (5) , 2370-2392. https://doi.org/10.1137/17M1147482
    46. Juan Ruben Gomez-Solano, Sela Samin, Celia Lozano, Pablo Ruedas-Batuecas, René van Roij, Clemens Bechinger. Tuning the motility and directionality of self-propelled colloids. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-14126-0
    47. Ran Niu, Stanislav Khodorov, Julian Weber, Alexander Reinmüller, Thomas Palberg. Large scale micro-photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming. New Journal of Physics 2017, 19 (11) , 115014. https://doi.org/10.1088/1367-2630/aa9545
    48. C. Wyatt Shields, Orlin D. Velev. The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. Chem 2017, 3 (4) , 539-559. https://doi.org/10.1016/j.chempr.2017.09.006
    49. Jesse F. Collis, Debadi Chakraborty, John E. Sader. Autonomous propulsion of nanorods trapped in an acoustic field. Journal of Fluid Mechanics 2017, 825 , 29-48. https://doi.org/10.1017/jfm.2017.381
    50. Kilian Dietrich, Damian Renggli, Michele Zanini, Giovanni Volpe, Ivo Buttinoni, Lucio Isa. Two-dimensional nature of the active Brownian motion of catalytic microswimmers at solid and liquid interfaces. New Journal of Physics 2017, 19 (6) , 065008. https://doi.org/10.1088/1367-2630/aa7126
    51. M. Taya, C. Xu, T. Matsuse, S. Muraishi. Molecular dynamics model for nano-motions of FePd nanohelices. Journal of Applied Physics 2017, 121 (15) https://doi.org/10.1063/1.4979474
    52. Joshua K. Hamilton, Peter G. Petrov, C. Peter Winlove, Andrew D. Gilbert, Matthew T. Bryan, Feodor Y. Ogrin. Magnetically controlled ferromagnetic swimmers. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep44142
    53. M. Schwabe, S. Zhdanov, C. Räth. Instability onset and scaling laws of an auto-oscillating turbulent flow in a complex plasma. Physical Review E 2017, 95 (4) https://doi.org/10.1103/PhysRevE.95.041201
    54. Bram Bet, Gijs Boosten, Marjolein Dijkstra, René van Roij. Efficient shapes for microswimming: From three-body swimmers to helical flagella. The Journal of Chemical Physics 2017, 146 (8) https://doi.org/10.1063/1.4976647
    55. Shuang Zhou. Introduction. 2017, 1-12. https://doi.org/10.1007/978-3-319-52806-9_1
    56. Daniel L. Magley, Vinayak Narasimhan, Hyuck Choo. Hydro-ionic microthruster for locomotion in low-Reynold'S number ionic fluids. 2017, 773-776. https://doi.org/10.1109/MEMSYS.2017.7863522
    57. Masashi Suzuki, Hiroaki Hayashi, Toru Mizuki, Toru Maekawa, Hisao Morimoto. Efficient DNA ligation by selective heating of DNA ligase with a radio frequency alternating magnetic field. Biochemistry and Biophysics Reports 2016, 8 , 360-364. https://doi.org/10.1016/j.bbrep.2016.10.006
    58. Peter Vach. Actuation of Iron Oxide‐Based Nanostructures by External Magnetic Fields. 2016, 523-544. https://doi.org/10.1002/9783527691395.ch20
    59. Andreas Zöttl, Holger Stark. Emergent behavior in active colloids. Journal of Physics: Condensed Matter 2016, 28 (25) , 253001. https://doi.org/10.1088/0953-8984/28/25/253001
    60. S. Zhdanov, C.-R. Du, M. Schwabe, V. Nosenko, H. M. Thomas, G. E. Morfill. Wake turbulence observed behind an upstream “extra” particle in a complex (dusty) plasma. EPL (Europhysics Letters) 2016, 114 (5) , 55002. https://doi.org/10.1209/0295-5075/114/55002
    61. T. O. Tasci, P. S. Herson, K. B. Neeves, D. W. M. Marr. Surface-enabled propulsion and control of colloidal microwheels. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10225
    62. Peter J Vach, Stefan Klumpp, Damien Faivre. Steering magnetic micropropellers along independent trajectories. Journal of Physics D: Applied Physics 2016, 49 (6) , 065003. https://doi.org/10.1088/0022-3727/49/6/065003
    63. Sabine H.L. Klapp. Collective dynamics of dipolar and multipolar colloids: From passive to active systems. Current Opinion in Colloid & Interface Science 2016, 21 , 76-85. https://doi.org/10.1016/j.cocis.2016.01.004
    64. Karin Leiderman, Sarah D. Olson. Swimming in a two-dimensional Brinkman fluid: Computational modeling and regularized solutions. Physics of Fluids 2016, 28 (2) https://doi.org/10.1063/1.4941258
    65. Kwanoh Kim, Jianhe Guo, Z. X. Liang, F. Q. Zhu, D. L. Fan. Man-made rotary nanomotors: a review of recent developments. Nanoscale 2016, 8 (20) , 10471-10490. https://doi.org/10.1039/C5NR08768F
    66. Claudio Maggi, Filippo Saglimbeni, Michele Dipalo, Francesco De Angelis, Roberto Di Leonardo. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms8855
    67. Arno Ehresmann, Iris Koch, Dennis Holzinger. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications. Sensors 2015, 15 (11) , 28854-28888. https://doi.org/10.3390/s151128854
    68. Wentao Duan, Wei Wang, Sambeeta Das, Vinita Yadav, Thomas E. Mallouk, Ayusman Sen. Synthetic Nano- and Micromachines in Analytical Chemistry: Sensing, Migration, Capture, Delivery, and Separation. Annual Review of Analytical Chemistry 2015, 8 (1) , 311-333. https://doi.org/10.1146/annurev-anchem-071114-040125
    69. Masashi Suzuki, Atsushi Aki, Toru Mizuki, Toru Maekawa, Ron Usami, Hisao Morimoto, . Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field. PLOS ONE 2015, 10 (5) , e0127673. https://doi.org/10.1371/journal.pone.0127673
    70. S. Zhdanov, M. Schwabe, C. Räth, H. M. Thomas, G. E. Morfill. Wave turbulence observed in an auto-oscillating complex (dusty) plasma. EPL (Europhysics Letters) 2015, 110 (3) , 35001. https://doi.org/10.1209/0295-5075/110/35001
    71. Andreas Kaiser, Andrey Sokolov, Igor S. Aranson, Hartmut Lowen. Mechanisms of Carrier Transport Induced by a Microswimmer Bath. IEEE Transactions on NanoBioscience 2015, 14 (3) , 260-266. https://doi.org/10.1109/TNB.2014.2361652
    72. Sergi Hernandez-Navarro, Pietro Tierno, Jordi Ignes-Mullol, Francesc Sagues. Nematic Colloidal Swarms Assembled and Transported on Photosensitive Surfaces. IEEE Transactions on NanoBioscience 2015, 14 (3) , 267-271. https://doi.org/10.1109/TNB.2015.2389873
    73. Argha Mondal, Basudev Roy, Ayan Banerjee. Generation of microswimmers from passive Brownian particles in a spherically aberrated optical trap. Optics Express 2015, 23 (6) , 8021. https://doi.org/10.1364/OE.23.008021
    74. Shivani Nain, N.N. Sharma. Propulsion of an artificial nanoswimmer: a comprehensive review. Frontiers in Life Science 2015, 8 (1) , 2-17. https://doi.org/10.1080/21553769.2014.962103
    75. Jérome Roche, Serena Carrara, Julien Sanchez, Jérémy Lannelongue, Gabriel Loget, Laurent Bouffier, Peer Fischer, Alexander Kuhn. Wireless powering of e -swimmers. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep06705
    76. , , Giorgio Volpe, Sylvain Gigan, Giovanni Volpe. Simulation of active Brownian particles in optical potentials. 2014, 91642S. https://doi.org/10.1117/12.2061049
    77. , , Basudev Roy, Argha Mondal, Soumyajit Roy, Ayan Banerjee. Spontaneous revolution of micro-swimmers in a spherically aberrated optical trap. 2014, 91640G. https://doi.org/10.1117/12.2067433
    78. Giorgio Volpe, Sylvain Gigan, Giovanni Volpe. Simulation of the active Brownian motion of a microswimmer. American Journal of Physics 2014, 82 (7) , 659-664. https://doi.org/10.1119/1.4870398
    79. François Nadal, On Shun Pak, LaiLai Zhu, Luca Brandt, Eric Lauga. Rotational propulsion enabled by inertia. The European Physical Journal E 2014, 37 (7) https://doi.org/10.1140/epje/i2014-14060-y
    80. Gabriel Loget, Alexander Kuhn. Electrochemical Motors. 2014, 349-378. https://doi.org/10.1002/9783527673223.ch14
    81. Agostino Martinelli. Overdamped 2D Brownian motion for self-propelled and nonholonomic particles. Journal of Statistical Mechanics: Theory and Experiment 2014, 2014 (3) , P03003. https://doi.org/10.1088/1742-5468/2014/03/P03003
    82. Mierk Schwabe, Sergey Zhdanov, Christoph Räth, David B. Graves, Hubertus M. Thomas, Gregor E. Morfill. Collective Effects in Vortex Movements in Complex Plasmas. Physical Review Letters 2014, 112 (11) https://doi.org/10.1103/PhysRevLett.112.115002
    83. JianFeng, Sung Cho. Mini and Micro Propulsion for Medical Swimmers. Micromachines 2014, 5 (1) , 97-113. https://doi.org/10.3390/mi5010097
    84. S. Namdeo, S. N. Khaderi, P. R. Onck. Numerical modelling of chirality-induced bi-directional swimming of artificial flagella. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2014, 470 (2162) , 20130547. https://doi.org/10.1098/rspa.2013.0547
    85. Hiroshi Endo, Yoshiyuki Mochizuki, Masahiro Tamura, Takeshi Kawai. Bio-inspired, topologically connected colloidal arrays via wrinkle and plasma processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 443 , 576-582. https://doi.org/10.1016/j.colsurfa.2013.10.050
    86. Roger S. M. Rikken, Roeland J. M. Nolte, Jan C. Maan, Jan C. M. van Hest, Daniela A. Wilson, Peter C. M. Christianen. Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 2014, 10 (9) , 1295-1308. https://doi.org/10.1039/C3SM52294F
    87. Pietro Tierno. Recent advances in anisotropic magnetic colloids: realization, assembly and applications. Phys. Chem. Chem. Phys. 2014, 16 (43) , 23515-23528. https://doi.org/10.1039/C4CP03099K
    88. Xu Zheng, Borge ten Hagen, Andreas Kaiser, Meiling Wu, Haihang Cui, Zhanhua Silber-Li, Hartmut Löwen. Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory. Physical Review E 2013, 88 (3) https://doi.org/10.1103/PhysRevE.88.032304
    89. . Externally Powered Nanomotors – Fuel‐Free Nanoswimmers. 2013, 101-117. https://doi.org/10.1002/9783527651450.ch5
    90. A. Kaiser, K. Popowa, H. H. Wensink, H. Löwen. Capturing self-propelled particles in a moving microwedge. Physical Review E 2013, 88 (2) https://doi.org/10.1103/PhysRevE.88.022311
    91. Charles E. Sing, Alfredo Alexander‐Katz. Microwalkers. 2013, 186-211. https://doi.org/10.1039/9781849737098-00186
    92. Igor S Aranson. Active colloids. Physics-Uspekhi 2013, 56 (1) , 79-92. https://doi.org/10.3367/UFNe.0183.201301e.0087
    93. Mite Mijalkov, Giovanni Volpe. Sorting of chiral microswimmers. Soft Matter 2013, 9 (28) , 6376. https://doi.org/10.1039/c3sm27923e
    94. Igor S. Aranson. Active colloids. Uspekhi Fizicheskih Nauk 2013, 183 (1) , 87-102. https://doi.org/10.3367/UFNr.0183.201301e.0087
    95. Igor S. Aranson. Collective behavior in out-of-equilibrium colloidal suspensions. Comptes Rendus. Physique 2013, 14 (6) , 518-527. https://doi.org/10.1016/j.crhy.2013.05.002
    96. Arijit Ghosh, Debadrita Paria, Haobijam Johnson Singh, Pooyath Lekshmy Venugopalan, Ambarish Ghosh. Dynamical configurations and bistability of helical nanostructures under external torque. Physical Review E 2012, 86 (3) https://doi.org/10.1103/PhysRevE.86.031401
    97. Ivo Buttinoni, Giovanni Volpe, Felix Kümmel, Giorgio Volpe, Clemens Bechinger. Active Brownian motion tunable by light. Journal of Physics: Condensed Matter 2012, 24 (28) , 284129. https://doi.org/10.1088/0953-8984/24/28/284129
    98. A. Kaiser, H. H. Wensink, H. Löwen. How to Capture Active Particles. Physical Review Letters 2012, 108 (26) https://doi.org/10.1103/PhysRevLett.108.268307
    99. A. M. Ardekani, E. Gore. Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid. Physical Review E 2012, 85 (5) https://doi.org/10.1103/PhysRevE.85.056309
    100. Nam-Trung Nguyen. Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and Nanofluidics 2012, 12 (1-4) , 1-16. https://doi.org/10.1007/s10404-011-0903-5
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect